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Fourier Series and the Colombeau 
Algebra on the Unit Circle 

DALIBOR PRAŽÁK 

Praha 

Received 20. November 2006 

We give a simple construction of Colombeau algebra in the setting of 27r-periodic 
functions. The canonical embedding is provided by the Fourier series expansion. We 
develop the basic theory and discuss several examples of products. 

1. Introduction 

The algebra of generalized functions ^ was introduced in [Co]. ^ (also called 
Colombeau algebra after its author) generalizes the space of distributions. Elements 
of ^ can be differentiated, but also arbitrarily multiplied with each other. 
Moreover, the Leibniz rule holds in the usual form. 

The so-called Schwartz' impossibility result [Schl] shows that natural assum­
ptions on any algebra of functions containing distributions lead to contradiction. 
Such an conclusion is avoided in ^ — rather surprisingly — by dropping the 
requirement of the pointwise character of the multiplication. In other words 

(fg)(x)=f(x)g(x) (1) 

need not hold in ^ even for continuous functions f g. However, (1) holds true if f 
g are infinitely smooth; this is one of the central achievements of the Colombeau 
theory. 
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The construction of ^ can be found in many books; e.g. [Co], [Ob], [Ro]. In 
particular, Oberguggenberger [Ob] discusses in detail the relation of ^ to other 
approaches to the multiplication of distributions; also many applications to various 
partial differential equations are given. Rosinger's book [Ro] adopts a far more 
general point of view on the problem of construction of differential algebras. 

Following Colombeau's original work, there appeared a number of variants of 
the original definition of ^ . Some of them are discussed in [Ob]. See also more 
recent papers [Bo], [Je], or [Sh]. 

It seems to us, however, that the basic ideas of the construction are usually 
obscured by a host of technically complicated definitions. The key observation that 
hides behind the construction of ^ is the simple and well-known fact that, roughly 
speaking, the rate of convergence of a smooth approximation improves with the 
regularity of the approximated function. 

To emphasize this, we aim in this paper to construct Colombeau algebras in 
a simple setting of 27C-periodic functions. The main advantage is the elementary 
approach and simple definitions. The canonical embedding of 3>'(T) into ^ is 
defined via the Fourier series. We thus remain in the setting that is familiar to most 
readers. Moreover, the special structure and properties of trigonometric functions 
greatly simplify the calculations of concrete examples. 

The paper is organized in the following way. Section 2 describes the standard 
function spaces. We review some distibution theory; we also discuss "pointwise" product 
(1) and its generalizations. The variant of Schwartz' impossibility result is presented. In 
Section 3 we collect the necessary preliminaries regarding the Fourier series. These 
results are well-known, but we prove most of them for the sake of completeness. 

The main content of the paper follows. Section 4 brings the construction of 
the Colombeau algebra on the unit circle. We define the canonical embedding i, 
the relation of association « , and show their basic properties. Last Section 5 is 
devoted to several examples that demonstrate the nonlinear properties of ^ . All 
these are variants of previous constructions, but, up to our knowledge, are new in 
this particular setting of 27i-periodic functions. 

2. Functions and distributions 

By T we denote the unit circle R/2n. The elements of C (T) ofC(T), Ck (T), C00 (T) 
are naturally identified with the 27T-periodic continuous (resp. fc-time continuously 
differentiable resp. infinitely differentiable) functions on 1R. 

Similarly LP(J) are just 27i-periodic functions from Lp
hc(U). With this convention 

j/to' )dx 

is computed as an integral over arbitrary interval of length 2TT. 
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Distributions Q)' (T) are the linear continuous functionals on 3) (T): = C00 (T), 
considered with the topology generated by 

\\<p\\k = sup|^(?| , k = 0,1,... (2) 

The duality between 3' (T) and @>(T) is denoted <,>. Occasionally we add 
a subscript to indicate the variable over which the pairing is taken. 8a stands for 
the Dirac measure in a e T, defined by 

<4><P> = <4(x)>9{*)>x := q>(a). 

To each fe Ll(J) there corresponds a distribution Tf, given by 

<£(?>:= \f{x)<p(x)dx. (3) 
T 

One says that Tf is a regular distribution with the density f The derivative of the 
distribution T is defined by 

<&T,<p>:=(-lY<T,£i<p>. 

One verifies easily that j^-Te 3' (T). A well-known deeper result from the theory 
of distributions (see e.g. [Sch2]) says that every distribution is a derivative of 
a continuous function. More precisely, we have the following theorem. 

Theorem 1. Given TeS)' (T), there exist ceU, keN and FeC(J) such that 
T = c + dxkTF. 

For example 

where 

ðo~Ъz~^2Tw 

2 

w(x) = ^ - | , xє[0,2к). 

Remark. Concerning the spaces considered so far, only Ck (T) and L00 (T) can 
be equipped with the pointwise product (1), yielding algebras. In other circumstan­
ces this product can be used with certain limitations. For example, Holder's 
inequality asserts that fgel} provided that fell, geU where 1/p + l/q < 1 
(with the convention that the result is defined almost everywhere.) This is the 
common way to interpret the nonlinearities in the PDE theory. 

A natural generalization of (1) defines co- T = T- co e Q)' (T) as the product of 
coES>(T)and T e ^ ( T ) b y 

<or 7 » = <T-cO,(p>:= <7>(p> Vpe®(T). (4) 
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Unfortunately, the Schwartz' impossibility argument applies here. Consider 
"cosecant" Tcsc e Q)' (T) given by 

<Xc>9> = l™ f -r^-dx, 
£->o+ 1_ sinx 

where Te = ( — n + s, — s) u (e,7t — s). Integration by parts shows that 
£ 

<£sc><P> = lim ((p(-s) - (p(s)) In Itan-I 
e->0+ I 21 

71 — S 
+ lim (<p(;t — s) — (p( — n + s)ln Itan—-—I 

e-o+ I 2 I 

lim Г ln Itan-lфҶx) 
в-.o+ J T ß I 21 

dx. 

The first two limits are zero since (p(x + s) — (p(x — s) = (9(s). We see that 
Tcsc is a distributional derivative of In |tan f | e I) (T); in particular it is a distribution. 

The product sin • Tcss makes sense according to (4). One has 

rж, ч í* (sinx)û>(x) , Г , . , ,л . 
<sin- TCSC,Ф} = lim | г^—^ax = I ęlxìdx = <1,©>. 

^o + J T e sinx J (5) 

In other words, sin • 7cSC = 1 as expected. Hence 

<50 • (sin • Tcsc) = S0'l = d0. 

On the other hand, 

<<5b * sin, (py = <<5b, sin • <p> = sin (0) <̂  (0) = 0, (6) 

hence 

(<50- sin)- Fcsc = 0 - Tcsc = 0. 

This shows that the product (4), though it seems very natural, is not even 
associative. 

3. Fourier series 

For fe 1} (T) the Fourier coefficients are defined by 

ak:= ~ I f(x)coskxdx, k > 0, 

-ïí«*) bk'-= - I f(x)sinkxdx, k > 1. Jk 

T 

84 



The Fourier series is given via its n-th partial sum 

a 
^f,n(

x) = ~W + Z akcos kx + bk sin kx. (7) 
2 fc=i 

Equivalently we can write 

^ W = -f/(r)Dll(x-t)&, 

with the so-called Dirichlet kernel 

_ sm^+j)* 
v ' 2 sin 2 

The fol owing approximation properties of SF^ are well-known. 

Theorem 2. I. 7 / / G L 2 ( T ) , then ^n^fin L2(J). 
2. Assume f has bounded variation, i.e., f can be written as a difference of two 

monotone functions. Then 

for any x e T. In particular, ^n (x) -> f(x) if f is continuous at x. 

Proof. See e.g. [Ko]. • 

It is a well-known fact that the rate of convergence ^n -> / improves 
as / becomes smoother. This fact is crucial for the presented construction 
of Colombeau algebras. We will need the following (not necessarily optimal) 
lemma. 

Remark. In what follows we write an = &(nK) with the usual meaning: 
(3c > 0)(3n0 e N)(Vn > n0) \an\ < cnK. We mostly drop the symbol n -> oo. 

Lemma 1. Let fe CN+1(T), N > 0. Then 

sup\^n(x)-f(x)\ = ®(n-N). 
xeJ 

Proof Integration by parts yields 

. ±* -Ҷn{zi:h-
Similarly for bk. The boundedness of f{N+l) gives \ak\ + \bk\ < ck {N+1\ The 
smoothness of/ guarantees &y>n(x) -> f(x) everywhere, and one gets 

OO 00 1 

\^n(x) - f(x)\ = Y. ak c o s kx + bk sin kx \ < c £ TN+~I = ®(n ")• 
k-n+l I k=n+\^ 
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If T is a distribution, we define ^TjП in a formal analogy to (7) by 

ak = - <T(x), cos kx>x, 

One also has1 

We observe that 

bk = -<T(x), sin kx)x. 
71 

^i>(*) = -<T(;v),A. (*-?)>> 

S ^ ( x ) = &*T,,(X) (8) 

- this follows easily from the definition of the distributional derivative. Finally, 
the following result will be needed. 

Lemma 2. Let TeQ)' (T). Then &%n -> Tin & (T). 

Proof. One has 

J 3?T,n(x)(p(x)dx = - J (T(y),Dn(x - y))ycp(x)dx 
T K T 

= <T(J;),-J D„(x - y)<p(x)dx>j,. 
7 1 T 

For the proof that the duality <,> commutes with the integral see e.g. [VI]. The 
conclusion follows since the last integral converges to cp in ^(T), i.e. in the 
seminorms (2), cf. Lemma 1. • 

4. Colombeau algebra on the unit circle 

The main idea is that the elements of ^ are represented by sequences of infinitely 
smooth functions; two elements are considered equal if the difference of the 
representing sequences tends to zero sufficiently fast. 

The space of representatives $ (T) consists of functions 

R = R(n,x): N x T ^ R 

such that R (n,-) e 3) (T) for Vrce M. <?(T) can be viewed simply as a space of 
sequences (indexed by l\l) of C00 functions. 

Moderate representatives SM (T) are given by 

SM(J) = {RE <f (J); (vfc > 0)(3N > 0) sup \£*R(n,x)\ = &(nN)}. (9) 
xeJ 
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Obviously SM (T) is a linear subspace of $ (T), which is closed under the operation 
^ . Recalling the Leibniz rule 

^{RS}=TJ(]){^R{if-ls, (io) 

one verifies easily that SM (T) is in fact an algebra, i.e. R,SeSM (T) implies 
RSeSM{J). 

The space of negligible representatives JT (T) is defined as 

JT{J) = {Re£{J); (Vfc > 0)(VM > 0) sup \£*R{n,x)\ = &{n M)}. (11) 
XЄT 

Once again, J ^ (T) is closed under the differentiation w.r. to x. Clearly, Jf (T) cz 
c ^M (T); moreover, Jf (T) is an ideal in SM (T). This means, Jf (T) is in algebra 
and if R e SM (T), N e Jf (T), then RNeJf (T). 

Let us verify the last claim. Given /c > 0, M > 0, we know by (9) that ^? R is 
(uniformly w.r. t o x e T ) &{nN) for some JV > 0, / = 0, ..., k. By (11), ^ R is 
G{n N M) for / = 0, ..., k. Hence £t{RS} is (?(»-") in virtue of (10). 

The Colombeau algebra ^ (T) is now defined as the quotient 

»(T) = «fM(T)/^(T). 

It is convenient to denote the elements of 0(T) by [/?], where i^e<?M(T) is 
arbitrary member of the given equivalence class. We call R the representative of 
[R]. Clearly [R] = [/?'] if and only if R - R' eJT{j). 

The operations of addition, multiplication and differentiation on ^(T) are 
defined as 

[R] + [S] :=[R + 5] , 
[R][S]:=[RSl 

d& [R] '' = [j& R] • 

It follows from the fact that JT (T) is an ideal that the definitions are independent 
of the choice of the representatives. 

For the sake of completeness, let us check it for the product. Assume 
[R] = [R'\ [S] = [R']. This means R' = R + Nl9 S' = S + IV2, where 
NteJT{J). We have 

R'S' = RS + NXS + RN2 + NXN2 = RS + IV, 

where IV eJT{j\ hence [R'S'] = [RS]. 
We remark that the Leibniz rule holds in ^ (T), precisely because it holds for 

the representatives. Let us verify it formally for k = 1: 

/x{[i?][5]} = [d
d
x(RSJ] = \£R + R&S] = 

= tiR] [s] + [R] [is] = £[R] [s] + [R]£[sl 
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Now we introduce the canonical embedding i: 3)f (T) -> SM (T). This is usually 
defined by the means of a suitable mollification; we will use the Fourier series. 
For TeQ)f (T) we define the canonical representative 

iT(n,x) = ^n(x). 

In particular, if / e L1 (T), then if (n,-) is just the n-th partial sum of its Fourier 
series. It is easy to see that 

i(aT) = a(iT) 

i(Tx + T2) = xTx + iT2 

i(£T) = &( , ! ) , 

cf. (8) above. 
It is clear that I T G ^ ( T ) , but we want to prove that in fact iTeSM{j). If 

fe I}(J), then its Fourier coefficients are bounded. Hence 

\lif{n,x)\<ctkl = &{nM) 
k = \ 

and we see that if is moderate. 
For Te@'(T) arbitrary, we need the Theorem 1: T = a + £*TF, FeC (T) . 

Hence by the above iT= a + -j^iF, and iF e SM{T) as we already know. 
The space Qff (T) is embedded in ^ (T) by the means of the mapping 

Th->[iT]. (12) 

We remark that it is injective. Indeed, it is enough to check that i Te Jf (T) implies 
T = 0. However, if Z T G ^ ( T ) , then obviously iT(n,-) -> 0 e $'(T) as n -> oo, 
and we conclude thanks to Lemma 2. 

We have seen above that (12) is linear, and preserves the derivatives. However, 
it is not consistent with the product; more precisely, 

M M = [»(/*)] (13) 
is not true - provided that the functions (distributions) / g are regular enough so 
that the product fg can be computed pointwise (1), or in the generalized sense (4). 
Even the continuity of / g is enough: see example 5.4 below. 

For cp e&i(T) there appears to exist a more natural canonical representative, 
namely 

ifcp (n, x) = q> (x), VneN. 

An important achievement of the Colombeau theory is the following observation: 

Lemma 3. Let (p e@(T). Then icp — ifcp e ^V(T). 



Proof. Given k > 0, one has 

£-k{iq>(n,x) - i'(p(n,x)} = # > (x) -£i(p(x), 

which is uniformly (9(n~M) for any M by Lemma 1. • 

As a consequence, Q) (T) can be regarded a subalgebra of ^ (T), in particular, 
we have the following. 

Theorem 3. Let fge@(T). Then (13) holds. 

Proof. By the previous lemma, and an obvious identity (t'f) (1'g) = i' (fg) one 
has 

bf] bd\ = [t'f] b'd\ = [(t'f) fa)] = [t' (fg)] = [t m • n 
The canonical embedding brings the elements of Q)' (T) in ^ (T). The concept 

of association plays the opposite role. We say that [R] e <§ (T) is associated to 
a distribution TeS>' (T), if 

lim [R(n,x)(p(x)dx = < 7 » , Vq>e@(T). (14) 
T 

The definition is independent of the choice of the representative R. We write 
[R] « T. We say that [I?], [S] e & are associated, if [R - S] « 0 e 0 ' (T), and 
we write [R] « [S]. Basic properties of association are given in the following: 

Theorem 4. I. If [K,]e^(T), 77e^'(T) and [Ri] <* T\, i= 1,2, then 
[R, + i?2] « 71 + T2, a[Rx] « a 7]. 

2. If [i?] e #(T), Fe 0 ' (T) and [R] « 77 then 

ď^ [ Я ] * ê Г . (15) 

5. For every TeQ)' (T) one has [zT] « T. 

Proof 1. Obvious. 
2. By (14) we have 

J £nR(n,x)(p(x)dx = (-lf\R(n,x)£i(p(x)dx 

->(-l)k<T,£<P> 
= <£zT,(p>. 

3. Follows immediately from Lemma 2. • 

One can say that i(S)'(T)) equipped with « as an equivalence relation is 
a representation of 3)' (T) in ^ (T). However, « is not compatible with nonlin-
earities, i.e. [ R j ~ [i?2] does not imply [i^] [S] = [i?2] [S]. We also remark 
that not every F e<&(T) is associated to some distribution. See example 5.5 below. 
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5. Examples 

The last section is devoted to computing several products in ^ (T). Our main focus 
is to emphasize the difference between the nonlinearities computed in ^(T) and 
in the pointwise sense (1), (4). We consider various levels of regularity of f9 g. 

5.1 Sinus times Dirac 
We have already shown above in (6) that <50 • sin = 0 according to the definition 

(4). We claim that the result is not zero in ^; more precisely, 

[i(sin)][*<50] # 0 . (16) 

The corresponding canonical representatives read 

Ri(n,x) = ^sin,n(x) = sinx, (Vn > 1) 

R2(n,x) = ^n(x) = -<4(y),A,(x - y)>y = ~Dn(x) 

sin(n + ^)x 

2TT sin 2 

Thus we have (using sin x = 2 sin x/2 cos x/2) 

Ri (n, x) R2 (n, x) = - cos x sin (n + l

2)x. 

This is not an element of ./V(T), and we conclude (16). 
On the other hand, by Riemann-Lebesgue lemma 

lim I cos x sin Un + 5) x] cp (x) dx = 0 V(p e Sf (T). 
n->oo J 

T 

Hence [-Ri-R2] « 0; the equality in (16) holds in the sense of association. 

5.2 Sinus times cosecant 
The second example shows that neither (5), i.e. sin - Tcsc = I, holds in <$. We 

claim that 
[ i s i n ] [ i T c s c ] ^ [ l ] . (17) 

The Fourier coefficient of Tcsc read ak = 0, b2k = 0 and 

1 f2*sin(2k + l)x J 2 
b2k+i=-\ — L ^ }—dx = -9 Vk > 0. 

7 1 J 0 s i n X 7C 

Hence the canonical representative ^7^^ is 

2 n 

Rt(2n + l,x) = - X sin(2k + l)x; 
Пk = 0 
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the product on the left-hand side of (5.2) is represented by 

2 n 

R(2n + l,x) = - s i n * £ sin(2k + l)x. 
K k=0 

Note that sin (2k + 1)5 = (-l)fc, hence R(2n + l,fj +> 1. 
On the other hand, by Lemma 2, i?t (2n + 1, •) -> 7 ŝc, and sin e 3>(T). So it is 

not difficult to conclude that [isin] [i Tcsc] « 1. 
These two examples demonstrate how the Schwartz' impossibility argument is 

avoided in ^ — simply (5), (6) do not hold, and the contradiction does not arise. 

5.3 Heaviside function 
The products of discontinuous functions belong to standard counterexamples in 

the Colombeau theory. We set 
._ ro, XE(-O,K) 

" W - í l , xє(0,я) 

Thinking of h as an element of L00 (T), the pointwise product gives hh = h. Yet 
this again is not true in ^ (T). We claim that 

[ih][ih] #[ife]. (18) 

The canonical representative ih is 

R(n,x) = 3?Kn(x) = - + £ JL(l - ( - l ) k)s inkx. 

Thus R(n,0)R(n,0) = J # \ = R(n,0) for each n, and we conclude (18). 
On the other hand, by part 1 of Theorem 2, R(n,j -• h in L2(T). By Holder's 

inequality, R (n, •) R (n, •) -> hh = h in U(T), and we obtain [ih] [ih] « [ih]. 

5.4 Continuous functions 
The next example shows that (13) need not hold even for continuous functions. Set 

[-71,0) 

"M 
f(x):=\°: xe 

v ' I sin x, x e 
„ M - - I s i n x ' *e[-Tc,0) 
gW-\0, xe[0,7t) 

Clearly fgeC (T) and fg = 0. Evaluating the Fourier coefficients, one finds the 
canonical representatives R = if S = ig respectively: 

i<(n,x) = — h - s i n x — ) —yri -T-cosfex, 
TC 2 jt=27r(fe2 - 1) 

C . * * • f ( - 1 ) * + 1 , S[n,x) = sin x — > ^-rrk rr cos kx. 
V ' ix 2 ^ 2 Tt ( f e 2 - l ) 
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By Theorem 2, R(n,x) -> f(x), S(n,x) -> g(x). In particular 

It is easy to see that rate of convergence is 1/n. Hence RS = 0(n~2) at best, i.e. 
RS^JT (T). We conclude that 

[i/]M#0. (19) 

On the other hand, as R(n,x) ->/(x), X(n,x) -+ g(x) uniformly, the above 
equality is preserved at least in the sense of association. 

5.5 Dirac times Dirac 
As the last example, we multiply two singular distributions with disjoint supports. 
Not only that the result is not zero, it is even not associated to any distribution. 
— This however, is connected to the simplicity of our setting, in particular, weak 
localization properties of the Dirichlet kernel. 

We want to compute 

MM- (20) 
The representat ives id0, idn are £ Dn (x), £ Dn (x, 7c) respectively. So the representat ive 
of (20) is 

R(n,x) = —Dn(x)Dn(x + n) 

sin (n + 5) x • sin (n + 5) (x + 71) 

~~ 47i2 s in f s in (f + ') 

Using the formulas sin(y + nn) = (—1)" sin y and sin (y + \) = cos y, we conti­
nue 

(—1)" sin(n + 5)x • cos(n + |)x 
4TC2 sin f cos f 

_ (-l)nsin(2rz + l)x _ ( - l ) n 

2 ->-(2x)-47T2 sin x 27T 

Since Dn (2x) -^ \(S0 + o^) in ^ r (T), see the lemma below, we conclude that (20) 
is not associated to any distribution; in particular it is not zero. 

Lemma 4. For any cp e S){J) one has 

lim [Dn(2x)(p(x)dx = f[<p(0) + (p(n)]. 
T 

Proof By a simple substitution and using the 27T-periodicity of Dn we have 
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P 2K p 4K 

Jo D„(2x)<p(x)dx = i]o D„(y)q>(§dy 
/* 2K p 4K 

= \\ Dm(y)q>(fidy + lA Dn(y)cp(§dy 
** 0 " 2 K 

= l^Dn{y) iA(y)dy, 

where î ();) = 2 [<P (2) + <?(;. + ft)]- Note that i/t e^ (T) ; and since DM -* n5Q in 
0 ' (T), the proof is finished. • 
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