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Abstract. Local well-posedness of the curve shortening flow, that is, local existence,
uniqueness and smooth dependence of solutions on initial data, is proved by applying the
Local Inverse Function Theorem and L2-maximal regularity results for linear parabolic
equations. The application of the Local Inverse Function Theorem leads to a particularly
short proof which gives in addition the space-time regularity of the solutions. The method
may be applied to general nonlinear evolution equations, but is presented in the special
situation only.
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1. Introduction

Optimal or maximal regularity results for linear evolution equations on Banach

spaces are now widely used in order to prove local existence, uniqueness, regularity

of solutions of abstract nonlinear parabolic evolution equations of the form

(1.1) u̇ + F (u) = f on (0, T ), u(0) = u0;

among the first articles, we cite for example Da Prato & Grisvard [14], Amann [5],

[6], Angenent [7], [8], Clément & Li [13], but we mention also the monograph by

Lunardi [27] and more recent works by Escher, Prüss & Simonett [20], Prüss [31]

Eva Fašangová was supported by the grant MSM 0021620839 of the Czech Ministry of
Education.
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and Amann [3], [4]. In these articles, but also in [10], [22], [23], [32], [33] (the list is

not exhaustive), the authors applied the contraction mapping principle in order to

prove local existence and uniqueness of solutions. The contraction mapping principle

is of course a standard tool in nonlinear analysis, although finding an appropriate

contraction is sometimes quite technical. We want to show that, besides another

advantage, an application of the Inverse Function Theorem avoids this problem; in

some sense, the problem is hidden in the proof of the Inverse Function Theorem.

In [7], [8], Angenent remarked that optimal regularity of underlying linear evolu-

tion equations not only gives local existence and uniqueness of solutions of the non-

linear equation (1.1), but also time regularity of solutions and continuous/smooth

dependence of solutions on data (see also the monograph by Lunardi [27]). The solu-

tions are as regular and the dependence is as smooth as F is, that is, equation (1.1)

behaves very much like an ordinary differential equation for which analoguous results

are classical. In order to achieve his goal, Angenent applied—besides the contraction

mapping principle—the Implicit Function Theorem in a most elegant way (see also

[20] where the so-called parameter trick was further developed).

In this article, we show that the Inverse Function Theorem may be an efficient

alternative to the contraction mapping principle and the Implicit Function Theorem:

by applying the Inverse Function Theorem, the proof of local existence of solutions

is simpler and gives continuous/smooth dependence on data at the same time, at

least in the context of Lp-maximal regularity. An application of the Inverse Function

Theorem is moreover natural since optimal/maximal regularity just translates the

fact that a certain linear operator is an isomorphism between appropriate Banach

spaces. In order to avoid much abstract notation, we illustrate the approach only in

the particular case of the curve shortening flow equation

(1.2) ut − κ(u) = 0,

but the interested reader will certainly understand how to apply the Inverse Function

Theorem in different, more abstract situations. For the curve shortening flow we show

in addition that the approach via the Inverse Function Theorem yields—with very

little additional effort—smooth solutions. Smoothness is here obtained without the

use of the Implicit Function Theorem but follows from smooth dependence on data.

We have chosen the example of the curve shortening flow because it is one of the

simplest examples of geometric flows. Analytic properties of the flow and its applica-

tions in physics or image analysis have been widely studied in literature. Moreover,

local existence and uniqueness of various types of solutions for appropriate initial

data is well known; at least this question is not an issue at all even in specialized

monographs (see, for example, [12], [19], [35]). Among the possible approaches to

336



obtain short time existence of solutions, we mention the geometric measure the-

ory (Brakke [11]), the theory of quasilinear parabolic equations (here one frequently

refers to Ladyzhenskaya et al. [25] in combination with a reparametrization argu-

ment by DeTurck [18], but this approach comprises also the above mentioned use

of optimal/maximal regularity and the contraction mapping principle/the Implicit

Function Theorem, see Huisken & Polden [24]), the level set approach in combination

with the theory of viscosity solutions (Giga [21] and references therein), or variational

approaches (Almgren et al. [1], Deckelnick [16], Luckhaus & Sturzenhecker [26]).

2. The curve shortening flow equation—functional setting

The curve shortening flow equation for parametrizations of closed curves is the

partial differential equation

(2.1)











ut − κ(u) = 0 in [0, T ]× R,

u(t, x) = u(t, x + 2π) for (t, x) ∈ [0, T ]× R,

u(0, x) = u0(x) for x ∈ R.

Here, each u(t, ·) : R → R
d is the parametrization of a closed curve Γt in R

d. By

definition, a parametrization of a closed curve Γ ⊆ R
d is a 2π-periodic, continuously

differentiable function u : R → R
d such that Γ = {u(x) : x ∈ R} and inf

x∈R

|ux(x)| > 0

(the latter assumption on the derivative guarantees in particular that u is locally

injective and therefore an immersion).

In the following, we consider the Sobolev spaces

Hk
per := {u ∈ Hk

loc(R;Rd) : u(x) = u(x + 2π)},

and we denote analogously by Ck
per the space of all 2π-periodic, k times continuously

differentiable functions. We assume that the initial value u0 in (2.1) is a parametriza-

tion in the Sobolev spaceH2
per. This space has the simple advantage of being a Hilbert

space. Moreover, this Sobolev space is continuously embedded into C1
per so that the

set of all parametrizations in H2
per is open. Finally, given a parametrization u ∈ H2

per,

we can define the associated curvature vector field κ(u) by

κ(u) :=
1

|ux|

( ux

|ux|

)

x
=

uxx

|ux|2
−

ux

|ux|

〈 uxx

|ux|2
ux

|ux|

〉

= P⊥ uxx

|ux|2
.

Here,

P⊥v := v −
ux

|ux|

〈

v
ux

|ux|

〉
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is the orthogonal projection along the tangent space 〈ux〉 onto the normal space

along u.

3. Reduction of the curve shortening flow equation

Following an idea of DeTurck in [18], one may introduce reparametrizations of a so-

lution u of the curve shortening flow equation in such a way that the reparametriza-

tions satisfy a strictly parabolic equation (see, for example, Zhu [35]). This strictly

parabolic equation can be obtained by “projecting” the time derivative of the func-

tion u into the space which is normal along u0 (the equation thus obtained therefore

depends on u0). Here, we somehow proceed in the opposite way (see also Deckelnick

[16], K.Deckelnick, G.Dziuk & C.M.Elliott [17] and K.Mikula & D. Ševčovič [29]):

instead of projecting the curve shortening flow equation into normal direction we

rather leave out the normal projection P⊥ which appears in the definition of the

curvature vector κ(u). That is, instead of the curve shortening flow equation (2.1)

we consider the problem

(3.1)















vt −
vxx

|vx|2
= 0 in [0, T ]× R,

v(t, x) = v(t, x + 2π) for (t, x) ∈ [0, T ]× R,

v(0, x) = u0(x) for x ∈ R;

(the same initial value u0 as in (2.1)!). In this problem, (v(t, ·)) is again a family

of parametrizations of closed curves in R
d. We show in this section that a smooth

solution v of the problem (3.1) and a smooth solution u of the curve shortening

flow equation (2.1) parametrize the same family of curves. As a consequence, if one

is only interested in the evolution of the associated curves, it suffices to solve the

reduced problem (3.1). For simplicity, we work only with C∞ solutions here and we

do not try to find the weakest possible regularity on v which ensures existence and

uniqueness of sufficiently regular reparametrizations θ (see the following lemma).

Lemma 1. Let v ∈ C∞([0, T ]; C∞
per) be a solution of the problem (3.1) (in

particular, all functions v(t, ·) are parametrizations of closed curves, that is,

inf
(t,x)

|vx(t, x)| > 0). Then there exists a unique function

θ ∈ C∞([0, T ] × R), θ = θ(t, x),

(the same existence time as for v!) satisfying

(3.2)







θt +
1

|vx(t, θ)|

〈 vxx(t, θ)

|vx(t, θ)|2
vx(t, θ)

|vx(t, θ)|

〉

= 0 in [0, T ]× R,

θ(0, x) = x for x ∈ R.
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P r o o f. For every fixed x ∈ R the equation (3.2) is an ordinary differential

equation for the function θ(·, x). For this ordinary differential equation, the classical

results for local/global existence and uniqueness of solutions and smooth dependence

on initial data apply and yield the claim. �

Let v and θ be as in Lemma 1 and define

u(t, x) := v(t, θ(t, x)) for (t, x) ∈ [0, T ]× R.

Note carefully that u is 2π-periodic in the second variable. Moreover, by the chain

rule and since v and θ are solutions of (3.1) and (3.2), respectively, we have

ut(t, x) = vt(t, θ(t, x)) + vx(t, θ(t, x)) θt(t, x)

=
vxx(t, θ(t, x))

|vx(t, θ(t, x))|2
−

vx(t, θ(t, x))

|vx(t, θ(t, x))|

〈 vxx(t, θ(t, x))

|vx(t, θ(t, x))|2
vx(t, θ(t, x))

|vx(t, θ(t, x))|

〉

= κ(v(t, θ(t, x)))

= κ(u(t, x)).

In the last equality we have used the equality κ(v(t, θ(t, x))) = κ(u(t, x)), that is, the

curvature vector at the point v(t, θ(t, x)) = u(t, x) does not depend on the particular

parametrization. Since we have also that

u(0, x) = v(0, θ(0, x)) = v(0, x) = u0(x),

the function u defined above is indeed a solution of the curve shortening flow equa-

tion.

4. Existence and regularity for the reduced problem

by the local inverse function theorem

In this section we solve the reduced problem (3.1). More precisely, we prove

existence and uniqueness of solutions which belong to the maximal regularity space

MR := H1(0, T ; H1
per) ∩ L2(0, T ; H3

per).

This space is equipped with the natural norm, so that it becomes a Banach (or:

Hilbert) space. One has two continuous embeddings

MR ⊆ C([0, T ]; H2
per) ⊆ C([0, T ]; C1

per).
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The latter embedding follows from the Sobolev embedding H2
per ⊆ C1

per, while the

former embedding follows from the interpolation theory [28, Corollary 1.14] and the

fact that H2
per is the trace space (or: interpolation space) between H1

per and H3
per as-

sociated with the maximal regularity spaceMR (see, for example, [28, Example 1.26,

p. 37] in the case of Sobolev spaces on domains in Rd; the case of the periodic Sobolev

spaces is similar). The subset

U :=
{

u ∈ MR : inf
(t,x)

|ux(t, x)| > 0
}

is, by the above embeddings, an open subset of the maximal regularity space. For

every parametrization u0 ∈ H2
per there exists an element u ∈ U such that u(0) = u0.

In fact, since H2
per is the trace space associated with MR, there exists an element

ũ ∈ MR such that ũ(0) = u0. Then, by a simple continuity and compactness

argument, there exists T ′ ∈ (0, T ] such that inf
(t,x)∈[0,T ′]×R

|ũx(t, x)| > 0. Now, the

function u(t, x) = ũ(T ′

T
t, x) belongs to U and satisfies u(0) = u0.

Theorem 2 [Local existence and smooth dependence of local solutions on data].

For every parametrization u0 ∈ H2
per and every f ∈ L2(0, T ; H1

per) there exists a local

existence time T ′ ∈ (0, T ] and a constant r > 0 such that for every v0 ∈ H2
per and

every g ∈ L2(0, T ′; H1
per) with ‖v0 − u0‖H2

per
< r and ‖g − f‖L2(0,T ′;H1

per)
< r the

problem

(4.1)















vt −
vxx

|vx|2
= g in [0, T ′] × R,

v(t, x) = v(t, x + 2π) for (t, x) ∈ [0, T ′] × R,

v(0, x) = v0(x) for x ∈ R,

admits a unique solution

v ∈ H1(0, T ′; H1
per) ∩ L2(0, T ′; H3

per).

Moreover, the mapping which maps every pair (g, v0) ∈ B(f, r) × B(u0, r) (the

open balls in L2(0, T ′; H1
per) and H2

per, respectively) to the unique solution v ∈

H1(0, T ′; H1
per)∩L2(0, T ′; H3

per) is analytic (in the sense of [34, Definition 8.8, p. 362]).

In particular, for every parametrization u0 ∈ H2
per the problem (3.1) admits

a unique local solution v ∈ H1(0, T ′; H1
per) ∩ L2(0, T ′; H3

per).

P r o o f. Existence. Consider the function

G : U → L2(0, T ; H1
per) × H2

per

v 7→
(

vt −
vxx

|vx|2
, v(0)

)

.
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It is analytic in the sense of [34]. We show that G is a local diffeomorphism. Denote

by G′ the Fréchet derivative of G. For every v ∈ U and every w ∈ MR,

G′(v)w =
(

wt −
wxx

|vx|2
+ 2

vxx

|vx|4
〈vx, wx〉, w(0)

)

.

Saying that G′(v) is a linear isomorphism from MR onto L2(0, T ; H1
per) × H2

per is

then clearly equivalent to saying that for every right-hand side h ∈ L2(0, T ; H1
per)

and every initial value w0 ∈ H2
per the problem

(4.2)















wt −
wxx

|vx|2
+ 2

vxx

|vx|4
〈vx, wx〉 = h in [0, T ]× R,

w(t, x) = w(t, x + 2π) for (t, x) ∈ [0, T ]× R,

w(0, x) = w0 for x ∈ R,

admits a unique solution w ∈ MR. We take this fact for granted, or we refer to

Section 5 below, where we briefly sketch why this linear, nonautonomous problem

has L2-maximal regularity in H1
per.

Now the problem (4.1) can be solved in the following way. Given a parametrization

u0 ∈ H2
per and a function f ∈ L2(0, T ; H1

per), there exists an element v ∈ U such that

v(0) = u0. Since G′(v) is linear and continuously invertible (by the above granted

assumption), and by the Local Inverse Function Theorem [34, Theorem 4.F, p. 172],

there exists a neighbourhood V ⊆ U of v and a neighbourhoodW ⊆ L2(0, T ; H1
per)×

H2
per of G(v) =: (f, u0) such that G is a diffeomorphism between V and W . More

precisely, G and its local inverse G−1 are analytic [34, Corollary 4.37, p. 172].

Now, choose first r > 0 so small that B(f, 2r) × B(u0, r) ⊆ W , and choose then

T ′ ∈ (0, T ] so small such that

‖f − f‖L2(0,T ′;H1
per)

< r;

here it is crucial that we work with L2-maximal regularity, since this ensures that such

a time T ′ exists. Let v0 ∈ H2
per and g ∈ L2(0, T ′; H1

per) be such that ‖v0−u0‖H2
per

< r

and ‖g−f‖L2(0,T ′;H1
per)

< r. We extend g by f on (T ′, T ] and we denote this extension

by Eg. Then Eg ∈ L2(0, T ; H1
per) and

‖Eg − f‖L2(0,T ;H1
per)

= ‖g − f‖L2(0,T ′;H1
per)

6 ‖g − f‖L2(0,T ′;H1
per)

+ ‖f − f‖L2(0,T ′;H1
per)

< 2r.

In particular, (Eg, v0) ∈ B(f, 2r) × B(u0, r) ⊆ W . Since G : V → W is invertible,

there exists v ∈ V ⊆ MR such that G(v) = (Eg, v0). By definition of G and Eg,

this implies that the restriction of v to [0, T ′] × R is a local solution of (4.1).
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The mapping which maps every

(g, v0) ∈ B(f, r) × B(u0, r) ⊆ L2(0, T ′; H1
per) × H2

per

to the local solution v ∈ H1(0, T ′; H1
per) ∩ L2(0, T ′; H3

per) is the composition of the

affine extension operator E (the sum of a linear operator and a constant), the inverse

G−1 and a linear restriction operator, and it is thus analytic.

Since the parametrization u0 ∈ H2
per and the right-hand side f ∈ L2(0, T ; H1

per)

are arbitrary (so that we may take f = 0), the above arguments yield in particular

the existence of a local solution v of (3.1).

Uniqueness. Let v1, v2 ∈ H1(0, T ′; H1
per)∩L2(0, T ′; H3

per) be two solutions of (4.1).

Then the difference z := v1 − v2 is a solution of the problem















zt −
zxx

|v1x|2
+

zx · (v1 + v2)x

|v1x|2 |v2x|2
v2xx = 0 in [0, T ′] × R,

z(t, x) = z(t, x + 2π) for (t, x) ∈ [0, T ′] × R,

z(0, x) = 0 for x ∈ R.

Multiplying the first line by zt |v1x|
2 and integrating over 2π, we obtain for almost

every t ∈ (0, T ′)

∫ 2π

0

|zt|
2 |v1x|

2 +
1

2

d

dt

∫ 2π

0

|zx|
2 = −

∫ 2π

0

zx · (v1 + v2)x

|v2x|2
v2xx · zt

6
1

2

∫ 2π

0

|zt|
2 |v1x|

2 +
1

2

∥

∥

∥

|(v1 + v2)x|

|v1x| |v2x|2
|v2xx|

∥

∥

∥

2

∞

∫ 2π

0

|zx|
2,

and as a consequence

d

dt

∫ 2π

0

|zx|
2 6 c(t)

∫ 2π

0

|zx|
2

with a function c ∈ L1(0, T ′). By integrating this differential inequality and using

the initial condition z(0, x) = 0, one finds first zx = 0. Then, by inserting this into

the partial differential equation for z, one obtains zt = 0 and hence z = 0, that is,

v1 = v2. �

The smooth dependence on the data implies higher space regularity if the data

are more regular, too.
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Corollary 3. Let u0 ∈ H2
per, f ∈ L2(0, T ; H1

per) and T ′ ∈ (0, T ] be as in Theo-

rem 2, and let v ∈ H1(0, T ′; H1
per)∩L2(0, T ′; H3

per) be the local solution of (4.1) with

g = f and v0 = u0. If u0 ∈ H2+k
per and f ∈ L2(0, T ; H1+k

per ) for an integer k > 0, then

v ∈ H1(0, T ′; H1+k
per ) ∩ L2(0, T ′; H3+k

per ) ⊆ C([0, T ′]; H2+k
per ).

P r o o f. Note that u0 ∈ H2+k
per if and only if the mapping h 7→ u0(· + h) is k

times continuously differentiable from R into H2
per. Similarly, f ∈ L2(0, T ; H1+k

per )

if and only if the mapping h 7→ f(·, · + h) is k times continuously differentiable

from R into L2(0, T ; H1
per). Since v(·, · + h) is the (unique) solution of (4.1) with

the initial value u0 replaced by u0(· + h) and the right-hand side f replaced by

f(·, · + h), the smooth dependence of solutions on initial data (Theorem 2) implies

that the mapping h 7→ v(·, · + h) is k times continuously differentiable from R into

H1(0, T ′; H1
per) ∩ L2(0, T ′; H3

per) ∩ C([0, T ′]; H2
per). This gives the desired regularity.

�

With little additional effort, we now show that the unique local solution v found in

Theorem 2 is smooth for t > 0. Note that the following corollary may also be proved

by applying the beautiful argument of Angenent (see [7], [20]); there, the Implicit

Function Theorem first gives the time regularity while the space regularity can for

example be obtained by using the equation (3.1). Here, the smooth dependence on

data implies first the space regularity, and the time regularity is obtained in the

second place.

Corollary 4. Let v ∈ H1(0, T ′; H1
per)∩L2(0, T ′; H3

per) be a solution of the homo-

geneous problem (3.1) (the existence of a local solution is guaranteed by Theorem 2).

Then

v ∈ C∞((0, T ′]; C∞
per).

P r o o f. We start by showing space regularity. Note that if

v ∈ H1
loc((0, T ′]; H1+k

per ) ∩ L2
loc((0, T ′]; H3+k

per ) for some k > 0,

then, for almost every t ∈ (0, T ′), v(t) ∈ H3+k
per . By Corollary 3, this implies that

v ∈ H1([t, T ′]; H2+k
per ) ∩ L2([t, T ′]; H4+k

per ) for almost every t ∈ (0, T ′), and therefore

v ∈ H1
loc((0, T ′]; H2+k

per ) ∩ L2
loc((0, T ′]; H4+k

per ) ⊆ C((0, T ′]; H3+k
per ).

Hence, an induction on k > 0 shows that v ∈ C((0, T ′]; C∞
per). This regularity and

the equality

vt =
vxx

|vx|2

imply first that v ∈ C1((0, T ′]; C∞
per), and then, by iterating this argument, that

v ∈ C∞((0, T ′]; C∞
per). �
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5. Maximal regularity for the linear, nonautonomous problem

In this section, we briefly sketch the idea why the linear problem (4.2) has L2-

maximal regularity in H1
per. Let us first note that the problem (4.2) is a special case

of the linear, nonautonomous problem

(5.1)











wt − m(t, x)wxx + b(t, x)wx = h in [0, T ]× R,

w(t, x) = w(t, x + 2π) for (t, x) ∈ [0, T ]× R,

w(0, x) = w0(x) for x ∈ R,

wherem ∈ C([0, T ]; H1
per(R)) and b ∈ L2(0, T ; H1

per(R;Rd×d)) are two given functions

such that, for some fixed ε > 0, m(t, x) ∈ [ε, 1/ε] for every (t, x) ∈ [0, T ]× R.

In order to prove L2-maximal regularity of the problem (5.1) in H1
per, it is conve-

nient to proceed in several steps and to consider the following three cases:

(1) the case when m(t, ·) = m(·) ∈ H1
per does not depend on time and b vanishes

identically (autonomous case);

(2) the case when m is arbitrary (but satisfies the conditions above) and b vanishes

identically;

(3) the general case (m and b satisfy the conditions above).

The first case is of course the simplest one. In order to prove L2-maximal regularity

in H1
per, it suffices to know that the operator −mwxx with domain H3

per generates an

analytic C0-semigroup on the Hilbert space H1
per and to refer to [15]. Alternatively,

one can show by variational methods that the operator −mwxx with domain H1
per

has L2-maximal regularity on H−1
per and then to use a similarity argument.

Once the first case is settled, the cases 2 and 3 follow by perturbation arguments

(using the Neumann series, for example). For the second case, due to the continuity

of m, one may apply either [30, Theorem 2.5], [2, Theorem 7.1], or [9, Theorem 2.7]

in combination with the first case. The third, general case follows similarly [2,

Theorem 7.1].
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7122, Bât. A, Île de Saulcy, 57045 Metz Cedex 1, France, e-mail: boussand@univ-metz.fr;
R a l p h C h i l l, Université Paul Verlaine-Metz, Laboratoire de Mathématiques et Ap-
plications de Metz et CNRS, UMR 7122, Bât. A, Ile du Saulcy, 57045 Metz Cedex 1,
France, e-mail: chill@univ-metz.fr. Current address: Institut für Analysis, Fachrichtung
Mathematik, TU Dresden, 01062 Dresden, Germany, e-mail: Ralph.Chill@tu-dresden.de
Eva Fa š a n g ov á, Department of Mathematical Analysis, Charles University, Sokolovská
83, 186 75 Praha 8, Czech Republic and Institut für Angewandte Analysis, Universität
Ulm, 89069 Ulm, Germany, e-mail: fasanga@karlin.mff.cuni.cz. Current address: Insti-
tut für Analysis, Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany, e-mail:
Eva.Fasangova@tu-dresden.de.

346


		webmaster@dml.cz
	2020-07-03T19:53:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




