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The free commutative automorphic

2-generated loop of nilpotency class 3

DYLENE AGDA SOUZA DE BARROS,
ALEXANDER GRISHKOV, PETR VOJTECHOVSKY

Abstract. A loop is automorphic if all its inner mappings are automorphisms.
We construct the free commutative automorphic 2-generated loop of nilpotency
class 3. It has dimension 8 over the integers.

Keywords: free commutative automorphic loop, automorphic loop, associator
calculus

Classification: 20N05

1. Introduction

A loop is a nonempty set () with a binary operation - such that for every a € @
the left and right translations L,, R, : @ — @, bL, = a-b, bR, = b - a are
bijections of @), and there is an identity element 1 € @ satisfying 1-a=a-1=a
for all @ € Q. We will also write the multiplication - as juxtaposition, and we
will use - to indicate the priority of multiplications. For instance, a(bc - d) means
a-((b-c)-d).

The multiplication group of @ is the permutation group Mlt(Q) = (L,, Ra; a €
Q) generated by all left and right translations. The stabilizer of 1 in Mlt(Q)
is the inner mapping group Inn(Q). It is well known, cf. [3], that Inn(Q) =
(Lap, Rap Ta; a, b € Q), where Loy = LoLyL;, Rap = RJRyR,, To =
R,L,*'.

A loop @ is automorphic if Inn(Q) < Aut(Q), that is, if every inner mapping
of @) is an automorphism of (). Note that groups are automorphic loops.

Automorphic loops were first studied in [4], where it was proved, among other
results, that automorphic loops form a variety and are power-associative, that
is, every element generates a group. It was shown in [9] that automorphic
loops have the antiautomorphic inverse property (ab)~! = b~'a~!. In partic-
ular, commutative automorphic loops have the automorphic inverse property, or
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AIP, (ab)~! = a~'b~!. For an introduction to the structural theory and the his-
tory of automorphic loops, see [11]. For an introduction to the structural theory
of commutative automorphic loops, see [6], [7].

This paper is concerned with free objects in the variety of commutative auto-
morphic loops, in particular with the free commutative automorphic 2-generated
loop of nilpotency class 3.

The center of a loop @ is the associative subloop Z(Q) = {a € Q; ay = a for
every ¢ € Inn(Q)}. Thus Z(Q) consists of all elements a € () that commute and
associate with all other elements of (). Define Zo(Q) = 1, Z1(Q) = Z(Q), and for
i > 1let Z;11(Q) be the preimage of Z(Q)/Z;(Q)) under the canonical projection
Q — Q/Z;(Q). Then a loop Q is nilpotent of class n if Z,_1(Q) # Q = Zn(Q).

It was shown independently in [5] and [8] that for an odd prime p every com-
mutative automorphic loop of order p* is nilpotent. By [8], a commutative auto-
morphic loop of order p? is a commutative group, but there exist nonassociative
commutative automorphic loops of order p*—these were constructed in [7] and
classified up to isomorphism in [2].

One of the main tools used in the classification [2] was the description of the free
commutative automorphic 2-generated loop of nilpotency class 2. This paper can
therefore be seen as a natural continuation of the program begun in [2]. A related
project is [10], where heavy associator calculus was used to determine the bases
and orders of free commutative Moufang loops with up to seven generators.

Forn > 2,let F,(z,y) be the free commutative automorphic loop of nilpotency
class n on free generators z, y.

For elements a, b, ¢ of a loop @ denote by (a, b, ¢) the associator of a, b, ¢, that
is, the unique element satisfying the equation ab - ¢ = (a - be)(a, b, ¢).

We obtained the following description of F(z,y) in [2]:

Theorem 1.1 ([2, Theorem 2.3]). Let Fx(z,y) be the free commutative automor-
phic loop of nilpotency class 2 with free generators x, y, and let u; = (z,x,y), us =
(x,y,y). Then every element of F»(z,y) can be written uniquely as z®'y*?uj*uj*

for some a1, az,as,as € Z, and the multiplication in Fy(x,y) is given by

( a1, as, a3 a4)( by, b2, b3 1274):w01+b1

bs—a1b b b b b
¥y %20yl aPrybubiy a2+b2uf1l3+ 3—a1bi(az+ z)uf214+ a+asbs(a1+ 1)-

y

As we are going to see, to describe F3(z,y) is considerably more difficult.

Let us call an associator compounded if it is of the form (a,b, c) where at least
one of a, b, ¢ is again an associator (u,v,w). It is easy to see, cf. Proposition 2.1,
that a commutative loop is of nilpotency class at most 3 if and only if all com-
pounded associators are central.

Ultimately we prove in Theorem 5.4 that every element of F3(z,y) is of the
canonical form

ay , as as. . as\,.as,.as. a7, as
(™Y - ufus*)vi® vy U3 Uy
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where

u; = (xaxay)z Uz = (xayzy)a V1 = (iE,iE,Ul),

U2 = (ZU,ZU,UQ), U3 = (Z/:?Jaul)7 Uy = (Z/:?JaUQ),

and where the multiplication formula is as in Lemma 5.3. (The canonical form
can be parsed unequivocally because the compounded associators v, va, vz, v4
are central.) This is accomplished in a series of steps:

In Section 2 we study symmetries and linear properties of the associator map
(-, -, -) in commutative automorphic loops of nilpotency class 3. We conclude that
in F3(z,y) it suffices to look at compounded associators of the form (a, b, (¢, d, e))
where each a, b, ¢, d, e is either x or y. In Section 3 we study powers within
associators and derive a formula for (a’,b’,c¥). In Section 4 we discover sev-
eral nontrivial relations among compounded associators of F3(zx,y), reducing all
compounded associators to just vy, va, v3, V4.

The multiplication formula for F3(z,y) is derived in Lemma 5.3. A critical step
in proving the main result, Theorem 5.4, consists of showing that the multiplica-
tion formula of Lemma 5.3 actually yields an automorphic loop. This follows by
straightforward calculation (one merely needs to verify that the generators L, ; of
the inner mapping group are automorphisms), but the calculation is extremely te-
dious and error-prone and we have therefore decided to delegate it to a computer.
The Mathematica [12] code that accomplishes the calculation can be downloaded
from the website of the third-named author, www.math.du.edu/"petr. Once we
know that the formula of Lemma 5.3 yields an automorphic loop @, it is easy to
show that F3(z,y) is free and isomorphic to Q.

Recall that the associator subloop A(Q) of @ is the least normal subloop of @
containing all associators (so Q/A(Q) is a group). The left nucleus Nx(Q), middle
nucleus N, (Q) and right nucleus N,(Q) consist of all elements a € @ such that
(a,b,¢) =1, (b,a,c) =1, (b,c,a) = 1 for every b, ¢ € Q, respectively. Then the
nucleus N(Q) is defined by N(Q) = N»(Q) N N,(Q) N N,(Q). We conclude the
paper by calculating the associator subloop, nuclei and the center of @ = F3(z,y).

Remark 1.2. In the beginning of this paper the proofs we offer give all the details,
but later on we gradually rely more and more on the reader to provide intermediate
steps in calculations. All such steps can be obtained in a straightforward fashion,
albeit sometimes with considerable time commitment. More details will be found
in the dissertation [1] of the first-named author.

2. Symmetry and linearity in associators

Recall that the associator in any loop @ is well-defined modulo Z(Q), that
is, (a,b,¢) = (az1,bz2,cz3) for any a, b, ¢ € Q and 21,292,23 € Z(Q). In any
commutative loop the identity

(2.1) (a,b,a) =1
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holds because ab-a = a-ab = a-ba. It is well known that in any commutative loop
of nilpotency class 2 we have (a,b,c) = (¢,b,a)™', (a,b,c)(b,c,a)(c,a,b) = 1. We
will use all these observations and the following well-known proposition without
reference.

Proposition 2.1. Let Q be a commutative loop.

(i) @ has nilpotency class at most 2 if and only if all associators are central.
(ii) @ has nilpotency class at most 3 if and only if all compounded associators
((a,b,c),d,e), (a,(b,c,d),e), (a,b,(c,d,e)) are central.

PRrROOF: Suppose that () has nilpotency class at most 2. Then @Q/Z(Q) is an
abelian group. Since A(Q) is the least normal subloop S such that @/S is an
abelian group, it follows that A(Q) < Z(Q). The converse is proved by reversing
the argument.

Let us write @ for aZ(Q) € Q/Z(Q). Suppose that @) has nilpotency class
at most 3. Then @/Z(Q) has nilpotency class at most 2 and thus (a@,b,¢) €
Z(Q/Z(Q)) for every a,b,c € Q by (i). This is equivalent to ((@,b,¢),d,e) =
(d, (@, b,¢),e) = (d,e, (a,b,c) = 1g/z(@) and thus to ((a,b,¢),d,e), (d, (a,b,c),e),
(d,e,(a,b,c)) € Z(Q). The converse is again proved by reversing the argument.

(]

We proceed to show that in a commutative automorphic loop of nilpotency
class 2 the associator is linear in all coordinates.

Lemma 2.2. Let () be a loop and let a,b,c € Q) be such that (a,b,c) € Z(Q).
Then cLy o = c(a,b,c)™", aRyp. = a(a,b,c), and bL,R.L7'R;" = b(a, b, c).

PROOF: Since (a, b, c) is central, we have ab-c(a, b,c) "t = (ab-c)(a,b,c)™! = a-be,
or cLyL, = (c(a,b,¢) ™) Lap, or cLy, = c(a,b,c)~ L. Also, ab-c = a(a, b, c) - be, or
aRyR. = (a(a,b,c))Rpe, or aRy . = a(a, b, c). Finally, ab-c = a- (b(a, b, c))c yields
the last equality. O

Proposition 2.3. Let () be an automorphic loop of nilpotency class 2. Then
(ab, c,d) = (a,c,d)(b, c,d), (a,bc,d) = (a,b,d)(a,c,d), (a,b,cd) = (a,b,c)(a,b,d)
for every a,b,c,d € Q.

PrOOF: Since @) is automorphic, the inner mapping R. q is an automorphism.
By Lemma 2.2, ab(ab,c,d) = (ab)Req = aRc,q - bRcq = ala,c,d) - b(b,c,d) =
ab(a,c,d)(b, c,d) and (ab, c,d) = (a,c,d)(b, c,d) follows. Consequently, (a,b, cd) =
(cd,b,a)~! = ((¢,b,a)(d,b,a))"! = (¢,b,a)"(d,b,a)~! = (a,b,c)(a,b,d). Finally,
1LoR4L; R, = 1 shows that L,RyL; R, " is also an inner mapping, so Lemma
2.2 implies be(a, be,d) = (be)LoR4L;'R;' = bLoR4L;'R;" - cL,R4L;'R;' =
b(a,b,d) - c(a,c,d) = be(a, b, d)(a,c,d), and we are done upon canceling be. O

Here is a local version of Proposition 2.3:

Lemma 2.4. Let ) be an automorphic loop of nilpotency class 3, and let
a,b,c,d € Q.
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(i) If (a,c, ,e,d) € Z (a,c,d)(
) (a0, a0, ) € 2(Q) thens (a1 ) — (o)),
(iii) I (a,b,c), (a,b,d) € Z (a,b
ProOF: Let us prove (ii). Since @/Z(Q) is automorphic of nilpotency class 2,
Proposition 2.3 implies (a,bc,d) = (a,b,d)(a,c,d)z for some z € Z(Q). This
means that (a,be, d) is central, too. Then the calculation at the end of the proof

of Proposition 2.3 is still valid (since all associators involved in the calculation are
central). The proofs for (i) and (iii) are similar. O

Lemma 2.5. Let (Q be a commutative automorphic loop of nilpotency class 3.
Then

(2.2) ((a,b,¢),d,e)™" = (e,d, (a,b,¢)),
(2.3) (a, (b,c,d),e) = (a,e, (b,c,d))((b,c,d),a,e).
for every a,b,c,d,e € Q.

Proor: Note that z = ((a,b,¢),d,e) € Z(Q) because @ has nilpotency class

e) €

3. The identity (a,b,c)d - e = ((a,b,c) - de)z hence yields ((a,b,c)d - €)z™! =
(a,b,c) - de, and we get ((a,b,c)d - e)z~ (a,b,c) - de = ed - (a,b,c) = (e
d(a,b,c))(e,d,(a,b,c)) = ((a,b,c)d - e)(e,d, ( b,c)), which implies (2.2). We cal-
culate

(ae ’ (ba Cy d))(a, e, (ba Cy d))il =a- e(b= G, d) =a- (ba ¢ d)e

= (a(b,c,d) - €)(a, (b,c,d),e)™" = ((b,c,d) - ae)((b,c,d), a,e)(a, (b, c,d),e)”"

= (ae ’ (b, &) d))((ba Cy d), a, 6)(0,, (ba ¢, d)a 6)71
which implies (a, e, (b,c,d)) ™! = ((b,¢,d),a,e)(a, (b,c,d),e)" L, or (2.3). a

Lemma 2.6. Let (Q be a commutative automorphic loop of nilpotency class 3.
Then

(2.4)  (a,(b,c,d), (e, f,9)) = ((a,b,¢),d, (e, f,9)) = ((a,b,¢), (d, e, f), 9) =

for every a,b,c,d,e, f,g € Q.

PRrOOF: Since Q/Z(Q) is of nilpotency class 2, we have (ef-g)(e:fg)~' = (e, f,9)z
for some z € Z(Q). Then

(av (b,C, d),(e,f,g)) = (aa (b,C,d), (ef'g)(e ' fg)_l)'

The automorphic inverse property and Lemma 2.4 yield (a, (b,¢,d), (e, f,9)) =
1. The identity ((a,b,c),(d,e, f),g) = 1 follows by (2.2). The argument for
((a,b,c),d, (e, f,g)) = 1 is similar. O
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Lemma 2.7. Let (Q be a commutative automorphic loop of nilpotency class 3.
Then

(2.5) (a,b,¢) = (¢, b,a)7",
(2.6 (a,b,) = (a,e,B)(b,a, )

for every a,b,c € Q).

ProOOF: We have ab-c = (a-be)(a,b,c) = (cb-a)(a,b,c) = (c¢-ba)(c,b,a)-(a,b,c)
(ab-c)(c,b,a)-(a, b, c), and the last term can be rewritten as (ab-c)-(c, b, a)(a, b, c
by (2.4), so (2.5) follows. Similarly, ab-c = (a-bc)(a,b,c) = (b-ca)(b, ¢, a) (a,b,c)

((c-adb)(c,a,b)-(b,c,a))(a,b,c), the last term equals (ab-¢)((c, a,b)(b, ¢, a)-(a, b, c
by (2.4) and Lemma 2.4, so we have (¢, a,b)(b,c,a) - (a,b,c) = 1. By Lemma 2.
the AIP and (2.5), we get (a,b,c) = ((¢,a,b)(b,c,a))™t = (c,a,b)"(b,c,a)?

(b,a,c)(a,c,b), which is (2.6).

~—

O @5”

Note that in any commutative loop of nilpotency class 3 we have
(27) aLbaC = a(a=bac)(bc=aa (a,b,c)),
because

aLy. = (c-ba)L ' = (ab-c)L,' = ((a-be)(a,b, )L, = ((be-a)(a,b,c))L,
= (be- a(a,b,c)(be, a, (a,b,¢))) Ly} = a(a,b,c)(be,a, (a,b,c)).

Proposition 2.8. Let ) be a commutative automorphic loop of nilpotency
class 3. Then

(ab,c,d) = (a,c,d)(b,c,d)((a,c,d),a,b)((b,c,d),b,a)
“((a,¢,d),b,¢)((b, c,d), a, c)((a, c,d), b, d)((b, c,d),a,d),
(a,b,cd) = (a,b,c)(a,b,d)((a, b ¢),c,d)((a,b,d),d,c)
- ((a,b,c),d,b)((a,b,d),c,b)((a,b,c),d,a)((a,b,d),c,a),
(a,be,d) = (a,b,d)(a,c,d)((a,b,d),b,c)((a,c,d),c,b)
-((a,b,d),c,a)((a,c,d),b,a)((a,b,d), c,d)((a,c,d),b,d).

PROOF: By (2.7), the identity (ab)L. 4 = aL,q-bL. 4 can be rewritten as
ab - (ab, ¢,d)(cd, ab, (ab,c,d)) = a(a,c,d)(cd, a, (a,c,d)) - b(b, ¢,d)(cd, b, (b, ¢,d))
= (a(a, c,d) - b(b, c,d))(cd, a, (a,c,d))(cd,b, (b, c,d)).
By Lemma 2.4 and (2.4), (2.5), we have
a(a,c,d) - b(b,c,d) = (ala,c,d) - b)(b, c,d)(ala,c,d),b, (b,c,d)™"
= (a(a, e d) - B)(b, &, d) (a, b, (b, ¢, )~ ((ar ¢, ) b, (b, ¢, d))
= (a(a, c,d) - b)(b, c,d)((b, ¢, d), b, a)
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= (ba- (a,c,d)) (b, c.d) (b,a, (a.c,d)) (b, e, d), b,a)
= (ba - (a,c¢,d))(b,¢,d)((a,c,d),a,b)((b,c,d),b,a).

Since (ab, ¢,d) = (a,c,d)(b, c,d)z for some z € Z(Q), Lemma 2.4 yields

(cd, ab, (ab, c,d)) = (cd, ab, (a,c,d)(b, ¢, d)) = (cd, ab, (a, ¢, d))(cd, ab, (b, ¢, d))
= (Cd7 a7 (a7 07 d))(0d7 b7 (a7 07 d))(0d7 a’ (b7 c’ d))(0d7 b’ (b7 c’ d))'

Upon substituting and canceling ab and like associators, the identity (ab)L.q =
aL¢,q-bL. 4 therefore becomes

(ab, c,d)(cd, b, (a,c,d))(cd, a, (b,c,d)) = (a,c,d)(b,c,d)((a,c,d),a,b)((b,c,d),b,a).

The formula for (ab, ¢, d) now follows by Lemma 2.4 and (2.5).

Note that Lemma 2.4 and (2.5) imply ((a,b,c),d,e)"t = ((a,b,c)"t,d,e) =
((e,b,a),d,e). This observation and (2.5) applied to the formula for (ab,c,d)
yield the formula for (a,b, cd).

Using (2.6), we calculate

(aabczd) = ((I,d, bc)(bc,a,d) = (asda b)(aada C) ’ (baaad)(caaad)
! ((a7 d7 b)7b7 c)((a7d7 6)707 b)((a7 d7 b)7c7 d)((a7 d7 c)5b7 d)((a7 d7 b)5c7a)((a’ d’ C)7b’ a)
! ((b7 a7d)7b7 c)((c7a7 d)7c7 b)((b7 a7d)5c7 a)((c’a7 d)7b5a)((b7a’ d)’c7d)((c7a’ d)’b7d)'

The first four associators associate by (2.4), so (a,d, b)(a,d,c) - (b,a,d)(c,a,d) =
(a,d,b)(b,a,d) - (a,d,c)(c,a,d) = (a,b,d)(a,c,d). We can similarly pair the com-
pounded associators, using Lemma 2.4. For instance, ((a,d,b),b,¢)((b, a,d),b,c) =
((a,d,b)(b,a,d),b,c) = ((a,b,d),b,c). The formula for (a,be,d) follows. O

We can now deal with products in all arguments of a compounded associa-
tor. For products of the form (ab, ¢, (d, e, f)) we can use Lemma 2.4 (or Proposi-
tion 2.8), and for products (a, b, (cd, e, f)) we note that (cd, e, f) = (¢, e, f)(d,e, f)z
for some central element z (the explicit form of z follows from Proposition 2.8)
and calculate (a, b, (c,e, f)(d,e, f)) = (a,b,(c, e, f))(a,b,(d,e, f)) by Lemma 2.4.
From now on, we will use these and similar identities, often without explicit refe-
rence.

3. Powers within associators

Using Proposition 2.8, we proceed to derive formulae for powers within associ-
ators. Define o : Z - Z, 3 : Z — Z by

(3.1) a(n) = (n*-n)/3, B(n)=n>—n.

Note that a(0) = B(0) = 0, a(n + 1) = a(n) + n® +n, f(n+ 1) = B(n) + 2n,
—a(—n) = a(n) and 2n? — B(—n) = B(n) for every n € 7Z.



328

D. Barros, A. Grishkov, P. Vojtéchovsky

Lemma 3.1. Let Q be a commutative automorphic loop of nilpotency class 3.
Then

(3.2) (a™b,¢) = (a,b,¢)"((a,b,¢),a,a)*™((a,b,¢),a,b)’ ™ ((a,b,c),a,c)?™,
(3.3) (a,b",¢) = (a,b,¢)"((a,b,c), b,b)a(")((a, b,c), b,a)ﬁ(")((a,b,c),b,c)ﬁ(”)
(3.4) (a,b,c") = (a,b,¢)"((a,b,c),c,c)*™ ((a,b,c),c,a)® ™ ((a,b,c), e, b))
for every a,b,c € ) and every n € Z.

Proor: We prove (3.2); the equations (3.3), (3.4) are proven analogously. If
n = 0, (3.2) holds. Suppose that (3.2) holds for some n > 0. Note that
((aiabzc)aajad) = ((a=bac)i:ajad) = ((aabzc)aa=d)ij for every i: .7 > 07 by Lem-
ma 2.4, using our usual trick (a’,b,c) = (a,b, c)'z for some z € Z(Q). By Propo-
sition 2.8 we then have

(a™')b,¢) = (aa™,b,c)
= (a,b,¢)(a" b, )((a, b, ), @, a")((a" b, ), 0", 0)
- ((a,b,c), a”, B)((a", b, ), @, b)((a, b, ), ™, ) (", by ) ;)
= (a,b,c)(a”,b,c)((a,b,c),a,a)”2+”((a,b,c) a,b)*((a,b,c),a,c)*”
= (a,b,c)”“((a,b,c),a,a)a(”)+”2+"((a,b,c) a, 0?2 ((a, b, ¢), a, c)P )2
= (a,b,¢)" "' ((a,b,¢),a,a)* "V ((a,b,¢),a,b)* "V ((a,b,¢),a,c)P"F.
As for negative powers, first note that Proposition 2.8 gives
1=(1,b,¢) = (aa"',b,¢) = (a,b,c)(a"*,b,c)((a,b,¢),a,a ) ((a"*,b,c),a !, a)
~((a,b,¢),a ', b)((a™",b,¢),a,b)((a,b,¢),a™",¢)((a™",b,c),a,c)
= (a,b,¢)(a,b, ) ((a,b, ¢}, a,b)2((a, b, ), a, )2,
Since associators associate with one another by (2.4), we deduce
(a™',b,¢) = (a,b,¢) " ((a,b,c),a,b)*((a,b,c),a,c)
Then for every n > 0 we have
(a",b,6) = ((a")",b,¢) = (a”,b,¢) " ((a", by ), a”, B*((a", b, ), ", )2
= (a,b,¢) " ((a,b,¢), a,a) =" ((a,b,¢), a,b)>" B ((a,b,¢), a,¢)>" 5
= (a,0,0)7"((a,b,¢),a,0)*""((a, b, ¢),a,b)° " ((a, b, ), a, )",
finishing the proof of (3.2). O

Lemma 3.2. Let Q be a commutative automorphic loop of nilpotency class 3.
Then

(a', 1, c*) =(a,b, )7 ((a, b, ¢), a,a)* D% ((a, b, ¢), a, ) DI** ((a, b, ¢), a, ¢) P DIF*
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- ((a,b,¢),b, a)iﬁ(j)k((a, b,c), b, b)m(j)k((a, b,c), b, c)iﬁ(j)k
((a,b,¢),¢,0) 5P ((a,b, ¢), ¢,b)7H) ((a,b,c), ¢, ) 0P

for every a,b,c € Q and i,j,k € Z.
PROOF: By Lemmas 2.4, 3.1 and Proposition 2.8, (a’, b/, c*) is equal to
the term (a, b/, c*)? is equal to
[(a,b, ) ((a,b,¢*),5,0)°D) ((a,b,*), b, @)Y ((a, b, ), b, )]
= (a,b,¢")7 ((a,b,0),b,5) V¥ ((a,b,¢),b,a) " D* ((a,b,¢), b, ) PIL,
and the term (a, b, c*)¥ is equal to
[(a,b,¢)*((a,b,¢), ¢, )M ((a,b,¢), ¢, a)° ¥ ((a,b, ¢), ¢, )" V)]

O

4. Reduction

Since we ultimately want to describe the free loop F3(z,y), we will from now on
start focusing on formulae that involve only two variables z, y. For fixed elements
x, y (not necessarily the generators of F3(z,y)), let

Uy = (muxuy)v Uz = (wvy:y)a
21 = (Z‘,Z‘,Ul), 22 = ($7$7u2): 23 = ('Tay:ul): 24 = (x,y,w),
25 = (yaxaul): 26 = (y,x,u2), 27 = (yzyaul)a z8 = (yay=u2)'

No additional associators will be needed since (z,y,z) = (y,z,y) = 1 by (2.1),
compounded associators of the form ((_, _,_), -, -) and (-, (-, -, -), -) can be rewritten
as products of compounded associators of the form (_, _, (_, -, -)) by (2.2) and (2.3),
compounded associators with associators in two components vanish by (2.4), and
products within associators can be handled by Proposition 2.8.

The reader might have noticed that in our product formulas (such as in Propo-
sition 2.8) we accumulate associators on the left, but we chose the canonical
compounded associators with accumulated associators on the right. It is easy to
convert between these two formats, since

(a,b,(c,d,e)) = ((¢,d,e),b,a)" = ((e,d,¢)" 1, b,a) ! = ((e,d,¢),b,a),

329



330 D. Barros, A. Grishkov, P. Vojtéchovsky

by (2.5) and Lemma 2.4. Also note that
(a7 b) (07 d7 e)) = (a) b7 (67 d7 c)il) = (ai b7 (67 d7 c))71
thanks to (2.5) and Lemma 2.4.

Lemma 4.1. Let Q be a commutative automorphic loop of nilpotency class 3.
Then for every x,y € Q we have zo = z3 = 25 and z4 = 2z = 27.

PROOF: Focusing first on the product in the third coordinate, we calculate, start-
ing with (2.1):
1 = (zy,z,2y) = (zy,2,7)(2y, 2, y)((vy, 2, 2), 2. y) ((zy, 2, 9), Y, )
((zy,z,2),y,2)(2y, 2, y), 2, 2)(2y, 2, 2), y, 2y) ((2y, 2,y), =, 2Y)
= (zy,z, z)(2y, , y)z5z§1232f1232721—125_1 = (xy,x,x)(xy,x,y)zl_22327
= (y,2,2)((y,z,2),y,2)((y, 2, 2), 2. 2)((y, 2, 2), 7, 2)
Sz, 2,9) (2, 2,9),2,9) (2, 2,9), 9, 2) (2,2, ), 4, y) 21 * 2327
= (y,z,z)(x,x,y)23212125 123 127 2] 2oz =1- 2325 nt
Hence z3 = zs5, or (z,y,(x,z,y)) = (y,z, (x,z,y)). Interchanging x and y in this
identity yields (y,z, (y,y,z)) = (z,y, (y,y,z)), which is equivalent to zg = 24.

In the following calculation we will also use (2.7) and Lemma 3.1. As @ is
automorphic, yL, » - (2y) Ly = (y-2y) Ly .. On the left hand side of this identity
we have

Lo = y(y, z,2)(2%,y, (v, 2,2)) = y(y, 2, 7)z; °

and
(2y) Loz = (2y) (zy, z, 2) (2%, 2y, (zy, z, 7)) = (2y)(2y, 2, 2)(2*, 2y, (y, 2, 7))
= (xy)(y, z, I)((ya , I)a Y, x)((y, X, 1'), T, 1‘)22;2252
= (zy)(y, ,7) 23272, *25° = (ay)(y, 7, )25 "

while on the right hand side we have

xy)(y - 2y, z,2) (2, y - 2y, (y - 2y, 2, 7))

czy) Wiz (y,y. 1) tx,a) (2, Y, (v, @, 1)
4

W -2y)Lan = (y - 2y)

= (y - zy)

= (y-zy) v’z 2,2)((2,9.y), 2, 2)25 "2
(
(
(

Qﬁ‘ﬁ

= (zy® - (z,,9)) - (wy® 7, 0)2; ' 25 %2
2_—-1_-8_-4

(my z,Y, y)) (y T m)((yQ,ﬂj,ﬂj),yQ,ﬂf)((yQ,QZ,QZ),QZ,QZ) 22 Z3 Zl
zy? - (2,9, y))(y,x 2)2((y,2,7),5,9)* ((y, 7, 2),y,2) 2521 2y L 25 B2
2
(v,

=2y’ (2,9,9)(y. 2,2) 272323 2y = 2y (2,y,9) (2, @) 272
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Returning to the left hand side, we rewrite it as

y(y, =, z) - (zy)(y, 2, 2)z5 ° = (y(y, =, z) - 2y) (y, z, 2) (y (y, x, ), 2y, (y, @, 2)) ' 25
= (zy - y(y,2,2))(y, 2, 2)(y, 2y, (y, v, 2)) "' 25
= (zy - y)(y,x z)(zy,y, (g, 2. 2)) " (y,2,2) 252025
= (zy - y)(y, 7, 2) 2327252725
= (2y))(z,v,y) - (y, 2, 2)27 22522 = 2y* - (2, 9,9)(y, 7, 7)? 25 >2522.

Comparing the two sides now yields z, ' = z; %z5. But 2z; >z5 = 25 * by the first
part of this lemma, and hence zo = z3. Switching x and y in the identity z2 = z3
gives z7 = zg. O

With the reduction of Lemma 4.1 in mind, we set for any fixed z, y

Uy = (CU,CU,y), Uz = (way:y)a U1 = (Cﬂ,x,ul),

U2 = (CU,CU,UQ), U3 :(y:yaul)a Vg = (yay:UQ)-
We are now ready to describe canonical elements of the free loop F3(z,y).

Lemma 4.2. Every element of F3(x,y) can be written in the canonical form

ay as, a4 as,.as, a7, asg
(™ y" - uy®uy* oyt vy vg vy,

where a; € 7.

PROOF: Let X = {z,27',y,y~'}. We first note that any associator can be
written as u1 u22 [Tv{". Indeed, since Fs(z,y) has nilpotency class three, no
compounded associators appear within associators. Using Lemma 2.4, Proposi-
tion 2.8 and their consequences, every associator can be written as a product of
compounded associators and ordinary associators with all variables in X. In fact,
equations (2.4), (2.1), (2.2) and (2.3) imply that every associator is a product of
u1, Ug, the z;s and their inverses. Since associators associate among themselves
by (2.4), this product is of the form u1 u22 H z;* for suitable exponents in Z, and
hence of the form u?'ub? [Tv¢ by Lemma 4.1.

To establish the lemma, it suffices to show that a product of two canonical

words is also canonical First, [2%y% - ufug* [Jof] - (2% - ufsub TTo¥] =
(z1y2 - ufPud?)(zb y ubs b“) [Tost%, so it suffices to show that the product
(x21y2 . u‘llgu“‘*)(:n yb2 ub3ug4) has the desired form. We can rewrite this word

as ((z21y22 - zbryb2) . ufsus?) - u'{gug“w with some product w of compounded

associators, and further to (z%1y?2 - 201 yb2) -u?”bg u;“b“w, using Lemma 2.4 and
(2.4). Now, z%1y?2 b1y’ can be written as (- - - ((x21 TP1y22+02)¢, )ty - - )t, where
each t; is an associator. Using Lemma 2.4 and (2.4) again, we further rewrite this
as (x01thigya2tb2) (4,4, ... 4;). The rest is easy. 0
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5. The main result

The calculation described in the proof of Lemma 4.1 is straightforward but
rather tedious. Before we attempt it, we note:

Lemma 5.1. In the loop Fs(z,y) all associators are in the middle nucleus.

PrOOF: Thanks to (2.1), (2.5) and Lemmas 2.4, 4.2 and Proposition 2.8, it suf-
fices to show that (z,u1,y) = (z,u2,y) = 1. By (2.3) and (2.5), (z,u1,y) =
(z,y,u)(ur,z,y) = (z,9y,u1)(y, z,u)" = z3z5_1 = 1, and also (z,us2,y) =
(z,y,u2) (ua, 2,y) = (z,y,u2)(y, 7, u2) ' = 2425 ' = 1, where we used Lemma 4.1,

O

Recall the mappings a, 5 of (3.1).
Lemma 5.2. In F3(z,y) we have for every ai,as,b1,by € Z

:Ealya2 -wblbe — wa1+b1ya2+b2 _ul—a1b1(a2+b2)uggb2(a1+b1)

v(a2+b2><b1a<a1)+a1a(b1))+a2(alﬁ(b1)+b§5<a1>>+bz(blﬁ(a1)+a%6(b1))
1

v2a1a2b1b2(a1+b1)+(a2+b2)(alﬁ(bl)+b1B(al))+(6(a2)+6(b2))(a1bf+b1 a?)—agbra(a+by)
2

v72a1a2b1b2(a2+b2)7(a1+b1)(azﬁ(b2)+b2[3(a2))7(6(a1)+[3(b1))(a2b§+b2a§)+a1 bia(az+b2)
3

- (arFb)(aza(bz)+boa(az)) —a(azB(b2)+b38(az)) ~b1(b2B(az) +a36(b2))
) .
ROOF: sin .0 ), We Calculate
p Using (2.5), lculat
gy gty = (2% 2yt (y", e ey ™)
((wb1+a1 . ag)(yaz , xal ) .’Ebl) . ybg)(be, walya2)
= (gt (ytn 2t Pyt (2 Iy, (o 2t 1), ") - (7 e My ).

By Lemma 5.1, we can ignore the compounded associator and continue

(202 - yP2) (yo2, 2%, 2™ ((y*2, 2, a®), 02, 2 Ty 02) - (yP2, 2™ ey ™2)

b
— [($ﬂ1+b1 az+bs (xa1+b1 az bz))( aZ,xal ’ xbl)]

(
. ((yaz’ ! , $b1), ybz ’ Z.a1+bly 2) . (ybz ’ 2 ’ xmyaz)_
Because associators associate with one another, we can rewrite the formula as
xalyﬂ2 _xblbe — Za1+b1ya2+b2 . ( a1+b1 ya2 y )(yaQ,Zal,xbl)(be,.’Ebl,.’EalyM)
a a b b a1+b1,,a
(Y™™, 2™,y e Ty ).

Now, using Lemmas 2.4 and 4.1 freely,

braszb bi) aibia3b
((yaQ,ma1’wb1)’ybz’wﬂ1+b1yﬂ2) — ’U;l 1a2b2(a1+ 1)’1)31 1a302
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By Lemma 3.2,

b1)azbs — bi)asbs — bi)a3bs — b1)asb?
(xa1+b1’ya2,ybg) — uéal-l- 1)as 21)2 a(ai+bi)as 2“3 B(ai1+b1)as 203 B(ai+b1)azbs

. U;(a1+b1)5(a2)b2 U4—(01+b1)a(02)b2 U;(a1+bl)5(a2)b§

. Ug—(al+b1)ﬂ26(b2)v4—(ﬂl+bl)GQB(bQ),U;(ﬂl +b1)aza(bsa) ’

and, similarly,
_ b as)azb as)a1b?
(ya2,xa1’wb1) =] a1b1azv§(a2)ﬂ1 1,025( 2)a; 1,025( 2)a1b;

v;ZB(ﬂl)blvlﬂZQ(ﬂl)bl ,Ulazﬁ(m)bf ,U;zal5(51),U;lzmﬁ(bl)v;lzma(h) ]

Finally, by Proposition 2.8 and (2.3), we see that

2 2 P!
b ..b1 ..a1,,a2\ _ (. ba b1 a1\, aibiazbz aibjazba aibiazb;
(y , T, Ty )_(y , L, T )UQ UQ ’1)3 .

The associator (2,21, 291) can be obtained from the already calculated associ-
ator (y?2,z%,2%). Putting all these associators together, we arrive at

as+bo —albl(a2+b2)uﬂ2b2(al+bl) €1..Ca..C3, Ca
2

ai, az bi,ba _ a1+b1
¥yt gy =g Yy S Uy vitvstugtugt,

where, after summing up the exponents of the respective v;s and simplifying,

¢1 = (az + ba)(bra(ar) + ara(by)) + az (a1 B(b1) + b7B(ar))
+ by (b1 B(ar) + ai (b)),
ca = 2ara2b1ba(ar + b1) + (a2 + ba) (a1 8(b1) + b18(ar))
+ (B(az) + B(b2))(a1bi + biai) — asbaa(ar + by),
¢z = —B(ar +b1)(azbs + asb3) — (a1+b1)(B(az)bs + az3(bs))
+ a1b1 (a(a) + a(ba)) + arbiasbs(as + ba),
cy = —(ay + b1)a(az)by — (ay + b1)B(az)b3
— (a1 + b1)azB(b2) — (a1 + bi)aza(bs).
The exponents ¢y, ¢y already have the desired form. To match the exponents c3,

¢4 with the formula of the lemma, note that a(a + b) = a(a) + a(b) + ab(a + b)
while rewriting c3, and substitute 3(a) = a® — a into 4. O

Lemma 5.3. In F3(z,y) we have
al,,a2 az a4 a5, . ag,. a7, ag b1 bg b3 b4 b5 bs b7 bg
(@Y™ - ui®uy?) -vi®o3%vgTog®) - (7Y™ - uyuy?) - vy v vgTvg®)
bz —a1b b b b b
— (ma1+b1yag+b2 _u;l3+ 3—aibi(az+ z)u;4+ atasba(a1+ 1))

vﬂ5+bs+(ﬂ2+bz)(bl a(a1)+ara(br))+az(a1B(b1)+b38(a1))+ba(b1B(a1)+aiB(b1))—arbi(as+bs)
1

. Uae+be+2a1 asbibs(a14b1)+(az+bo) (a1 B(b1)+b1B8(a1))+(B(as)+B(b2))(a1bi+bial)
2
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—asbaa(ai+b1)—a1bi(as+bs)—(az+bsz)(ai1ba+azb1)

Ua7+b7_2a1 asbiba(as+ba)—(a1+b1)(asB(ba)+b2B(az2))—(B(a1)+B(b1))(azbi+boad)
3

+arbia(az+b2)—azb2(az+b3)—(as+ba)(arba+azbr)

Uag+bgf(a1+b1)(aga(b2)+b2a(a2))fa1(azﬁ(b2)+b§6(a2))7b1(bgB(a2)+a§6(b2))fa2bg(a4+b4)
4

for every a;, b; € 7.

ProOF: Using Lemma 5.1 in the first step and (2.4) in the second, we have

@y - ufug )@y - ufrul)
= p%y® . (u?3ug«4 . ($b1ybz -u23ug4))

— .01,,02 b1, ba a3+bz, as+ba
=zy” - (z7y” - uf Us )

— (xalya2 _wblbe) . uil3+b3u;4+b4

(wm yag , CUbl ybz , uil3+ba u;4+b4)—1 ]

Now note that Lemma 2.4 yields

a, b c.d e f\ _ ace, acft+adetbce adf+bcf+bde bdf
(%", 2", ujuy) = vi“v, U3 Uz -

We are therefore done by Lemma 5.2. g

In the proof of the main theorem we will use a Mathematica [12] code to verify
certain properties of the multiplication formula of Lemma 5.3. The code can be
downloaded from the website of the third-named author.

Theorem 5.4. Let F5(x,y) be the free commutative automorphic loop of nilpo-
tency class 3 on free generators x, y. Let uwy = (z,z,y), us = (z,y,y), v1 =
(z,z,u1), va = (z,2,u2), v3 = (y,y,u1), va = (y,y,u2). Then each element of
F3(z,y) can be written uniquely as (z*'y®* - uius*)v{®vy°vs vy®, and F3(z,y) is
isomorphic to (Z8, ¥), where the multiplication * of exponents is as in Lemma 5.3.

ProOOF: Let F be defined on Z® with multiplication according to Lemma 5.3.
Denote by e; the element of Z® whose only non-zero coordinate is equal to 1
and is located in position ¢. Straightforward calculation in Mathematica shows
that F' is a loop with identity element (0,0,0,0,0,0,0,0) such that (e, e, es) =
€3, (61762762) = €4, (61761763) = €5, (61761764) = €g, (62762763) = ey and
(e2,€9,e4) = eg. Moreover, F' is a commutative automorphic loop. (To verify
that F' is automorphic, the code merely needs to check by symbolic calculation
that the inner mappings L, ; are automorphisms of F'.)

We claim that F3(z,y) is isomorphic to F'. Let f : F3(z,y) — F be the ho-
momorphism determined by f(z) = e, f(y) = es. Because homomorphisms
behave well on associators, namely f((a,b,c)) = (f(a), f(b), f(c)), the calcula-
tion in the previous paragraph shows that f(ui) = es, f(u2) = eq, f(v1) = es,
f(va) = eq, f(v3) =er and f(v4) = eg. By Lemma 4.2, any element w of F3(z,y)
can be written as w = (x"y* - uffus*)vi*vy®v3 v ®, and it now follows that
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f(w) = (a1, az,as,a4,as,a6,ar,as). This means that f is onto F, and also that
the exponents a; in the decomposition of w are uniquely determined by w. Hence
f: F5(z,y) — F is an isomorphism. O

We conclude the paper with some structural information about F3(z,y).

Proposition 5.5. Let Q = F3(z,y) be identified with (Z%, %) as in Theorem 5.4.
Then A(Q) = N,(Q) = 0 x 0 x Z5 and N»A(Q) = N,(Q) = N(Q) = Z(Q) =
0x0x0x0xZ

Proor: We already know from Lemma 5.1 that A(Q) < N,(Q). By Proposi-
tion 2.8 and Lemmas 3.2, 4.1,

(z, 2"y, y) = (z,2",y)(z,y"*,y)
((z, 2%, y), 2", ") (2, 9", y), 9%, 2 ) (2, 2, y), 4", 1)
((z,y",y), 2", 2) (2, 2", y), ¥, 9) (2, ™, y), 2", y)

— (.T, 2 ’ y)(x, ya2 ’ y)vgafag—Qalag Ug—alag—Qalag

= ’U’?l (U’17 €z, w)a(a1)+ﬁ(a1) (ul y &y y)ﬁ(al) ' u;z (uQ: Y, y)a(a2)+B(a2) (uQ: Y, w)ﬁ((m)

704?04272111042 7a1a§72a1a2
2 U3

2 2
— — —fB(a1)—ajaz—2a1az2 —pB(a2)—aias;—2a1a2 — —
— utllluggvl a(ar) 5(111)02 B(a1)—ajaz 1 21}3 B(az)—aia; 1 21)4 a(asz) B(az).

Thus, if either a; # 0 or as # 0 then r = (z,2%y*,y) # 1. In other words, if
r € Ny(Q) then r € 0x0x Z5. We conclude, A(Q) < N,(Q) <0x0xZ°¢ < A(Q),
so N,(Q) = A(Q) =0x 0 x Z°.

Since @ has nilpotency class 3, we have 0 x 0 x 0 x 0 x Z* < Z(Q) < N,(Q) =
N)\(Q) NOW:

(x,z, 2" y"? - u?u3d?) = (z, 2, 2" y"?)(x, z, uf*us*) = (z, z, 2" y*? v vy?

= (@2, y™) (@, 7,57, 5™, 2 (@, 2,y™), 2%, 2) (2, 2,572, 2%, 7)ol 0l

2
_ as\,,a3—2aja2, @4a—a105
= (z,z,y"?)v] Vs

2
— ,,02 a(as 2B(az), a3—2a1as, a4—0a105
= Uy - (U’va:y) ( )(u27y:$) ( )’1)1 Uy

P!
_ ,a2,a3—2a1az, Aa—a1a3 23(a2) a(az)
= uy?v] Uy U3 vy

If (z,z, 2%y - ui*uy®) = 1, as must be zero. Then v{?v3* = 1 and thus a3 =
a4 = 0. Therefore, if (z,z, 2%y - w*3t?%4) = 1 then as = a3 = a4 = 0. Finally,

(g, 2™) = uy (g, @) 2 ()] = gy A )

So, (y,z,2%) = 1 implies a; = 0. Summarizing, 2"y - u®us* € N,(Q) if and
only if a; = as = a3 =as =0. Hence N,(Q) = Z(Q)=0x0x0x0xZ% O
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