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Abstract. The paper presents an existence result for global solutions to the finite dimen-
sional differential inclusion y′ ∈ F (y), F being defined on a closed set K. A priori bounds
for such solutions are provided.
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1. Introduction

Let K be a nonempty subset of Rp and F a multifunction mapping K to subsets

of Rp. Consider the initial value problem

(1.1)

{

y′(t) ∈ F (y(t)),

y(0) = ξ.

Recall that by a solution of (1.1) on [0, T ], with T > 0, we mean an absolutely

continuous function y : [0, T ] → K which satisfies y(0) = ξ and y′(t) ∈ F (y(t)) a.e.

for t ∈ [0, T ].

We are interested in establishing conditions for the existence of global solutions to

the Cauchy problem (1.1), giving also a priori estimates for such solutions.

The typical condition for the Cauchy problem (1.1) to have a global solution is

that the multifunction F has sublinear growth: for some positive constants γ and c

and for all x ∈ K and v ∈ F (x) we have ‖v‖ 6 γ ‖x‖+c (see e.g. [5]). A more general

condition, that F is “positively sublinear”, is presented in [4]. A particular case for

the latter is when the “sign condition” holds, that is 〈x, u〉 6 0 for each x ∈ K and

u ∈ F (x).
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We establish here a result concerning the existence of global solutions to prob-

lem (1.1) under weaker hypotheses and we also give precise a priori bounds of the

solutions obtained.

The type of the hypotheses we are imposing here, as well as the bound obtained,

appear e.g. in [6] for differential equations. Our approach here is different and is

based on viability results. Similar approaches are provided in [2], [3] for the infinite

dimensional single-valued nonlinear case, but the right hand side is defined on the

whole space. Our situation here corresponds to the state constrained case.

We conclude this introduction with some basic definitions and known results that

we are going to use in our study. Let X be a finite dimensional space, K a nonempty

subset of X , F : K ⇒ X a given multifunction and let us consider the differential

inclusion

(1.2) w′(t) ∈ F(w(t)).

The set K is viable with respect to F if for each ζ ∈ K there exists T > 0 such that

(1.2) has at least one solution w : [0, T ] → K with w(0) = ζ.

A vector η ∈ X is tangent to the set K at the point ζ ∈ K if

lim inf
h↓0

1

h
dist(ζ + hη;K) = 0.

We denote by TK(ζ) the set of all vectors which are tangent to the set K at the

point ζ. Below, we present a well-known characterization of tangent vectors.

Proposition 1.1. Let K ⊂ X and ζ ∈ K. Then η ∈ TK(ζ) if and only if there

exist two sequences (hn)n in R+ with hn ↓ 0 and (pn)n in X with lim
n

pn = 0 such

that ζ + hn(η + pn) ∈ K for each n ∈ N.

The following viability result is an important tool in this paper (see [1], [5]; see

also [4]).

Theorem 1.1. Let K be a nonempty and locally closed subset in X and F :

K ⇒ X an upper semicontinuous multifunction with nonempty, compact and convex

values. A necessary and sufficient condition for K to be viable with respect to F is

that

(1.3) F(ζ) ∩ TK(ζ) 6= ∅

for each ζ ∈ K.

In the end of this section we state the Brézis-Browder ordering principle following

the presentation given in [4, Theorem 2.1.1].
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Theorem 1.2. Let S be a nonempty set, � ⊆ S × S a preorder on S and let

N : S → R ∪ {+∞} be a function. Suppose that

(i) each increasing sequence in S is bounded from above;

(ii) the function N is increasing.

Then for each ξ0 ∈ S there exists an N -maximal element ξ ∈ S satisfying ξ0 � ξ.

Recall that ξ ∈ S is N -maximal if N (ξ) = N (ξ) for every ξ ∈ S with ξ � ξ.

2. Main result

The main result of this paper is given by the following theorem.

Theorem 2.1. Let K be a closed subset in R
p and F an upper semi-continuous

multifunction with nonempty compact and convex values which maps bounded sub-

sets in K into bounded subsets in R
p. Suppose that there exists c > 0 such that

(2.1) inf
u∈F (x)∩TK(x)

〈x, u〉 6 c(1 + ‖x‖2
)

for each x ∈ K. Then for each ξ ∈ K \ {0} there exists a solution y : [0, +∞) → K

of (1.1) with

(2.2) ‖y(t)‖ 6 eθt ‖ξ‖

for all t > 0, where θ = c(1 + ‖ξ‖−2
).

R em a r k 2.1. Note that, under the convention that inf ∅ = +∞, inequality (2.1)

includes the tangency condition: F (x) ∩ TK(x) 6= ∅ for each x ∈ K.

R em a r k 2.2. In the case 0 ∈ K and the initial condition is ξ = 0, by virtue

of Theorem 1.1 and Remark 2.1, there exists a solution y(t) to the problem (1.1)

defined on an interval [0, T ], T > 0. If y(t) is identically zero on [0, T ] then we have a

global solution, precisely, y(t) = 0 for each t > 0. If there exists t0 ∈ [0, T ] such that

y(t0) 6= 0, then, by Theorem 2.1, we have a global solution of problem (1.1) with the

a priori bound

‖y(t)‖ 6 eθ(t−t0) ‖y(t0)‖

for all t > t0, where θ = c(1 + ‖y(t0)‖
−2

).

First, we prove the following lemma.
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Lemma 2.1. Let K be a locally closed set and F an upper semi-continuous

multifunction with nonempty compact and convex values. Suppose that there exists

c > 0 such that (2.1) holds for each x ∈ K. Then for each ξ ∈ K \ {0} and α >

c(1 + ‖ξ‖−2
) there exist T > 0 and a solution y : [0, T ] → K of (1.1) such that

(2.3) ‖y(t)‖ < eαt ‖ξ‖

for all t ∈ [0, T ].

P r o o f. Let α > 0 be such that there exists at least one ξ ∈ K \ {0} such that

c(1 + ‖ξ‖−2
) < α and let us consider the set

K ={(ξ, λ); ξ ∈ K \ {0}, c(1 + ‖ξ‖−2) < α, ‖ξ‖ 6 λ}.

It is easy to see that K is a locally closed nonempty set. We define the multifunction

F : K ⇒ R
p+1 by

F(y, z) = F (y) × {α ‖y‖}

for each (y, z) ∈ K and we prove that K is viable with respect to F . To this end

we shall apply Theorem 1.1. So, we have to prove that the tangency condition (1.3)

holds.

Let (ξ, λ) ∈ K. By (2.1) there exists u ∈ F (ξ) ∩ TK(ξ) such that

(2.4) 〈ξ, u〉 6 c(1 + ‖ξ‖2
).

Moreover, by Proposition 1.1 there exist sequences (hn)n and (pn)n with hn ↓ 0,

pn → 0 in R
p and such that ξ + hn(u + pn) ∈ K. By (2.4) we get that

lim
n→∞

‖ξ + hnu‖ − ‖ξ‖

hn

6 c
1

‖ξ‖
(1 + ‖ξ‖2

).

Hence there exist two sequences rn ↓ 0 and tn ↓ 0 (a subsequence of hn) such that

‖ξ + tnu‖ − ‖ξ‖

tn
6 c ‖ξ‖ (1 + ‖ξ‖−2

) + rn

for any n = 1, 2, . . .. Therefore, we obtain that

‖ξ + tnu + tnpn‖ 6 ‖ξ + tnu‖ + tn ‖pn‖

6 ‖ξ‖ + tnα ‖ξ‖ + tn(rn + ‖pn‖)

6 λ + tnα ‖ξ‖ + tn(rn + ‖pn‖)

for any n = 1, 2, . . .. Also, we have that c(1+‖ξ + tnu + tnpn‖
−2) < α and ξ + tnu+

tnpn 6= 0 for n sufficiently large. So, we conclude that (u, α ‖ξ‖) ∈ TK(ξ, λ), that is
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F(ξ, λ) ∩ TK(ξ, λ) 6= ∅ and, by Theorem 1.1, we get the viability of K with respect

to F . Then there exist T > 0 and a solution y : [0, T ] → K of (1.1) such that

‖y(t)‖ 6 ‖ξ‖ + α

∫ t

0

‖y(s)‖ ds

for all t ∈ [0, T ] and by the Gronwall inequality we obtain that (2.3) holds for all

t ∈ [0, T ]. �

We continue with the proof of Theorem 2.1.

P r o o f. S t e p 1. We prove that for any ξ ∈ K \{0} and α > c(1+‖ξ‖−2
) there

exists a solution y : [0, +∞) → K of (1.1) such that (2.3) holds for all t > 0. To this

aim, we shall make use of the Brézis-Browder ordering principle, Theorem 1.2.

Let ξ ∈ K \ {0} and α > c(1 + ‖ξ‖−2). Let S be the set of all solutions ya(·) to

the problem (1.1) defined on an interval [0, a) with a > 0 and satisfying (2.3) for all

t ∈ [0, a). This set is clearly nonempty, as we have already proved in Lemma 2.1.

We introduce a preorder on S as follows. We say that ya � yb (a, b > 0) if and

only if a 6 b and ya(t) = yb(t) for all t ∈ [0, a). Let us show that each increasing

sequence in S is bounded from above. Indeed, let (yn)n be an increasing sequence

in S, yn : [0, an) → K, n = 1, 2, . . . and define ỹ : [0, supn an) → K by ỹ(t) = yn(t)

for any t ∈ [0, an). Then ỹ(·) is well defined, verifies (2.3) for all t ∈ [0, supn an), so

ỹ ∈ S, and ỹ is an upper bound for (yn)n. Let us introduce an increasing function

N : S → R ∪ {+∞} defined by N (ya) = a for any ya ∈ S. Consequently, the set

S endowed with the preorder � and the function N satisfy the hypotheses of the

Brézis-Browder ordering principle. Accordingly, there exists an N -maximal element

y ∈ S, y : [0, ā) → K, such that, if y � ỹ, ỹ ∈ S, then N (ỹ) = N (y).

We will next prove that the solution y : [0, ā) → K of the problem (1.1) is non-

continuable. Indeed, let us assume by contradiction that y(·) is continuable. Then

there exist σ > ā and ỹ : [0, σ) → K such that ỹ(t) = y(t) for all t ∈ [0, ā). Then,

by continuity, we have that ‖ỹ(ā)‖ 6 eαā ‖ξ‖ . If ‖ỹ(ā)‖ < eαā ‖ξ‖ , then, by the

continuity of ỹ(·), there exists b ∈ (ā, σ) such that ‖ỹ(t)‖ < eαt ‖ξ‖ for any t ∈ [ā, b),

which contradicts the N -maximality of y. Suppose now that

(2.5) ‖ỹ(ā)‖ = eαā ‖ξ‖ .

Then α > c(1+‖ỹ(ā)‖−2
) and by Lemma 2.1 and (2.5) there exist b > ā and a solution

ŷ(·) of the problem (1.1) with ‖ŷ(t)‖ 6 eα(t−ā) ‖ỹ(ā)‖ = eαt ‖ξ‖ for t ∈ [ā, b), which

also contradicts the N -maximality of y.

Now, we show that y is a global solution, i.e. ā = +∞. To this aim, let us assume

by contradiction that ā < +∞. As F maps bounded sets in K into bounded sets

in R
p and y is bounded on [0, ā), we have that F (y(·)) is bounded on [0, ā) and

therefore the limt↑ā y(t) = y∗ exists. Since K is closed it follows that y∗ ∈ K. By the
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hypotheses, K is viable with respect to F , therefore y can be continued to the right

of ā. This contradicts the fact that y is noncontinuable.

S t e p 2. We prove that for each ξ ∈ K \ {0} and T > 0 there exists a solution

y : [0, T ] → K of (1.1) which satisfies (2.2) for all t ∈ [0, T ].

Let ξ ∈ K \ {0} and αn > θ with αn → θ. By Step 1, for n = 1, 2, . . . there exists

a solution yn : [0, +∞) → K of the problem (1.1) such that

(2.6) ‖yn(t)‖ 6 eαnt ‖ξ‖

for all t > 0. Let T > 0. By (2.6), it follows that {yn; n = 1, 2, . . .} is uniformly

bounded on [0, T ]. As F maps bounded sets in K into bounded sets in Rp we get that

{yn; n = 1, 2, . . .} is equicontinuous on [0, T ], and therefore, there exists y ∈ C[0, T ]

such that, on a subsequence at least,

lim
n

yn(t) = y(t),

uniformly for t ∈ [0, T ]. Moreover, y is absolutely continuous on [0, T ] and y(t) ∈ K

for all t ∈ [0, T ] as K is a closed set. Passing to the limit for n → ∞ in (2.6) we

get that y satisfies the inequality (2.2). Now, by a standard argument, we show that

y′(t) ∈ F (y(t)) a.e. for t ∈ [0, T ]. So, we have proved that for each ξ ∈ K \ {0}

and T > 0 there exists a solution y : [0, T ] → K of (1.1) which verifies (2.2) for all

t ∈ [0, T ].

To complete the proof of our theorem, we follow the same arguments as those of

the first part of the proof. So, by the Brézis-Browder ordering principle, we obtain a

global solution y : [0, +∞) → K to problem (1.1) which verifies inequality (2.2) for

all t > 0. �
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Authors’ addresses: O.Cârjă, Department of Mathematics, Al. I. Cuza University, Iaşi
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