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Abstract. In the paper we find conditions on the pair (ω1, ω2) which ensure the bounded-
ness of the maximal operator and the Calderón-Zygmund singular integral operators from
one generalized Morrey space Mp,ω1

to another Mp,ω2
, 1 < p < ∞, and from the space

M1,ω1
to the weak space WM1,ω2

. As applications, we get some estimates for uniformly
elliptic operators on generalized Morrey spaces.
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1. Introduction

The theory of boundedness of classical operators of the real analysis, such as

the maximal operator and the singular integral operators etc, from one weighted

Lebesgue space to another one is well studied by now. These results have good

applications in the theory of partial differential equations. However, in the theory of

partial differential equations, along with weighted Lebesgue spaces, general Morrey-

type spaces also play an important role.
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Let f ∈ Lloc
1 (Rn). The maximal operator M is defined by

Mf(x) = sup
t>0

1

|B(x, t)|

∫

B(x,t)

|f(y)| dy,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t).

Definition 1.1. Let k(x) : R
n \ {0} → R. We call k(x) a Calderón-Zygmund

kernel (C-Z kernel) if

(i) k ∈ C∞(Rn \ {0});

(ii) k(x) is homogeneous of degree −n;

(iii)
∫
Σ

k(x) dσξ = 0, where Σ = {x ∈ R
n : |x| = 1} is the unit sphere in R

n.

Theorem 1.2 ([9]). Let k be a real measurable function in Rn × (Rn \ {0}) such

that

(i) k(x, z) is a C-Z kernel for a.a. x ∈ R
n;

(ii) max
|j|62n

‖(∂j/∂zj)k(x, z)‖L∞(Rn×Σ) = M < ∞.

For ε > 0 set

Tεf(x) :=

∫

|x−y|>ε

k(x, x − y)f(y) dy.

Then there exists Tf ∈ Lp(R
n) such that

lim
ε→0+

‖Tεf − Tf‖Lp(Rn) = 0

and, moreover, there exists a positive constant C such that

‖Tf‖Lp(Rn) 6 C‖f‖Lp(Rn).

Morrey spaces Mp,λ were introduced by C.Morrey in 1938 [15] and defined as

follows. For 0 6 λ 6 n, 1 6 p 6 ∞, f ∈ Mp,λ if f ∈ Lloc
p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r−λ/p‖f‖Lp(B(x,r)) < ∞,

where B(x, r) is the open ball of radius r centered at x. Note thatMp,0 = Lp(R
n)

andMp,n = L∞(Rn). If λ < 0 or λ > n, thenMp,λ = Θ, where Θ is the set of all

functions equivalent to 0 on R
n.

These spaces have appeared to be quite useful in the study of the local behaviour

of solutions to partial differential equations, apriori estimates and other topics in the

theory of partial differential equations.

28



We also denote by WMp,λ the weak Morrey space of all functions f ∈ WLloc
p (Rn)

for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−λ/p‖f‖WLp(B(x,r)) < ∞,

where WLp denotes the weak Lp-space.

F. Chiarenza and M.Frasca [8] studied the boundedness of the maximal operator

M in these spaces. Their results can be summarized as follows:

Theorem 1.3. Let 1 6 p < ∞ and 0 < λ < n. Then for 1 < p < ∞, M is

bounded fromMp,λ toMp,λ and for p = 1, M is bounded fromM1,λ to WM1,λ.

G.D. Fazio and M.A. Ragusa [9] studied the boundedness of the Calderón-

Zygmund singular integral operators in Morrey spaces, and their results imply

the following statement for Calderón-Zygmund operators T .

Theorem 1.4. Let 1 6 p < ∞, 0 < λ < n. Then for 1 < p < ∞, Calderón-

Zygmund singular integral operator T is bounded fromMp,λ toMp,λ and for p = 1,

T is bounded fromM1,λ to WM1,λ.

Note that in the case of the classical Calderón-Zygmund singular integral operators

Theorem 1.4 was proved by J.Peetre [19]. If λ = 0, the statement of Theorem 1.4

reduces to Theorem 1.2 for Lp(R
n) (see also [6], [22]).

In the present work, we study the boundedness of the maximal operatorM and the

Calderón-Zygmund singular integral operators T from one generalized Morrey space

Mp,ω1
to anotherMp,ω2

, 1 < p < ∞, and from the spaceM1,ω1
to the weak space

WM1,ω2
. As applications, we get some estimates for uniformly elliptic operators on

generalized Morrey spaces.

By A . B we mean that A 6 CB with some positive constant C independent of

the appropriate quantities. If A . B and B . A, we write A ≈ B and say that A

and B are equivalent.

2. Generalized Morrey spaces

For the sake of completeness we recall the definition of the spaces and some prop-

erties of the spaces we are going to use.

If in place of the power function rλ in the definition of Mp,λ we consider any

positive measurable weight function ω(x, r), then it becomes the generalized Morrey

spaceMp,ω.
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Definition 2.1. Let ω(x, r) be a positive measurable weight function on R
n ×

(0,∞) and 1 6 p < ∞. We denote byMp,ω the generalized Morrey space, the space

of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖Mp,ω(Rn) = sup
x∈Rn, r>0

ω(x, r)−1/p‖f‖Lp(B(x,r)).

Definition 2.2. We say that (ω1, ω2) belongs to the class Zp,n, p ∈ [0,∞),m > 0

if there is a constant C such that, for any x ∈ R
n and for any t > 0,

(2.1)

( ∫ ∞

t

(ess infr<s<∞ ω1(x, s)

rm

)1/p dr

r

)p

6 C
ω2(x, t)

tm
if p ∈ (0,∞)

and

(2.2) ess sup
t<r<∞

ess infr<s<∞ ω1(x, s)

rm
6 C

ω2(x, t)

tm
if p = 0.

Definition 2.3. We say that (ω1, ω2) belongs to the class Z̃p,m, p ∈ [0,∞),

m > 0 if there is a constant C such that, for any x ∈ R
n and for any t > 0,

(2.3)

( ∫ ∞

t

(ω1(x, r)

rm

)1/p dr

r

)p

6 C
ω2(x, t)

tm
if p ∈ (0,∞)

and

(2.4) ess sup
t<r<∞

ω1(x, r)

rm
6 C

ω2(x, t)

tm
if p = 0.

Note that Z̃p,m ⊂ Zp,m for p ∈ [0,∞), m > 0.

The following embedding for the classes Zp,m, p ∈ [0,∞), m > 0 is valid.

Lemma 2.4. ⋃

0<p<∞

Zp,m ⊂ Z0,m.

P r o o f. Assume that (ω1, ω2) ∈ Zp,m for some p ∈ (0,∞). Then for any

s ∈ (t,∞)

ω2(x, t)

tm
&

( ∫ ∞

t

( ess inf
r<τ<∞

ω1(x, τ)

rm

)1/p
dr

r

)p

&

( ∫ ∞

s

( ess inf
r<τ<∞

ω1(x, τ)

rm

)1/p
dr

r

)p

& ess inf
s<τ<∞

ω1(x, τ)

( ∫ ∞

s

dr

rm/p+1

)p

≈
ess inf
s<τ<∞

ω1(x, τ)

sm
.
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Thus

ω2(x, t)

tm
& ess sup

t<s<∞

ess inf
s<τ<∞

ω1(x, τ)

sm
.

This proves that ⋃

0<p<∞

Zp,m ⊂ Z0,m.

�

R em a r k 2.5. Let ω(t) = tn. Then (ω, ω) ∈ Z0,n, but (ω, ω) 6∈ Zp,n for any

p ∈ (0,∞).

T.Mizuhara [14], E.Nakai [17] and V. S.Guliyev [10] (see also [11], [12]) generalized

Theorem 1.4 and obtained sufficient conditions on functions ω1 and ω2 ensuring the

boundedness of M and T fromMp,ω1
toMp,ω2

. In [17] the following statement was

proved, containing the result in [14].

Theorem 2.6. Let 1 6 p < ∞. Moreover, let ω be a positive measurable function

satisfying the following conditions: there exists c > 0 such that

(2.5) 0 < r 6 t 6 2r ⇒ c−1ω(r) 6 ω(t) 6 cω(r)

and (ω, ω) ∈ Z̃1,n.

Then for 1 < p < ∞ the operators M and T are bounded from Mp,ω to Mp,ω

and for p = 1 M and T are bounded fromM1,ω to WM1,ω.

The following statement, containing the results in [14], [17] was proved in [10] (see

also [11], [12]).

Theorem 2.7. Let 1 6 p < ∞ and (ω1, ω2) ∈ Z̃p,n(Rn). Then for 1 < p < ∞

the operator T is bounded from Mp,ω1
to Mp,ω2

and for p = 1, the operator T is

bounded fromM1,ω1
to WM1,ω2

.

In [1]–[5], [10], [11] and [12] the boundedness of the maximal operator and the

singular integral operators in local and global Morrey-type spaces was investigated.

Note that the global Morrey-type space is a more general space than the generalized

Morrey space.
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3. Boundedness of the maximal operator in

generalized Morrey spaces

We denote by L∞,v(0,∞) the space of all functions g(t), t > 0 with finite norm

‖g‖L∞,v(0,∞) = ess sup
t>0

v(t)g(t)

and L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable

functions on (0,∞) and M
+(0,∞) its subset consisting of all nonnegative functions

on (0,∞). We denote by M
+(0,∞; ↑) the cone of all functions in M

+(0,∞) which

are non-decreasing on (0,∞) and

A = {ϕ ∈ M
+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0}.

Let u be a continuous and non-negative function on (0,∞). We define the supremal

operator Su on g ∈ M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [4].

Theorem 3.1. Let v1, v2 be non-negative measurable functions satisfying 0 <

‖v1‖Lθ(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative function on

(0,∞)

Then the operator Su is bounded from L∞,v1
(0,∞) to L∞,v2

(0,∞) on the cone A

if and only if

(3.1) ‖v2Su(‖v1‖
−1
L∞(·,∞))‖L∞(0,∞) < ∞.

Sufficient conditions on ω for the boundedness of M in generalized Morrey spaces

Mp,ω(Rn) have been obtained in [1], [2], [4], [5], [14], [17].

The following lemma is true.

Lemma 3.2. Let 1 < p < ∞. Then for any ball B = B(x, r) in Rn the inequality

‖Mf‖Lp(B(x,r)) . ‖f‖Lp(B(x,2r)) + rn/p sup
t>2r

t−n‖f‖L1(B(x,t))(3.2)

holds for all f ∈ Lloc
p (Rn).

32



Moreover, the inequality

‖Mf‖WL1(B(x,r)) . ‖f‖L1(B(x,2r)) + rn sup
t>2r

t−n‖f‖L1(B(x,t))(3.3)

holds for all f ∈ Lloc
1 (Rn).

P r o o f. Let 1 < p < ∞. It is obvious that for any ball B = B(x, r)

‖Mf‖Lp(B) 6 ‖M(fχ(2B))‖Lp(B) + ‖M(fχRn\(2B))‖Lp(B).

By the continuity of the operator M : Lp(R
n) → Lp(R

n), 1 < p < ∞ we have

‖M(fχ(2B))‖Lp(B) . ‖f‖Lp(2B).

Let y be an arbitrary point from B. If B(y, t)∩ {Rn \ (2B)} 6= ∅, then t > r. Indeed,

if z ∈ B(y, t) ∩ {Rn \ (2B)}, then t > |y − z| > |x − z| − |x − y| > 2r − r = r.

On the other hand, B(y, t) ∩ {Rn \ (2B)} ⊂ B(x, 2t). Indeed, z ∈ B(y, t) ∩ {Rn \

(2B)}, then we get |x − z| 6 |y − z| + |x − y| < t + r < 2t.

Hence

M(fχRn\(2B))(y) = sup
t>0

1

|B(y, t)|

∫

B(y,t)∩{Rn\(2B)}

|f(z)| dz

6 2n sup
t>r

1

|B(x, 2t)|

∫

B(x,2t)

|f(z)| dz

= 2n sup
t>2r

1

|B(x, t)|

∫

B(x,t)

|f(z)| dz.

Therefore, for all y ∈ B we have

(3.4) M(fχRn\(2B))(y) 6 2n sup
t>2r

1

|B(x, t)|

∫

B(x,t)

|f(z)| dz.

Thus

‖Mf‖Lp(B) . ‖f‖Lp(2B) + |B|1/p

(
sup
t>2r

1

|B(x, t)|

∫

B(x,t)

|f(z)| dz

)
.

Let p = 1. It is obvious that for any ball B = B(x, r)

‖Mf‖WL1(B) 6 ‖M(fχ(2B))‖WL1(B) + ‖M(fχRn\(2B))‖WL1(B).

By the continuity of the operator M : L1(R
n) → WL1(R

n) we have

‖M(fχ(2B))‖WL1(B) . ‖f‖L1(2B).

Then by (3.4) we get the inequality (3.3). �
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Lemma 3.3. Let 1 < p < ∞. Then for any ball B = B(x, r) in Rn, the inequality

(3.5) ‖Mf‖Lp(B(x,r)) . rn/p sup
t>2r

t−n/p‖f‖Lp(B(x,t))

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

‖Mf‖WL1(B(x,r)) . rn sup
t>2r

t−n‖f‖L1(B(x,t))(3.6)

holds for all f ∈ Lloc
1 (Rn).

P r o o f. Let 1 < p < ∞. Denote

M1 := |B|1/p

(
sup
t>2r

1

|B(x, t)|

∫

B(x,t)

|f(z)| dz

)
,

M2 := ‖f‖Lp(2B).

Applying Hölder’s inequality, we get

M1 . |B|1/p

(
sup
t>2r

1

|B(x, t)|1/p

( ∫

B(x,t)

|f(z)|p dz

)1/p)
.

On the other hand,

|B|1/p

(
sup
t>2r

1

|B(x, t)|1/p

( ∫

B(x,t)

|f(z)|p dz

)1/p)

& |B|1/p
(

sup
t>2r

1

|B(x, t)|1/p

)
‖f‖Lp(2B) ≈ M2.

Since by Lemma 3.2

‖Mf‖Lp(B) 6 M1 + M2,

we arrive at (3.5).

Let p = 1. The inequality (3.6) directly follows from (3.3). �
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Theorem 3.4. Let p ∈ [1,∞) and (ω1, ω2) ∈ Z0,n(Rn). Then for p > 1, M is

bounded fromMp,ω1
toMp,ω2

and for p = 1,M is bounded fromM1,ω1
toWM1,ω2

.

P r o o f. By Lemma 3.3 and Theorem 3.1 we get

‖Mf‖Mp,ω2
(Rn) . sup

x∈Rn,r>0
ω2(x, r)−1/prn/p

(
sup
t>r

t−n/p‖f‖Lp(B(x,t))

)

. sup
x∈Rn,r>0

ω1(x, r)−1/p‖f‖Lp(B(x,t)) = ‖f‖Mp,ω1
(Rn)

if p ∈ (1,∞) and

‖Mf‖WM1,ω2
(Rn) . sup

x∈Rn,r>0
ω2(x, r)−1rn

(
sup
t>r

t−n‖f‖L1(B(x,t))

)

. sup
x∈Rn,r>0

ω1(x, r)−1‖f‖L1(B(x,t)) = ‖f‖M1,ω1
(Rn)

if p = 1. �

Corollary 3.5. Let p ∈ [1,∞] and let ω : (0,∞) → (0,∞) be an increasing

function. Assume that the mapping t 7→ ω(t)/tn is almost decreasing (there exists

a constant c such that for s < t we have ω(s)/sn > cω(t)/tn). Then there exists a

constant C > 0 such that

‖Mf‖Mp,ω(Rn) 6 C‖f‖Mp,ω(Rn) if 1 < p 6 ∞,

and

‖Mf‖WM1,ω(Rn) 6 C‖f‖M1,ω(Rn).

4. Singular integrals and Hardy operator

In this section we are going to use the following statement on the boundedness of

the Hardy operator

(Hg)(t) :=
1

t

∫ t

0

g(r) dr, 0 < t < ∞.
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Theorem 4.1 ([7]). The inequality

(4.1) ess sup
t>0

w(t)Hg(t) 6 c ess sup
t>0

v(t)g(t)

holds for all non-negative and non-increasing functions g on (0,∞) if and only if

(4.2) A := sup
t>0

w(t)

t

∫ t

0

ds

ess sup
0<y<s

v(y)
< ∞

and c ≈ A.

Sufficient conditions on ω for the boundedness of T in generalized Morrey spaces

Mp,ω(Rn) have been obtained in [3], [10], [11], [12], [14], [17].

The following lemma has been proved in [10]. For the sake of completeness we

give the proof.

Lemma 4.2. Let p ∈ [1,∞), f ∈ Lloc
p (Rn) and for any x0 ∈ R

n

∫ ∞

1

t−n/p−1‖f‖Lp(B(x0,t)) dt < ∞.

Then Calderón-Zygmund singular integral Tf(x) exists for a.a. x ∈ R
n and for any

x0 ∈ R
n, r > 0 and p ∈ (1,∞) we have

(4.3) ‖Tf‖Lp(B(x0,r)) 6 Crn/p

∫ ∞

2r

t−n/p−1‖f‖Lp(B(x0,t)) dt,

where the constant C > 0 does not depend on x0, r and f .

Moreover, for any x0 ∈ R
n and r > 0 we have

(4.4) ‖Tf‖WL1(B(x0,r)) 6 C rn

∫ ∞

2r

t−n−1‖f‖L1(B(x0,t)) dt,

where the constant C > 0 does not depend on x0, r and f .

P r o o f. Let p ∈ (1,∞). For arbitrary x0 ∈ R
n, set B = B(x0, r) for the ball

centered at x0 and of radius r. Write f = f1+f2 with f1 = fχ2B and f2 = fχRn\(2B).

Since f1 ∈ Lp(R
n), Tf1(x) exists for a.a. x ∈ R

n and the boundedness of T in Lp(R
n)

([9]) implies that

‖Tf1‖Lp(B) 6 ‖Tf1‖Lp(Rn) 6 C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where the constant C > 0 is independent of f .
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Let us prove that the non-singular integral Tf2(x) exists for all x ∈ B.

It is clear that x ∈ B, y ∈ R
n \ (2B) implies 1

2 |x0 − y| 6 |x − y| 6 3
2 |x0 − y|. We

get

|Tf2(x)| 6 2n

∫

Rn\(2B)

|f(y)|

|x0 − y|n
dy.

By Fubini’s theorem we have
∫

Rn\(2B)

|f(y)|

|x0 − y|n
dy ≈

∫

Rn\(2B)

|f(y)|

∫ ∞

|x0−y|

dt

tn+1
dy

≈

∫ ∞

2r

∫

2r6|x0−y|<t

|f(y)| dy
dt

tn+1

.

∫ ∞

2r

∫

B(x0,t)

|f(y)| dy
dt

tn+1
.

Applying Hölder’s inequality, we get
∫

Rn\(2B)

|f(y)|

|x0 − y|n
dy .

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

tn/p+1
.

Therefore Tf2(x) exists for all x ∈ B. Since Rn =
⋃

r>0
B(x0, r), we get the existence

of Tf(x) for a.a. x0 ∈ R
n.

Moreover, for all p ∈ [1,∞) the inequality

(4.5) ‖Tf2‖Lp(B) . rn/p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

tn/p+1

is valid. Thus

‖Tf‖Lp(B) . ‖f‖Lp(2B) + rn/p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

tn/p+1
.

On the other hand,

‖f‖Lp(2B) ≈ rn/p‖f‖Lp(2B)

∫ ∞

2r

dt

tn/p+1
. rn/p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

tn/p+1
.

Thus

‖Tf‖Lp(B) . rn/p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

tn/p+1
.

Let p = 1. The weak (1,1) boundedness of T ([9]) implies that

‖Tf1‖WL1(B) 6 ‖Tf1‖WL1(Rn) 6 C‖f1‖L1(Rn) = C‖f‖L1(2B),

where the constant C > 0 is independent of f.

Then by (4.5) we get the inequality (4.4). �
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Theorem 4.3. Let p ∈ [1,∞) and (ω1, ω2) ∈ Zp,n. Then the Calderón-Zygmund

singular integral Tf(x) exists for a.a. x ∈ R
n and for p > 1 the operator T is

bounded from Mp,ω1
(Rn) to Mp,ω2

(Rn) and for p = 1 the operator T is bounded

fromM1,ω1
(Rn) to WM1,ω2

(Rn). Moreover, for p > 1 we have

‖Tf‖Mp,ω2
. ‖f‖Mp,ω1

,

and for p = 1

‖Tf‖WM1,ω2
. ‖f‖M1,ω1

.

P r o o f. By Lemma 4.2 and Theorem 4.1 we have for p > 1

‖Tf‖Mp,ω2
(Rn) . sup

x∈Rn, r>0
ω2(x, r)−1/prn/p

∫ ∞

r

‖f‖Lp(B(x,t))
dt

tn/p+1

≈ sup
x∈Rn, r>0

ω2(x, r)−1/prn/p

∫ r−n/p

0

‖f‖Lp(B(x,t−p/n)) dt

= sup
x∈Rn, r>0

ω2(x, r−p/n)−1/p 1

r

∫ r

0

‖f‖Lp(B(x,t−p/n)) dt

. sup
x∈Rn,r>0

ω1(x, r−p/n)−1/p‖f‖Lp(B(x,r−p/n)) = ‖f‖Mp,ω1
(Rn)

and for p = 1

‖Tf‖WM1,ω2
(Rn) . sup

x∈Rn, r>0
ω2(x, r)−1rn

∫ ∞

r

‖f‖L1(B(x,t))
dt

tn+1

≈ sup
x∈Rn, r>0

ω2(x, r)−1rn

∫ r−n

0

‖f‖L1(B(x,t−n)) dt

= sup
x∈Rn, r>0

ω2(x, r−1/n)−1 1

r

∫ r

0

‖f‖L1(B(x,t−1/n)) dt

. sup
x∈Rn,r>0

ω1(x, r−1/n)−1‖f‖L1(B(x,r−1/n)) = ‖f‖M1,ω1
(Rn).

�

Corollary 4.4. Let p ∈ [1,∞) and (ω1, ω2) ∈ Z̃p,n(Rn). Then for p > 1, T is

bounded fromMp,ω1
(Rn) toMp,ω2

(Rn) and for p = 1, T is bounded fromM1,ω1
to

WM1,ω2
.

Note that Theorem 2.7 and Corollary 4.4 coincide.
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5. Estimates for uniformly elliptic operators on

generalized Morrey spaces

In this section we consider the uniformly elliptic operators

L = −
n∑

i,j=1

∂i(aij(x)∂j) + V (x)

with non-negative potentials V on R
n (n > 3) which belong to a certain reverse

Hölder class. We show several estimates for V L−1, V
1

2∇L−1 and ∇2L−1 on gen-

eralized Morrey spaces under certain assumptions on aij(x), V and p. Our results

generalize some results of K.Kurata and S. Sugano [13].

For the Schrödinger operators−∆+V (x) with nonnegative polynomials V , several

authors ([21], [24], [25]) studied Lp boundedness for 1 < p < ∞ of ∇(−∆ + V )−
1

2 ,

(−∆+V )−
1

2∇, and∇(−∆+V )−1∇, V
1

2∇(−∆+V )−1, and∇2(−∆+V )−1. In partic-

ular, J. Zhong [25] proved that if V is a non-negative polynomial, then∇2(−∆+V )−1,

∇(−∆ + V )−
1

2 , and ∇(−∆ + V )−1∇ are Calderón-Zygmund operators. Recently,

Z. Shen [20] generalized these results. He proved that ∇(−∆+V )−
1

2 , (−∆+V )−
1

2∇,

and ∇(−∆ + V )−1∇ are Calderón-Zygmund operators, provided V belongs to the

reverse Hölder class Bn (see Definition 6.1), which includes non-negative polyno-

mials and allows some non-smooth potentials. Moreover, Z. Shen also showed Lp

boundedness for V (−∆ + V )−1, and for ∇2(−∆ + V )−1 when V ∈ Bn/2 and for

V
1

2∇(−∆ + V )−1 when V ∈ Bn.

In this section we consider uniformly elliptic operators

L = L0 + V (x) = −
n∑

i,j=1

∂i(aij(x)∂j) + V (x)

with certain non-negative potentials V on R
n (n > 3), where aij(x) is a measurable

function satisfying the conditions:

(A1) There exists a constant λ ∈ (0, 1] such that

aij(x) = aji(x), λ|ξ|2 6

n∑

i,j=1

aij(x)ξiξj 6 λ−1|ξ|2, x, ξ ∈ R
n.

(A2) There exist constants α ∈ (0, 1] and K > 0 such that

‖aij‖Cα(Rn) 6 K.

Throughout this section we use the following notation:

∂j = ∇j = ∇xj =
∂

∂xj
, |∇u(x)|2 =

n∑

j=1

|∇ju(x)|2.
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The purpose of this section is to show boundedness of the operators T1 = V L−1,

T2 = V
1

2∇L−1 and T3 = ∇2L−1 from one generalized Morrey spaceMp,ω1
to another

Mp,ω2
. Although it is known that T1 and T3 are Calderón-Zygmund operators for

the case L = −∆ + V with non-negative polynomials V , it is not known whether

Tj (j = 1, 2, 3) are Calderón-Zygmund operators or not, under the general condition

V ∈ B∞. We show, under the same conditions as in [20] for V , boundedness of

T1 = V L−1 and T2 = V
1

2∇L−1 on generalized Morrey spacesMp,ω(Rn). Actually,

we use pointwise estimates of Tkf(x), k = 1, 2, by the Hardy-Littlewood maximal

function (see [13], Theorem 1.3). We also show boundedness of T3 = ∇2L−1 on

generalized Morrey spaces under the additional assumption

(A3) There exists a constant α ∈ (0, 1] such that

aij ∈ C1+α(Rn), aij(x + z) = aij(x) for all x ∈ R
n, for all z ∈ Z

n,

and
n∑

i

∂i(aij(x)) = 0, j = 1, . . . , n.

Here L−1 is the integral operator with the fundamental solution (or the minimal

Green function (see e.g. [16])) of L as its integral kernel. We can also define L−1f

for f ∈ C∞
0 (Rn) as the unique solution of Lu = f on certain generalized Morrey

spaceM2,ω(Rn), and can see it is a bounded operator on certain generalized Morrey

spacesM2,ω(Rn) (see e.g. [21]).

Definition 5.1. Let V (x) > 0.

(1) A nonnegative locally Lq integrable function V on R
n is said to belong to the

reverse Hölder class Bq (1 < q < ∞) if there exists C > 0 such that the reverse

Hölder inequality ( 1

|B|

∫

B

V (x)q dx
)1/q

6
C

|B|

∫

B

V (x) dx

holds for every ball B in R
n.

(2) We say V ∈ B∞ if there exists a constant C > 0 such that

‖V ‖L∞(B) 6
C

|B|

∫

B

V (x) dx

holds for every ball B in R
n.

Clearly, B∞ ⊂ Bq for 1 < q < ∞. But it is important that the Bq class has a

property of “self-improvement”; that is, if V ∈ Bq, then V ∈ Bq+ε for some ε > 0

(see [18]).
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K.Kurata and S. Sugano [13] proved the following pointwise estimate for T1 and

T2 which generalize the results in [25], Lemma 3.2 to uniformly elliptic operators

with general potentials V ∈ B∞.

Theorem A. Suppose that A(x) satisfies (A1) for T1, (A1)–(A2) for T2, and

V ∈ B∞. Then there exist positive constants Ck, k = 1, 2 such that

|Tkf(x)| 6 Mf(x), f ∈ C∞
0 (Rn), k = 1, 2.

Hence Theorem A and Theorem 3.4 in Section 2 imply

Corollary 5.2. Let A(x) and V (x) satisfy the same assumptions as in Theorem A.

(1) Suppose 1 < p < ∞, and (ω1, ω2) ∈ Z0,n. Then V L−1 and V
1

2∇L−1 are

bounded fromMp,ω1
toMp,ω2

.

(2) Suppose 1 < p < ∞, (ω1, ω2) ∈ Z0,n and (A3) for A(x). Then ∇2L−1 is

bounded fromMp,ω1
toMp,ω2

.

Theorem B. (1) Suppose A(x) satisfies (A1) and V ∈ Bq, q > n/2. Then there

exists a positive constant C such that

|T ∗
1 f(x)| 6 CM(|f |q

′

)1/q′

(x), f ∈ C∞
0 (Rn),

where 1/q + 1/q′ = 1.

(2) Suppose A(x) satisfies (A1)–(A2). When V ∈ Bq with n > q > n/2 we have

|T ∗
2 f(x)| 6 CM(|f |p1)1/p1 (x), f ∈ C∞

0 (Rn),

where 1/p1 = 1 + (1/n) − (3/2q).

When V ∈ Bq with q > n we have

|T ∗
2 f(x)| 6 CM(|f |p1)1/p1 (x), f ∈ C∞

0 (Rn),

where 1/p1 = 1 − (1/2q).

Hence Theorem B and Theorems 3.4 and 4.3 imply
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Corollary 5.3. Suppose A(x) satisfies (A1). Suppose V ∈ Bq with q > n/2, and

(ω1, ω2) ∈ Z0,n and q′ < p < ∞. Then T1 is bounded fromMp,ω1
toMp,ω2

.

(2) Suppose A(x) satisfies (A1)–(A2). Suppose V ∈ Bq with n/2 < q < n,

p1 < p < ∞, 1/p1 = 1+1/n− 3/(2q) and (ω1, ω2) ∈ Z0,n. Then T ∗
2 is bounded from

Mp,ω1
toMp,ω2

.

(3) Suppose A(x) satisfies (A1)–(A2). Suppose V ∈ Bq with q > n, p1 < p < ∞,

1/p1 = 1 − 1/(2q) and (ω1, ω2) ∈ Z0,n. Then T ∗
2 is bounded fromMp,ω1

toMp,ω2
.

(4) Suppose A(x) satisfies (A1)–(A3), 1 < p < ∞ and (ω1, ω2) ∈ Zp,n. Then

∇2L−1 is bounded fromMp,ω1
toMp,ω2

.
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