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1. Introduction

In the early 1960s, R. E.Kalman introduced two concepts that have since become

the backbone of modern control theory (see [10]–[13]). With “controllability” and

“observability”, one can classify a control system without first finding the solution

in closed form. A linear system is said to be controllable if there exists at least one

input that drives the state vector to the origin. On the other hand, a linear system is

said to be observable if there exists at least one output such that the initial state can

be determined. These properties have been studied in depth in both the continuous

and discrete cases, where one can see striking similar, if not identical, results. Yet

until recently there did not exist a method to relate these results in one case with

the results in the other.

Then in 1988, Stefan Hilger under the direction of Bernd Aulbach introduced cal-

culus on time scales in his PhD thesis [1]. The study of dynamic equations unifies

both the continuous and discrete mathematical analysis. As a result, one can gen-

eralize a process to account for both cases, or any combination of the two. Since

its inception, this area of mathematics has gained a great deal of international at-
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tention. Researchers have since found applications of time scales to include heat

transfer, population dynamics, as well as economics. For a more indepth study of

time scales, it is suggested that one should see Bohner and Peterson’s books [4], [5].

The purpose of this paper is to lay down the foundation of linear control systems

on time scales. Here we examine controllability, reachability, and observability in the

time-invariant case. It should be noted that there have been other excellent attempts

to do so, e.g., in [2], [3], [7], [8]. They all examine the linear system

(1.1)

{ x∆(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

in an effort to generalize controllability and observability for dynamic equations. At

first, this seems to be a very natural extension from the continuous and discrete cases.

However, when studying controllability of the linear system (1.1) in a way following

the corresponding proofs for the continuous and discrete systems, one must assume

that the graininess function is differentiable, an assumption that is not satisfied in

general for all time scales (see [4, Example 1.56]). To stepside this issue, we have

altered the linear system so that it appears as

(1.2)

{ x∆(t) = −Axσ(t) + Bu(t),

y(t) = Cxσ(t).

The study of controllability of the linear system (1.2) turns out to be feasible using

the classical techniques without assuming differentiability of the graininess function.

However, when examining observability of the linear system (1.2) using classical

methods, one must again assume differentiability of the graininess function. But the

observability study of the linear system (1.1) does not feature this problem.

Hence we present in this paper a study of controllability of the linear system (1.2)

and a study of observability of the linear system (1.1). Then we proceed to draw a

connection between the two linear systems. As a result, we see that this connection of

controllability and observability for linear systems on time scales is more compelling

than previously realized.

The remainder of this paper is organized as follows: Section 2 offers a very brief

introduction into the time scales concepts that are needed in this paper. In Section 3

we introduce the necessary terminology and present the assumptions. In Sections 4

and 5, we study controllability and reachability of (1.2), while observability of (1.1)

is investigated in Section 6. The final Section 7 relates these concepts to each other.

The results presented in this paper are part of the second author’s PhD thesis [15].
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2. Preliminaries

In this section we present the relevant concepts from the theory of dynamic equa-

tions on time scales.

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the

real numbers. We let Tκ = T \ {maxT} if maxT exists; otherwise Tκ = T.

E x am p l e 2.2. The most common examples of time scales are T = R, T = Z,

T = hZ for h > 0, and T = qN0 for q > 1.

Definition 2.3. We define the forward jump operator σ : T
κ → T and the grain-

iness function µ : T
κ → [0,∞) by

σ(t) := inf {s ∈ T : s > t} and µ(t) = σ(t) − t for all t ∈ T
κ.

Definition 2.4. For any function f : T → R, we define fσ : T
κ → R by fσ =

f ◦ σ.

Definition 2.5. Let f : T → R and t ∈ T
κ. The delta derivative f∆(t) is the

number (when it exists) such that given any ε > 0, there is a neighborhood U of t

such that

∣

∣[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]
∣

∣ 6 ε|σ(t) − s| for all s ∈ U.

E x am p l e 2.6. When T = R, then (if the limit exists)

f∆(t) = lim
s→t

f(t) − f(s)

t − s
= f ′(t).

When T = Z, then

f∆(t) = f(t + 1) − f(t) = ∆f(t).

Definition 2.7. A function f : T → R is said to be rd-continuous on T if A is

continuous at points t ∈ T with σ(t) = t and has finite left-sided limits at points

t ∈ T with sup{s ∈ T : s < t} = t.

Theorem 2.8 (see [4, Theorem 1.74]). Any rd-continuous function f : T → R

has an antiderivative F , i.e., F∆ = f on T
κ.

Definition 2.9. Let f : T → R be an rd-continuous function and let F be an

antiderivative of f . Then the Cauchy integral of f is defined by

∫ b

a

f(t)∆t = F (b) − F (a) for all a, b ∈ T.
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E x am p l e 2.10. Let a, b ∈ T with a < b and suppose f : T → R is rd-continuous.

When T = R, then
∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

When T = Z, then
∫ b

a

f(t)∆t =

b−1
∑

t=a

f(t).

Finally, we introduce the matrix exponential on T and some of its properties.

Definition 2.11. An m × n-matrix-valued function A on T is called rd-

continuous if each of its scalar entry functions are rd-continuous. Moreover, if

m = n, then A is called regressive provided

I + µ(t)A(t) is invertible for all t ∈ T
κ,

where I is the n × n-identity matrix.

Theorem 2.12 (see [4, Theorem 5.8]). Let t0 ∈ T. If A is an rd-continuous and

regressive n × n-matrix-valued function on T, then the initial value problem

X∆(t) = A(t)X(t), X(t0) = I

has a unique n × n-matrix-valued solution X .

Definition 2.13. The solution X from Theorem 2.12 is called the matrix expo-

nential function on T and is denoted by eA(·, t0).

Theorem 2.14 (see [4, Theorem 5.21]). If A is rd-continuous and regressive, then

(a) eA(t, t) = I for all t ∈ T,

(b) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s) for all s ∈ T, t ∈ T
κ,

(c) eA(t, s)eA(s, r) = eA(t, r) for all r, s, t ∈ T,

(d) e−1

A (t, s) = eA(s, t) for all s, t ∈ T.
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3. Terminology and assumptions

Let m, n, r ∈ N and suppose that A, B, and C are real-valued matrices of dimen-

sions n×n, n×m, and r×n, respectively. A is assumed to be regressive. In the linear

systems (1.1) and (1.2), x : T → R
n, u : T → R

m, and y : T → R
r are called the

state, input (or control), and output, respectively. The control is assumed to be rd-

continuous. The first equation in each of the linear systems (1.1) and (1.2) is called

the state equation. Throughout this paper, we will make the following assumption:

t0, tf ∈ T such that tf > σn(t0).

4. Controllability

In this section we consider the linear system (1.2). We need the following variation

of parameters result for the state equation of the linear system (1.2).

Theorem 4.1 (see [4, Theorem 5.27]). Suppose A is a regressive n × n-matrix

and B is an n × m-matrix. Let t0 ∈ T and x0 ∈ R
n. Suppose u : T → R

m is

rd-continuous. Then the unique solution of the initial value problem

x∆(t) = −Axσ(t) + Bu(t), x(t0) = x0

is given by

x(t) = eT
AT (t0, t)x0 +

∫ t

t0

eT
AT (τ, t)Bu(τ)∆τ

= eT
AT (t0, t)

[

x0 +

∫ t

t0

eT
AT (τ, t0)Bu(τ)∆τ

]

.

We refer to a linear system as being “controllable” if there exist inputs such that

the state vector “can be steered” to the origin for any given initial condition. The

precise definition is as follows.

Definition 4.2. The linear system (1.2) is said to be (completely) controllable

on [t0, tf ] if for all x0 ∈ R
n, there exists u : T → R

m such that the solution x of the

state equation of (1.2) with x(t0) = x0 satisfies x(tf) = 0.

Next, we give the generalized controllability criterion for linear systems (1.2) as

follows.
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Theorem 4.3. The linear system (1.2) is controllable if and only if the control-

lability Gramian WC is invertible, where

WC :=

∫ tf

t0

eT
AT (τ, t0)BBT eAT (τ, t0)∆τ.

P r o o f. First assume that (1.2) is controllable and let α ∈ KerWC. Then

0 = αT WCα

=

∫ tf

t0

αT eT
AT (τ, t0)BBT eAT (τ, t0)α∆τ

=

∫ tf

t0

∥

∥BT eAT (τ, t0)α
∥

∥

2
∆τ,

which implies BT eAT (τ, t0)α = 0 for all τ ∈ [t0, tf) ∩ T. Since (1.2) is controllable,

there exists u : T → R
m such that the solution x of the state equation of (1.2) with

x(t0) = α satisfies x(tf) = 0. It follows from Theorem 4.1 that

α = x(t0) = −

∫ tf

t0

eT
AT (τ, t0)Bu(τ)∆τ.

Then

‖α‖
2

= αT α = −

∫ tf

t0

uT (τ)BT eAT (τ, t0)α∆τ = 0,

which implies α = 0. Hence KerWC = {0}. Therefore WC is invertible.

Now assume that WC is invertible and let x0 ∈ R
n. Define u : T → R

m by

u(t) = −BT eAT (t, t0)W
−1

C
x0.

Then by Theorem 4.1, the solution x of the state equation of (1.2) with x(t0) = x0

satisfies

x(tf) = eT
AT (t0, tf)

[

x0 +

∫ tf

t0

eT
AT (τ, t0)Bu(τ)∆τ

]

= eT
AT (t0, tf)

[

x0 −

∫ tf

t0

eT
AT (τ, t0)BBT eAT (τ, t0)W

−1

C
x0∆τ

]

= eT
AT (t0, tf)[x0 − WCW−1

C
x0]

= 0,

which tells us that the linear system is controllable. �

Now we present the generalized Kalman rank condition for controllability of linear

systems (1.2).
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Theorem 4.4. The linear system (1.2) is controllable if and only if the n× (nm)

controllability matrix ΓC[A, B] has full rank n, where

ΓC[A, B] := [ B AB A2B . . . An−1B ].

P r o o f. First assume that (1.2) is controllable. Let x0 ∈ R
n. Then there exists

u : T → R
m such that the solution x of the state equation of (1.2) with x(t0) = x0

satisfies x(tf) = 0. It follows from Theorem 4.1 that

(4.1) x0 = −

∫ tf

t0

eT
AT (τ, t0)Bu(τ)∆τ.

Now by DaCunha [6] or Zafer [16] (using the Cayley-Hamilton theorem), there exist

rj for 0 6 j 6 n − 1 such that

(4.2) eAT (t, t0) =

n−1
∑

j=0

rj(t, t0)(A
T )j .

Next, we define Fj for 0 6 j 6 n − 1 by

Fj = −

∫ tf

t0

rj(τ, t0)u(τ)∆τ.

Substituting Fj and (4.2) into (4.1), we obtain

x0 = −

∫ tf

t0

eT
AT (τ, t0)Bu(τ)∆τ

= −

∫ tf

t0

[ n−1
∑

j=0

rj(τ, t0)A
j

]

Bu(τ)∆τ

=

n−1
∑

j=0

AjBFj

= ΓC[A, B]











F0

F1

...

Fn−1











∈ ImΓC[A, B].

Then R
n ⊂ ImΓC[A, B] ⊂ R

n and thus rankΓC[A, B] = n.
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Now assume that rankΓC[A, B] = n and let α ∈ KerWC. Then

0 = αT WCα

=

∫ tf

t0

αT eT
AT (τ, t0)BBT eAT (τ, t0)α∆τ

=

∫ tf

t0

∥

∥BT eAT (τ, t0)α
∥

∥

2

∆τ,

which implies

(4.3) BT eAT (τ, t0)α = 0 for all τ ∈ [t0, tf) ∩ T.

Differentiating (4.3) m times, where 0 6 m 6 n − 1, we have

BT (Am)T eAT (τ, t0)α = 0 for all τ ∈ [t0, tf)
κm

∩ T

and hence

(AmB)T eAT (τ, t0)α = 0 for all τ ∈ [t0, tf)
κm

∩ T.

Then picking τ = t0 ∈ [t0, tf)
κm

∩ T for all 0 6 m 6 n − 1 (since tf > σn(t0)) and

using Theorem 2.14 part (a), we have

(AmB)T α = 0 for all 0 6 m 6 n − 1,

which implies ΓT
C
[A, B]α = 0. Then α ∈ KerΓT

C
[A, B] = {0}. Hence KerWC = {0}

and thus WC is invertible. Then by Theorem 4.3, (1.2) is controllable. �

R em a r k 4.5. We have included Theorem 4.3 and its proof here for completeness,

although it may be derived from [7, Theorem 2.2] with the A(t) there replaced

by (⊖A)(t) and the B(t) there replaced by (I + µ(t)A)−1B. On the other hand,

Theorem 4.4 cannot be derived from [7, Theorem 2.4] since two of the assumptions

of [7, Theorem 2.4] are in general not satisfied: µ is in general not rd-continuously

differentiable on the time scale, not even differentiable, and thus (I+µ(t)A)−1B does

not satisfy this assumption in general either. It is exactly this requirement needed

in the proof of [7, Theorem 2.4] that led to the use of system (1.2) rather than

system (1.1). As seen in the proof of Theorem 4.4 above, the classical proof method

for system (1.2) goes through without requiring the differentiability condition on the

graininess, in contrast to the situation of (1.1) in [7, Theorem 2.4].

R em a r k 4.6. In [9, Definition 4.2], another related notion of M -controllability

is given for the same linear system (except the minus sign) as in the first equation

of (1.2). However, this notion is also related to the corresponding time scale optimal
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control problem, so it cannot be directly compared to Definition 4.2 above. The

controllability criterion also plays a rôle in determining an optimal control when the

final state is fixed. It does, however, appear that in the absence of constraints, the

notion of M -controllability can be expressed in terms of a Gramian matrix. The

connection between the existence of an optimal control and the invertibility of the

controllability Gramian is investigated in two forthcoming papers of the authors.

5. Reachability

In this section we consider the linear system (1.2) and discuss reachability, a similar

concept to controllability.

Definition 5.1. The linear system (1.2) is said to be (completely) reachable on

[t0, tf ] if for all xf ∈ R
n, there exists u : T → R

m such that the solution x of the state

equation of (1.2) with x(t0) = 0 satisfies x(tf) = xf .

We give the relationship between controllability and reachability of (1.2) in the

following theorem.

Theorem 5.2. The linear system (1.2) is controllable if and only if it is reachable.

P r o o f. First assume that (1.2) is controllable. Let xf ∈ R
n. Then there

exists u : T → R
m such that the solution x̃ of the state equation of (1.2) with

x̃(t0) = −eT
AT (tf , t0)xf satisfies x̃(tf) = 0. Then by Theorem 4.1, we have

0 = x̃(tf)

= eT
AT (t0, tf)

[

x̃(t0) +

∫ tf

t0

eT
AT (τ, t0)Bu(τ)∆τ

]

= −xf +

∫ tf

t0

eT
AT (τ, tf)Bu(τ)∆τ

(use Theorem 2.14 parts (c) and (a)), which implies, again by Theorem 4.1, that the

solution x of the state equation of (1.2) with x(t0) = 0 satisfies

x(tf) =

∫ tf

t0

eT
AT (τ, tf)Bu(τ)∆τ = xf .

Therefore (1.2) is reachable.

Now assume that (1.2) is reachable. Let x0 ∈ R
n. Then there exists u : T → R

m

such that the solution x̃ of the state equation of (1.2) with x̃(t0) = 0 satisfies x̃(tf) =
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−eT
AT (t0, tf)x0. Then by Theorem 4.1, we have

−eT
AT (t0, tf)x0 = x̃(tf) =

∫ tf

t0

eT
AT (τ, tf)Bu(τ)∆τ,

which implies, again by Theorem 4.1, that the solution x of the state equation of

(1.2) with x(tf ) = x0 satisfies

x(tf) = eT
AT (t0, tf)x0 +

∫ tf

t0

eT
AT (τ, tf)Bu(τ)∆τ = 0.

Hence (1.2) is controllable. �

The remainder of this section features the generalized reachability criterion and

the generalized Kalman rank condition for reachability of linear systems (1.2).

Theorem 5.3. The linear system (1.2) is reachable if and only if the reachability

Gramian WR is invertible, where

WR :=

∫ tf

t0

eT
AT (τ, tf)BBT eAT (τ, tf)∆τ.

P r o o f. Note that

WR = eT
AT (t0, tf)WCeAT (t0, tf),

which implies thatWR is invertible if and only ifWC is invertible. Then the statement

follows from Theorem 4.3 and Theorem 5.2. �

Theorem 5.4. The linear system (1.2) is reachable if and only if the n × (nm)

controllability matrix ΓC[A, B] has full rank n.

P r o o f. This follows from Theorem 4.4 and Theorem 5.2. �

R em a r k 5.5. In the abstract of [14] the authors say: “For discrete-time linear

systems, controllability and reachability are not equivalent.” This is shown without

assuming regressivity of A. Our Theorem 5.2 shows that in the case T = Z (and also

for any arbitrary time scale), the two notions are indeed equivalent if regressivity

of A is assumed.

R em a r k 5.6. We note that if we require tf > σ2n(t0), then the controllability

matrix ΓC[A, B] has full rank if and only if for each arbitrary values x0, xf ∈ R
n,

there exists u : T → R
m such that the solution x of the state equation of (1.2) with

x(t0) = x0 satisfies x(tf) = xf . This follows from Theorem 4.4 and 5.4.
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6. Observability

In this section we consider the linear system (1.1). We need the following variation

of parameters result for the state equation of the linear system (1.1).

Theorem 6.1 (see [4, Theorem 5.24]). Suppose A is a regressive n × n-matrix

and B is an n × m-matrix. Let t0 ∈ T and x0 ∈ R
n. Suppose u : T → R

n is

rd-continuous. Then the unique solution of the initial value problem

x∆(t) = Ax(t) + Bu(t), x(t0) = x0

is given by

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ

= eA(t, t0)

[

x0 +

∫ t

t0

eA(t0, σ(τ))Bu(τ)∆τ

]

.

We refer to a linear system as being “observable” if given the output y and input

u, we can find the state x uniquely. The precise definition reads as follows.

Definition 6.2. The linear system (1.1) is said to be (completely) observable on

[t0, tf ] if for all u : T → R
m and all y : T → R

r, the linear system (1.1) has at most

one solution x on [t0, tf ].

First we give the generalized observability criterion for linear systems (1.1) as

follows.

Theorem 6.3. The linear system (1.1) is observable if and only if the observabil-

ity Gramian Wo is invertible, where

Wo :=

∫ tf

t0

eT
A(τ, t0)C

T CeA(τ, t0)∆τ.

P r o o f. Assume that (1.1) is observable and let α ∈ KerWo. Then

0 = αT Woα

=

∫ tf

t0

αT eT
A(τ, t0)C

T CeA(τ, t0)α∆τ

=

∫ tf

t0

‖CeA(τ, t0)α‖
2
∆τ,
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which implies CeA(τ, t0)α = 0 for all τ ∈ [t0, tf) ∩ T. Now let u = y = 0 and note

that both x̃ = 0 and x = eA(·, t0)α are solutions of (1.1). Since (1.1) is controllable,

we have x = x̃, i.e., α = 0 and thus KerWo = {0}. Hence Wo is invertible.

Now suppose that Wo is invertible. Let u : T → R
m and y : T → R

r be given and

assume that (1.1) has a solution x. Then by Theorem 6.1,

x(t0) = W−1

o

∫ tf

t0

eT
A(τ, t0)C

T CeA(τ, t0)x(t0)∆τ

= W−1

o

∫ tf

t0

eT
A(τ, t0)C

T C

[

x(τ) −

∫ τ

t0

eA(τ, σ(s))Bu(s)∆s

]

∆τ

= W−1

o

∫ tf

t0

eT
A(τ, t0)C

T

[

y(τ) − C

∫ τ

t0

eA(τ, σ(s))Bu(s)∆s

]

∆τ.

Then, again by Theorem 6.1,

x(t) = eA(t, t0)x(t0) +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ

= eA(t, t0)W
−1

o

∫ tf

t0

eT
A(τ, t0)C

T y(τ)∆τ

− eA(t, t0)W
−1

o

∫ tf

t0

eT
A(τ, t0)C

T C

∫ τ

t0

eA(τ, σ(s))Bu(s)∆s∆τ

+

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ,

so (1.1) has at most one solution. Therefore the linear system (1.1) is observable. �

Next, we give the generalized Kalman rank condition for observability of linear

systems (1.1).

Theorem 6.4. The linear system (1.1) is observable if and only if the (nr) × n

observability matrix Γo[A, C] has full rank n, where

Γo[A, C] :=











C

CA
...

CAn−1











.

P r o o f. First assume that (1.1) is observable. Then Wo is invertible by Theo-

rem 6.3. Let α ∈ R
n. Put y = CeA(·, t0)W

−1
o α. Then

(6.1) α =

∫ tf

t0

eT
A(τ, t0)C

T CeA(τ, t0)W
−1

o α∆τ =

∫ tf

t0

eT
A(τ, t0)C

T y(τ)∆τ.
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Now as in the proof of Theorem 4.4, there exist sj for 0 6 j 6 n − 1 such that

(6.2) eA(t, t0) =

n−1
∑

j=0

sj(t, t0)A
j .

Next, we define Gj for 0 6 j 6 n − 1 by

Gj =

∫ tf

t0

sj(τ, t0)y(τ)∆τ.

Substituting Gj and (6.2) into (6.1), we obtain

α =

∫ tf

t0

[ n−1
∑

j=0

sj(τ, tf)(A
j)T

]

CT y(τ)∆τ

=

n−1
∑

j=0

(CAj)T Gj

= ΓT
o [A, C]











G0

G1

...

Gn−1











.

Then R
n ⊂ ImΓT

o [A, C] ⊂ R
n, which implies rankΓT

o [A, C] = n. Hence

rankΓo[A, C] = n.

Now assume that rankΓo[A, C] = n and let α ∈ KerWo. Then

0 = αT Woα

=

∫ tf

t0

αT eT
A(τ, t0)C

T CeA(τ, t0)α∆τ

=

∫ tf

t0

‖CeA(τ, t0)α‖
2
∆τ,

which implies

(6.3) CeA(τ, t0)α = 0 for all τ ∈ [t0, tf ] ∩ T.

Now differentiating (6.3) m times, where 0 6 m 6 n − 1, we have

CAmeA(τ, t0)α = 0 for all τ ∈ [t0, tf)
κm

∩ T.
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Then picking τ = t0 ∈ [t0, tf)
κm

∩ T for all 0 6 m 6 n − 1 (since tf > σn(t0)) and

using Theorem 2.14 part (a), we obtain

CAmα = 0 for all 0 6 m 6 n − 1,

which can be rewritten as Γo[A, C]α = 0. This implies α ∈ KerΓo[A, c] = {0}. Thus

KerWo = {0} and hence Wo is invertible. Then by Theorem 6.3, the linear system

(1.1) is observable. �

7. Duality principle

The results presented thus far yield the following duality principle theorem.

Theorem 7.1. The linear system

(7.1)

{ x∆(t) = −Axσ(t) + Bu(t),

y(t) = Cxσ(t)

is controllable if and only if the linear system

(7.2)

{ x∆(t) = AT x(t) + CT u(t),

y(t) = BT x(t)

is observable.

P r o o f. By Theorem 4.4, the linear system (7.1) is controllable if and only if

ΓC[A, B] = [ B AB A2B . . . An−1B ]

has full rank n. Clearly this is true if and only if

ΓT
C[A, B] =











BT

BT AT

...

BT (An−1)T











has full rank n. Since ΓT
C
[A, B] = Γo[A

T , BT ], Theorem 6.4 yields that this is true if

and only if the linear system (7.2) is observable. �

A c k n ow l e d g em e n t s. The authors are grateful to the anonymous referee for

his/her careful reading of the first version of this manuscript and his/her constructive
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