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Abstract

The exceptional compact symmetric spaces G2 and G2/SO(4) admit
cohomogeneity one isometric actions with two totally geodesic singular
orbits. These singular orbits are not reflective submanifolds of the ambient
spaces. We prove that the radial unit vector fields associated to these
isometric actions are harmonic and minimal.
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1 Introduction

Let N be a compact orientable Riemannian manifold which admits smooth unit
vector fields. Take a smooth unit vector field ξ on N and consider ξ as an
imbedding of N into its unit tangent sphere bundle T1N equipped with the
Sasaki metric. Then we can define the energy E(ξ) of ξ as the energy of the
corresponding map and the volume Vol(ξ) of ξ as the volume of the compact
orientable submanifold ξ(N) in T1N . Therefore we get two functionals on the
space of the smooth unit vector fields on N . ξ is called a harmonic unit vector
field if it is a critical point of the energy functional E, and ξ is said to be minimal
if it is a critical point of the volume functional Vol.
The relevant critical point criteria have been derived in the papers [10] and

[4] by using differential one-forms. Hence, the concepts of harmonic and minimal
unit vector fields can be extended to the case when N is not compact or not
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orientable. A lot of examples of harmonic or minimal unit vector fields have
been constructed on two-point homogeneous spaces and Einstein manifolds (see
[2] and [3]).
On Riemannian symmetric spaces, harmonic and minimal unit vector fields

can be obtained by using special cohomogeneity one isometric actions as fol-
lows. Take a cohomogeneity one isometric action λ : L×N → N of a compact
connected Lie group L on a Riemannian symmetric space N . Assume that the
action has a totally geodesic singular orbit F . Then the principal orbits of L
coincide with the tubes around F , and the unit speed geodesics emanating per-
pendicularly from F intersect orthogonally each principal orbit of L. The union
of all principal orbits is an open and dense domain in N and the tangent vectors
of the geodesics mentioned above yield a radial unit vector field ξ on it.
A connected submanifold F of N is said to be reflective if F is a connected

component of the fixed point set of an involutive global isometry of N . Hence,
a reflective submanifold is necessarily totally geodesic. It has been proved in
the paper [1] that if the isometric action λ : L×N → N has a reflective singular
orbit F , then the radial unit vector field ξ associated to λ is harmonic and
minimal.
The cohomogeneity one isometric actions of the Lie groups SU(3)× SU(3)

and SU(3) on G2 and G2/SO(4), respectively, have been discussed in detail in
[9]. Both the isometric actions have got exactly two totally geodesic singular
orbits, but they are not reflective submanifolds. The purpose of this paper is
to show that the radial unit vector fields associated to these actions are also
harmonic and minimal.

2 The concepts of harmonic and minimal unit vector fields

Let N be a d-dimensional connected Riemannian manifold with the metric 〈 , 〉
and with the Levi–Civita connection ∇. Let X1(N) denote the set of all smooth
unit vector fields on N , and assume that X1(N) is non-empty. Take a smooth
unit vector field ξ on N and the unit tangent sphere bundle T1N of N with the
Sasaki metric. Clearly, ξ can be regarded as an immersion ξ : N → T1N .
Consider the tensor fields Aξ, Lξ of type (1,1) defined by the relations

Aξ(X) = −∇Xξ, Lξ(X) = X +At
ξ(Aξ(X)),

where X is a vector field on N and At
ξ denotes the transpose of Aξ. Assume

now that N is a compact orientable Riemannian manifold. Then the energy
E(ξ) of the map ξ : N → T1N and the volume Vol(ξ) of the submanifold ξ(N)
can be expressed by the formulae

E(ξ) =
1

2

∫
N

Tr Lξ dv =
d

2
Vol(N) +

1

2

∫
N

|∇ξ|2 dv, Vol(ξ) =

∫
N

√
det Lξ dv,

where dv is the volume form of N . Therefore we get two functionals E and Vol
on X1(N). The unit vector field ξ is called harmonic if ξ is a critical point of
the energy functional E. Furthermore, ξ is said to be a minimal unit vector
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field if ξ is a critical point of the volume functional Vol. Concerning the latter
concept, we remark that if ξ is a minimal unit vector field, then ξ(N) is a
minimal submanifold in T1N (for proof see [4]).
Let ξ⊥ denote the (d−1)-dimensional distribution on N which is perpendic-

ular to ξ. The critical point conditions for the functionals E and Vol have been
determined in the papers [10] and [4] by using differential forms. Accordingly, ξ
is a harmonic unit vector field if and only if the differential one-form νξ defined
by the relation

νξ(X) = Tr(Y �→ (∇Y A
t
ξ)(X)),

where X and Y are vector fields on N , vanishes on ξ⊥.
In order to give a criterion for the minimal unit vector fields on N we need

the tensor field Kξ of type (1,1) defined by Kξ = −√
det Lξ · L−1

ξ ◦At
ξ. Then ξ

is a minimal unit vector field if and only if the one-form ωξ defined by

ωξ(X) = Tr(Y �→ (∇Y Kξ)(X))

vanishes on the distribution ξ⊥.
It is clear that the two critical point conditions above also make sense in the

case when the manifold N is not compact or not orientable. Then ξ is said to
be harmonic, respectively minimal, if the one-form νξ, respectively ωξ, vanishes
on ξ⊥.
Hereafter, we assume that ξ is a geodesic vector field, which means that

∇ξξ = 0 is valid, and the distribution ξ⊥ is integrable. Then the critical point
conditions can be reformulated as follows (for details and proof see [2]).
The distribution ξ⊥ yields a foliation of N the leaves of which are integral

submanifolds of ξ⊥. Let us take at each point p of N the mean curvature of
the integral submanifold of ξ⊥ through p. Hence, we obtain the mean curvature
function h : N → R associated to the foliation. Let R and Ric denote the
curvature tensor and the Ricci tensor of N , respectively. Then ξ is a harmonic
unit vector field if and only if

dh(X) = Ric(ξ,X) (1)

holds for each vector field X perpendicular to ξ.
Observe that the tensor Aξ(p) at a point p∈N corresponds to the shape op-

erator of the one-codimensional integral submanifold of ξ⊥ through p. Since the
shape operators are self-adjoint endomorphisms, we can take local orthonormal
vector fields E1, . . . , Ed−1 tangent to ξ⊥ and local smooth functions λ1, . . . , λd−1

such that Aξ(Ei) = λi Ei (i = 1, . . . , d−1) hold. Then ξ is a minimal unit vector
field if and only if the relation

∑d−1

i=1

1

1 + λi
2

(
dλi(Ej)− (1− λiλj) 〈R(ξ, Ei)Ei, Ej〉

)
= 0 (2)

is valid for each index j (j = 1, . . . , d− 1).
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3 Matrix representation of the Lie algebra of G2

As is well-known, the exceptional compact Lie group G2 is isomorphic to the
group of automorphisms of the algebra of Cayley numbers. This implies that
G2 is a closed subgroup of the special orthogonal Lie group SO(7). The Lie
algebra of SO(7) can be identified with the Lie algebra so(7) of the real skew-
symmetric 7 × 7 matrices. Let Mi,j (i, j = 1, . . . , 7) denote the 7 × 7 matrix,
where the entry in ith row and in jth column is equal to 1 and all the other
entries vanish. Clearly, we need the skew-symmetric matrices Ai,j = Mi,j −Mj,i

(i 	= j). Consider now the elements

P0 = A3,2 +A6,7,

Q0 = A4,5 +A6,7,

D1 = 2A2,1 +A5,6 +A7,4,

D2 = 2A5,1 +A6,2 +A3,7,

D3 = 2A6,1 +A2,5 +A4,3,

F1 = 2A3,1 +A6,4 +A7,5,

F2 = 2A4,1 +A3,6 +A2,7,

F3 = 2A1,7 +A2,4 +A3,5,

D̂1 = A6,5 +A7,4,

D̂2 = A2,6 +A3,7,

D̂3 = A5,2 +A4,3,

F̂1 = A6,4 +A5,7,

F̂2 = A3,6 +A7,2,

F̂3 = A4,2 +A3,5

of so(7). It can be verified that the 14 matrices listed above form a basis of
the Lie algebra g2 of the compact Lie group G2 (for details see Lecture 14 in
[8]). This means that using this subalgebra g2 of so(7) and the exponential
map exp: so(7) → SO(7), we obtain the exceptional compact Lie group G2 =
exp(g2).
Considering an element X of g2, the endomorphism adX : g2 → g2 is defined

by adX(Y ) = [X,Y ] for Y ∈g2, where [ , ] denotes the bracket operation in g2.
It is clear that u0 = RP0 + RQ0 presents a 2-dimensional Abelian subspace of
g2. Let α be a linear form on the linear space u0. Take the subspace

uα = {Y ∈g2 | (adX)2(Y ) = −α(X)2 Y for all X∈u0}.

The linear form α (α 	= 0) is called a root of g2 if uα 	= {0} holds, and uα is said
to be the root subspace corresponding to α.
Let ε1, ε2 be the dual basis of P0, Q0 in the space u∗0 of linear forms. We

need the linear forms α1 = ε1, α2 = ε2, α3 = ε1 + ε2 and β1 = ε1 + 2ε2,
β2 = 2ε1+ε2, β3 = ε1−ε2, which are the roots of g2 up to the sign. Concerning
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the root subspaces, it can be verified that

uαi
= RDi + RFi, uβi

= RD̂i + RF̂i (i = 1, 2, 3)

are true. Hence, we obtain the root space decomposition

g2 = u0 +
∑3

i=1
uαi

+
∑3

i=1
uβi

,

where the components are orthogonal with respect to the Killing form B of g2.
It can be seen that the subspace l = u0 +

∑3
i=1uβi

of g2 is a Lie algebra and
l is isomorphic to su(3). By the exponential map we obtain the closed subgroup
L = exp(l) of G2, which is isomorphic to the Lie group SU(3). Mention must
be made that L is not a symmetric subgroup of G2.
Let us take now the complementary subspaces

k = u0 + uα3
+ uβ3

, p = uα1
+ uα2

+ uβ1
+ uβ2

(3)

in g2. Then k is also a subalgebra of g2 and K = exp(k) presents a symmetric
subgroup of G2, which is isomorphic to the Lie group SO(4).
Notice that Hi =

1
2 [Di, Fi], Ĥi =

1
2 [D̂i, F̂i] (i = 1, 2, 3) are elements of u0.

Using these vectors, we obtain the subalgebras vi = RDi + RFi + RHi and
v̂i = RD̂i + RF̂i + RĤi of g2, which are isomorphic to su(2).

4 Harmonic and minimal unit vector field on G2

In what follows we use the notation introduced in Section 3. For the general
theory about Riemannian symmetric spaces, we refer to [5].
Let e denote the identity element of G2. The Killing form B of the Lie

algebra g2 is negative definite. Therefore we can take the inner product 〈 , 〉e
on the tangent space TeG2 = g2 at e defined by 〈v1, v2〉e = −B(v1, v2) for
v1, v2 ∈ g2. Consider the left smooth action λ : (G2 ×G2)×G2 → G2 defined
by λ((g1, g2), h) = g1h(g2)

−1 for g1, g2, h ∈ G2 and endow G2 with the invariant
Riemannian metric 〈 , 〉 derived from the inner product 〈 , 〉e. Then G2 turns
into a compact symmetric space of rank two. As is well-known, the curvature
tensor at e can be expressed by

R(v1, v2)v3 = − 1
4

[
[v1, v2], v3

]
(4)

for v1, v2, v3 ∈ g2. Using the relation (4), it can be seen that the maximal
sectional curvature of the symmetric space G2 is equal to χ = 1

16 .
Consider now the natural isometric action λ : (L× L)×G2 → G2, where the

compact Lie group L is isomorphic to SU(3). For brevity, the product Lie group
L × L will be denoted by L̂. It is evident that L̂(e) = L holds and the normal
complementary subspace of TeL in TeG2 coincides with n =

∑3
i=1uαi

. In what
follows we summarize the basic facts concerning the action λ (for details and
proof see [9]).
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Select a unit vector u in n. Take the closed geodesic γ : R → G2 defined
by γ(t) = exp(t u) and the numbers κ = χ

12 , r = π
4
√
κ
. Then γ intersects or-

thogonally all the orbits of L̂, and therefore λ is a cohomogeneity one action.
The compact Lie group L̂ has exactly two singular orbits L̂(e) = L and L̂(γ(r)),
which are non-reflective totally geodesic submanifolds. Both of them are isomet-
ric to the compact symmetric space SU(3). The other orbits L̂(γ(t)), 0 < t < r,
are principal and can be thought of as tubes around L.
Let U denote the union of all principal orbits of L̂. Obviously, U is a con-

nected open domain of G2 and U = G2 \ (L ∪ L̂(γ(r))) holds. The tangent
vectors of geodesics starting perpendicularly from L and parametrized by arc
length yield a smooth unit vector field ξ on the open domain U . This vector
field ξ is perpendicular to the principal orbits and invariant under the action λ.
Hence, we call ξ the radial unit vector field associated to λ.
In what follows we use the notation

v1 = D̂2/4, v2 = F̂2/4, v3 = D̂3/4, v4 = F̂3/4, v5 = H1/(4
√
3),

v6 = D̂1/4, v7 = F̂1/4, v8 = Ĥ1/4, w1 = D2/(4
√
3), w2 = F2/(4

√
3),

w3 = D3/(4
√
3), w4 = F3/(4

√
3), w5 = F1/(4

√
3), w6 = D1/(4

√
3).

Notice that the vectors v1, . . . , v8 present an orthonormal basis of TeL and the
vectors w1, . . . , w6 present an orthonormal basis of n.
Select now the unit vector u = w6 in n and take the closed geodesic γ defined

by γ(t) = exp(tu) for t ∈ R. Recall that γ̇(t) = ξ(γ(t)) holds for all t ∈ (0, r).
Then the tensor Aξ(γ(t)) at γ(t) presents the shape operator of the principal

orbit L̂(γ(t)). To describe the operator Aξ(γ(t)) in explicit form we need the
orthonormal vectors zj = 1

2 (
√
3 vj + wj) and ẑj = 1

2 (vj −
√
3wj), j = 1, 2, 3, 4.

Take the Jacobi operator Ru : TeG2 → TeG2 with respect to u, which is defined
by Ru(v) = R(v, u)u for all v ∈ TeG2. Then, by means of (4) we obtain that

Ru(zj) = κ zj , Ru(ẑj) = 9κ ẑj , Ru(v5) = 4κ v5,

Ru(w5) = 4κw5, Ru(vs) = 0
(5)

hold for j ∈ {1, 2, 3, 4} and s ∈ {6, 7, 8}. Concerning the shape operator Aξ(γ(t)),
0 < t < r, we can state the following proposition (for proof see Section 3 in [9]).

Proposition 1 Let Zj, Ẑj, Vs and W5 be the parallel vector fields along γ de-
fined by Zj(0) = zj , Ẑj(0) = ẑj, Vs(0) = vs and W5(0) = w5 for j ∈ {1, 2, 3, 4},
s ∈ {5, 6, 7, 8}. Then the relations

Aγ̇(t)(Zj(t)) = −√
κ cot(4

√
κ t)Zj(t) +

√
3κ

sin(4
√
κ t)

Ẑj(t), (6)

Aγ̇(t)(Ẑj(t)) =
√
3κ

sin(4
√
κ t)

Zj(t)− 3
√
κ cot(4

√
κ t) Ẑj(t) (7)

are valid and the numbers

μ1(t) =
√
κ
(−2 cot(4

√
κ t) +

√
4 cot2(4

√
κ t) + 3

)
,

μ2(t) =
√
κ
(−2 cot(4

√
κ t)−

√
4 cot2(4

√
κ t) + 3

)
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are principal curvatures of L̂(γ(t)) with multiplicity 4. Furthermore, the equal-
ities

Aγ̇(t)(V5(t)) = 2
√
κ tan(2

√
κ t)V5(t),

Aγ̇(t)(W5(t)) = −2
√
κ cot(2

√
κ t)W5(t),

Aγ̇(t)(Vs(t)) = 0 (s = 6, 7, 8)

hold.

We are ready now to prove the following theorem.

Theorem 1 The radial unit vector field ξ associated to the isometric action
λ : (L× L)×G2 → G2 is harmonic and minimal.

Proof Using the matrix representation of g2 discussed in Section 3 and (4),
it can be seen that the relations

R(u, zj)zj = κu− (−1)j
√
3κ v6, R(u, ẑj)ẑj = 9κu+ (−1)j3

√
3κ v6,

R(u, zj)ẑj = 0, R(u, ẑj)zj = 0, R(u, v5)v5 = 4κu,

R(u,w5)w5 = 4κu, R(u, vs)vs = 0

hold for j ∈ {1, 2, 3, 4} and s ∈ {6, 7, 8}. Let us take the orthonormal vectors
ej = a zj + b ẑj and e4+j = −b zj +a ẑj with two real numbers a and b for which
a2 + b2 = 1 holds. Then, it follows from the equalities above that the equations

R(u, ej)ej = (a2 + 9b2)κu+ (−1)j
√
3(3b2 − a2)κ v6, (8)

R(u, e4+j)e4+j = (9a2 + b2)κu+ (−1)j
√
3(3a2 − b2)κ v6 (9)

are valid.
Consider now the shape operator Aγ̇(t) of the principal orbit L̂(γ(t)) for

some t ∈ (0, r). The relations (6) and (7) in Proposition 1 imply that we can
take two numbers a(t) and b(t) such that Ej(t) = a(t)Zj(t) + b(t) Ẑj(t) and
E4+j(t) = −b(t)Zj(t) + a(t) Ẑj(t) are orthonormal eigenvectors of Aγ̇(t) with
the eigenvalues μ1(t) and μ2(t), respectively. In addition, we need the further
eigenvectors E9(t) = V5(t), E10(t) = W5(t), E11(t) = V6(t), E12(t) = V7(t) and
E13(t) = V8(t) of Aγ̇(t). In what follows we denote the corresponding eigenvalues
of Aξ(γ(t)) by λi(t), i = 1, . . . , 13.
Since G2 is a Riemannian symmetric space, the parallel transport along

geodesics preserves curvature. Hence, the relations above imply that

〈R(ξ(γ(t)), Ei(t))Ei(t), Ek(t)〉 = 0 (10)

is valid for i ∈ {1, . . . , 13} and k ∈ {1, . . . , 10, 12, 13}.
Observe that the integral submanifolds of the distribution ξ⊥ coincide with

the principal orbits of L̂. It is obvious that the eigenvalues of Aξ and the mean
curvature function h are constant on a fixed principal orbit L̂(γ(t)). Then we
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can verify that Ric(ξ(γ(t)), Ei(t)) = 0 holds for each index i ∈ {1, . . . , 13}.
Therefore the critical point condition (1) is satisfied, and this means that ξ is a
harmonic unit vector field.
It remains to prove the minimal property of the unit vector field ξ. Observe

that λ11 = 0 holds by Proposition 1. Moreover, by means of (8) and (9) we
obtain that

∑13
i=1

1
1+λi(t)2

〈R(ξ(γ(t)), Ei(t))Ei(t), E11(t)〉
=

∑4
j=1

(
1

1+μ1(t)2
〈R(γ̇(t), Ej(t))Ej(t), E11(t)〉

+ 1
1+μ2(t)2

〈R(γ̇(t), E4+j(t))E4+j(t), E11(t)〉
)
= 0

is valid. Then the relation above and (10) imply that the critical point condition
(2) is also satisfied, and therefore ξ is a minimal unit vector field. �

Remark 1 In the paper [1], Proposition 2 is crucial for the proof of the fact that
the radial unit vector field ξ is harmonic and minimal. Among others, Proposi-
tion 2 implies that the tubes around the reflective totally geodesic submanifold
F are curvature-adapted submanifolds of the ambient space N .
In the present case, however, the relations (5), (6), (7) show that the Jacobi

operator Rγ̇(t) and the shape operator Aγ̇(t) of the principal orbit L̂(γ(t)) at γ(t)

do not commute. This means that the principal orbits of L̂ are not curvature-
adapted submanifolds of G2. Hence, Proposition 2 in [1] is not valid for the
Jacobi operator Ru : TeG2 → TeG2.

5 Harmonic and minimal unit vector field on G2/SO(4)

Consider now the coset space G2/K, where the symmetric subgroup K is iso-
morphic to SO(4). In what follows we also denote this coset space G2/K by N .
As is usual, we identify the tangent space ToN of N at the point o = eK with
the subspace p presented by (3).
Take the smooth action λ : G2 × N → N defined by λ(g, hK) = ghK for

g, h ∈ G2. Endow N with the Riemannian metric 〈 , 〉 for which the action λ is
isometric and 〈v1, v2〉o = −B(v1, v2) holds for all v1, v2 ∈ p. As is well-known,
then N = G2/K turns into a compact symmetric space of rank two.
Hereafter, we discuss the natural isometric action λ : L × N → N , where

the Lie group L is isomorphic to SU(3). We list some basic facts about this
isometric action (for more details see [9]).

L(o) is a totally geodesic singular orbit which is isometric to the 4-dimensional
complex projective space CP 2. Let Exp denote the exponential map of N . Then
L(o) = Exp(p∩ l) holds and p∩ n presents the normal complementary subspace
of ToL(o) = p ∩ l in ToN . Since p ∩ n is not a Lie triple system, L(o) is a
non-reflective totally geodesic submanifold of N . The closed geodesics start-
ing perpendicularly from L(o) intersect orthogonally all the orbits of L, and
therefore λ is a cohomogeneity one action.
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Denote by χ the maximal sectional curvature of N and take the numbers
κ = χ

12 , r = π
4
√
κ
. Select a unit vector u of the subspace p ∩ n and take the

geodesic γ defined by γ(t) = Exp(tu) for t ∈ R. Then L(γ(r)) presents the
other singular orbit of λ. It can be seen that L(γ(r)) is also a non-reflective
totally geodesic submanifold of N and L(γ(r)) is isometric to the Riemannian
symmetric space SU(3)/SO(3). The principal orbits L(γ(t)), 0 < t < r, coincide
with the tubular hypersurfaces around L(o).
Consider now the union U of all principal orbits of L. The tangent vectors

of the unit speed geodesics emanating perpendicularly from L(o) yield a unit
vector field ξ on this connected open domain U . Then, applying the argument
developed in Section 4, we can prove the following statement.

Theorem 2 The radial unit vector field ξ associated to the isometric action
λ : L×G2/K → G2/K is harmonic and minimal.
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