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Solution of distributive-likequasigroup fun
tional equationsFedir M. Sokhatsky, Halyna V. Kraini
hukAbstra
t. We are investigating quasigroup fun
tional equation 
lassi�
ation upto parastrophi
 equivalen
e [Sokhatsky F.M., On 
lassi�
ation of fun
tionalequations on quasigroups, Ukrainian Math. J. 56 (2004), no. 4, 1259{1266 (inUkrainian)℄. If fun
tional equations are parastrophi
ally equivalent, then theirfun
tional variables 
an be renamed in su
h a way that the obtained equations areequivalent, i.e., their solution sets are equal. There exist �ve 
lasses of generalizeddistributive-like quasigroup fun
tional equations up to parastrophi
 equivalen
e[Sokhatsky F.M.,On 
lassi�
ation of distributive-like fun
tional equations, Bookof Abstra
ts of the 8th International Algebrai
 Conferen
e in Ukraine, July 5{12(2011), Lugansk, Ukraine, p. 79℄.In the arti
le, we �nd the solution sets of four generalized distributive-likequasigroup fun
tional equations of di�erent 
lasses. In 
onsequen
e, we solveone of the equations on topologi
al quasigroup operations, de�ned on arbitrarytopologi
al spa
e as well as on the spa
e of real numbers with the natural topo-logy.The �fth 
lass 
ontains the generalized left distributivity fun
tional equation.V.D. Belousov [Some remarks on the fun
tional equation of generalized distribu-tivity, Aequationes Math. 1 (1968), no. 1{2, 54{65℄ des
ribed only a subset ofits solution set. The set of all solutions still remains an open problem in thequasigroup theory and in the fun
tional equation theory.Keywords: quasigroup, fun
tional equation, distributive quasigroup, distributive-like fun
tional equation, quasigroup solution, solution set, quasigroup identity,parastrophi
 equivalen
eClassi�
ation: 20N05, 05B15Introdu
tionWe 
ontinue investigation of the problem of quasigroup fun
tional equations
lassi�
ation up to parastrophi
 equivalen
e [11℄. This problem was 
onsidered inmany arti
les, in parti
ular, in [7℄, [9℄, [10℄.In [12℄ it was stated that every generalized distributive-like quasigroup fun
-tional equation is parastrophi
ally equivalent to at least one of the equations(2){(6). The notion `distributive-like' means that the equation has three di�erentindividual variables and the number of their appearan
es is equal to 2, 2, 3. To
lassify generalized distributive-like quasigroup fun
tional equations up to para-strophi
 equivalen
e, we have to �nd their solution sets.
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hukIn this paper, we solve the equations (3){(6). Earlier the results were statedin [8℄. As a 
onsequen
e, one 
an get a set of all solutions of (3){(6) over arbitraryset of fun
tions whi
h are 
losed under 
omposition. To give an example, we solvethe equation (3) over the set of all topologi
al quasigroup fun
tions, de�ned ona topologi
al spa
e (Corollary 5). In parti
ular, we solve (3) when the spa
e
oin
ides with the topologi
al spa
e of real numbers with the natural topology(Corollary 6).The set of all solutions of the quasigroup fun
tional equation (2) is still unsolvedand it is a well-known problem in the quasigroup theory and in the fun
tionalequation theory. V.D.Belousov [5℄ des
ribed its partial solution.1. PreliminariesAn operation f , de�ned on a 
arrier set Q, is said to be left-invertible (right-invertible) if every of its right (left) translation is a permutation of Q. In otherwords, the equation f(x; a) = b (respe
tively, f(a; y) = b) has a unique solutionfor all a, b 2 Q and it is denoted by f `(b; a) (respe
tively, by fr(a; b)). It is easyto see that f ` and fr are binary operations on Q whi
h are 
alled left and rightdivisions of f . A quasigroup operation f , its divisions, divisions of the divisions,. . . are 
alled parastrophs of f . It is easy to verify that every quasigroup operationhas at most six di�erent parastrophs. Left- and right-invertible operation is 
alledinvertible or quasigroup operation. A groupoid (Q; f) is 
alled a quasigroup if fis invertible.So, the equalitiesF (F `(x; y); y) = x; F `(F (x; y); y) = x;F (x;F r(x; y)) = y; F r(x;F (x; y)) = y(1)are superidentities on �, i.e., they hold for all x; y 2 Q and for all values of F inthe set � of all invertible fun
tions, de�ned on Q.Let W , V be terms and [W ℄ denote the set of all individual variables appearingin W . Let fx1; : : : ; xng := [W ℄ [ [V ℄;then the formula (8x1) : : : (8xn) W = Vis 
alled a fun
tional equation. As usual, the universal quanti�ers are omitted.A sequen
e of operations, de�ned on a set Q, is 
alled a solution on Q of afun
tional equation if the sequen
e redu
es the equation to an identity [1℄. If all
omponents of a solution are invertible, then it is 
alled a quasigroup solution. Theset of all solutions on Q will be 
alled solution set of the equation. A fun
tionalequation is 
alled:� a generalized fun
tional equation if all its fun
tional variables are pairwisedi�erent;



Solution of distributive-like quasigroup fun
tional equations 449� a binary fun
tional equation if all fun
tional variables are binary, i.e., theyare assumed to take their values in a set of binary operations;� a quasigroup fun
tional equation if its fun
tional variables are assumed totake their values in a set of quasigroup operations (i.e., invertible fun
-tions);� a distributive-like fun
tional equation if it is binary and has three individ-ual variables with appearan
es 2, 2, 3.Here we 
onsider binary quasigroup fun
tional equations having neither individualnor fun
tional 
onstants.Two fun
tional equations are said to be parastrophi
ally equivalent [11℄ if one
an be obtained from the other in a �nite number of the following steps:1) appli
ation (1);2) 
hanging the sides of the equation;3) renaming of individual variables;4) renaming of fun
tional variables.In [12℄, it was stated that every generalized distributive-like quasigroup fun
-tional equation is parastrophi
ally equivalent to at least one of the equationsF1(x;F2(y; z)) = F3(F4(x; y);F5(x; z));(2) F1(y;F2(x; z)) = F3(F4(y;F5(x; z));x);(3) F1(F2(x; y); y) = F3(x;F4(F5(x; z); z));(4) F1(x;F2(x; z)) = F3(F4(F5(x; y); y); z);(5) F1(y;F2(x; z)) = F3(y;F4(x;F5(x; z))):(6)If an operation is denoted by fi and an element is denoted by e, then we agreeto denote the 
orresponding left and right translations by Li and Ri respe
tively,i.e.,(7) Lix := fi(e;x); Rix := fi(x; e); i = 1; 2; 3; : : :Operations f , g are 
alled orthogonal (f ? g) if the system(f(x; y) = a;g(x; y) = bhas a unique solution for all a; b 2 Q.Let g(x; y) := 
�1f(�x;�y) for some permutations �, �, 
 of Q; then g is
alled an isotope of f and is denoted by g := f(�; �; 
); the triplet (�; �; 
) is
alled isotopism between g and f ; the 
orresponding relation on the set of allbinary operations, de�ned on Q, is 
alled an isotopy .
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hukAny isotope of a parastroph of f is 
alled an isostroph of f . It is easy to verifythat an arbitrary isostroph is a parastroph of an isotope of f and any isostrophof an invertible operation is invertible as well.The well-known fun
tional equation of generalized asso
iativityF1(F2(x; y); z) = F3(x;F4(y; z))(8)was solved by V.D. Belousov in [3℄ but its proof was published in [2℄. Here weneed some spe
i�
ation of Belousov's solution and so, we are giving proof of the
orresponding theorem.Note that if (Q; �) is an arbitrary semigroup, �, �, 
 are arbitrary transfor-mations and Æ, � are permutations of Q, then it is easy to see that a quadruple(g1; g2; g3; g4) of fun
tions, de�ned byg1(t; z) = Æt � 
z; g2(x; y) = Æ�1(�x � �y);g3(x;u) = �x � �u; g4(y; z) = ��1(�y � 
z);(9)is a solution of (8). Here we 
onsider quasigroup solutions only.Theorem 1. Let (Q; �) be a group and �, �, 
, Æ, � be permutations on Q. Thena quadruple (g1; g2; g3; g4), de�ned by (9), is a quasigroup solution of (8) on Q.Vi
e versa, if a quadruple (g1; g2; g3; g4) of operations is a quasigroup solutionof (8), then for any element e 2 Q there exists a unique sequen
e (�;�;�; 
; Æ; �)of invertible operations, de�ned on Q, su
h that (Q; �) is a group with the neutralelement e, Æe = �e = e and the equalities (9) are true. In this 
ase, the operations(�), �, �, 
, Æ, � 
an be de�ned byÆx = g1(x; gr1(e; e)); �x = g3(x; e); �x = g3(g3̀(e; e);x)
x = g1(e;x); x � y = g1(Æ�1(x); 
�1(y)); �x = Æg2(g3̀(e; e);x):(10)Proof: Let a quadruple of operations (g1; g2; g3; g4) be de�ned by (9). All oper-ations are invertible, sin
e all of them are isotopi
 to (�).Vi
e versa, let (g1; g2; g3; g4) be a quasigroup solution of (8) on Q. This meansthat the equality(11) g1(g2(x; y); z) = g3(x; g4(y; z))is an identity on Q and ea
h of the operations g1, g2, g3, g4 is invertible. Let ebe an arbitrary element of Q. We de�ne (�) and �, �, 
, Æ, � by (10). Operations(�), �, �, 
, Æ, � are invertible, sin
e g1, g2, g3, g4 are invertible.Note that Æe = �e = e and the element e is neutral for the operation (�). Really,Æe (10)= g1(e; gr1(e; e)) (1)= e; �e (10)= g3(g3̀(e; e); e) (1)= e:
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tional equations 451Taking into 
onsideration (1), the equalities (10) imply 
�1x = gr1(e;x) andÆ�1(x) = g1̀(x; gr1(e; e)). That is whyx � e (10)= g1(g1̀(x; gr1(e; e)); gr1(e; e)) (1)= x:Sin
e Æe = e, we have Æ�1e = e ande � x = g1(Æ�1e; 
�1x) = g1(e; gr1(e;x)) (1)= x:Thus, (Q; �) is a loop and e is its neutral element.The equalities (10) imply the �rst identity of (9). We put the obtained expres-sion for g1 in (11): Æg2(x; y) � 
z = g3(x; g4(y; z)):(12)Combining x := g3̀(e; e), (10), (12), we get �y � 
z = �g4(y; z). Consequently, theforth equality of (9) is true. Substituting the obtained value for g4 in (12), wehave Æg2(x; y) � 
z = g3(x; ��1(�y � 
z)):(13)We put z = 
�1e: Æg2(x; y) = g3(x; ��1�y):(14)Integrating (14) in (13), we obtaing3(x; ��1�y) � 
z = g3(x; ��1(�y � 
z)):We repla
e 
z with z and we put y = ��1e: �x � z = g3(x; ��1z), i.e., the thirdequality of (9) is true. Putting the expression for g3 in (14), we get the se
ondequality of (9).Combining (9) and (11), we obtain asso
iativity of (�). So, the existen
e of (9)is established.To prove the uniqueness, we assume that an operation sequen
e (Æ;�1; �1; 
1; Æ1;�1) satis�es the 
onditions of the theorem, i.e., (Q; Æ) is a group, e is its neutralelement, Æ1e = �1e = e andg1(t; z) = Æ1t Æ 
1z; g2(x; y) = Æ�1(�1x Æ �1y);g3(x;u) = �1x Æ �1u; g4(y; z) = ��11 (�1y Æ 
1z):(15)Comparing (9) and (15) for g1, we obtain the identity:Æt � 
z = Æ1t Æ 
1z:If t = e, then 
 = 
1. Repla
ing z with 
�1e, we 
ome to Æ = Æ1. Thus,(�) = (Æ). Equating two expressions for g3 of (9) and (15), we get the identity
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huk�x � �u = �1x � �1u. If u = e, then � = �1. If x = ��1e, then � = �1. Equatingtwo expressions for g2, we obtain � = �1. �Re
all that the left multipli
ation �̀ and the right multipli
ation �r of binaryoperations are de�ned by(g �̀ h)(x; y) := g(h(x; y); y); (g �r h)(x; y) := g(x;h(x; y)):Lemma 2 ([4℄). Let g, h be invertible operations; then the following assertionsare true:g �̀ h is invertible , g ? h`; g �r h is invertible , g ? hr:Re
all that an invertible operation f , de�ned on Q, is 
alled topologi
al in atopologi
al spa
e (Q;T ) if f , f `, fr are 
ontinuous.Lemma 3. Let (Q;T ) be an arbitrary topologi
al spa
e, f be a topologi
al quasi-group operation in (Q;T ), g be de�ned on Q, and g have a neutral element. If f ,g are isotopi
 and at least one 
omponent of the isotopism is a homeomorphismof (Q;T ), then g is a topologi
al quasigroup in (Q;T ) and all 
omponents of theisotopism are homeomorphisms of (Q;T ).Proof: Let (�; �; 
) denote isotopism between operations f and g, i.e.,(16) f(x; y) = 
�1g(�x;�y)for all x; y 2 Q. So, g is invertible. Let a := ��1e and b := ��1e, where e denotesthe neutral element of g. Put x = a and y = b in (16):Lfa = 
�1� and Rfb = 
�1�:Sin
e f is a topologi
al quasigroup operation, all its translations and their inversesare homeomorphisms. So, the lemma follows from the above equalities. �2. Solution of distributive-like fun
tional equationsFun
tional equation (2) is well known as a generalized left distributivity quasi-group fun
tional equation. Its solutions set is unknown. Here the solution of(3){(6) and some 
orollaries are given. The other fun
tional equation whi
h isparastrophi
ally equivalent to (3), has been solved in [7℄.Theorem 4. Let (Q; �) be a group; g be a quasigroup and g`?(�); �, �, 
, Æ, �be permutations of Q; then the quintuple (f1; : : : ; f5) of operations, de�ned on aset Q by(17) f1(x; y) = �x � Æy; f2(x; z) = Æ�1�g(z; 
x) � 
x�;f3(x; y) = �x � 
y; f4(x; y) = ��1(�x � �y);f5(x; z) = ��1g(z; 
x);



Solution of distributive-like quasigroup fun
tional equations 453is a quasigroup solution of (3).Conversely, if a quintuple (f1; : : : ; f5) is a quasigroup solution of (3), then foran arbitrary element e 2 Q there exists a unique sequen
e (�; g; �; �; 
; Æ; �) ofquasigroup operations su
h that (Q; �) is a group with neutral element e, �e =�e = Æe = e, g`?(�), (17) is valid and(18) �x = f1(x; e); �x = f3(x; fr3 (e; e)); 
x = f3(e;x);Æy = f1(e; y) �x = f3(f4(e;x); fr3 (e; e));x � y = f3(��1x; 
�1y); g(z;x) = �f5(
�1x; z):Proof: Let (Q; �) be a group, �, �, 
, Æ, � be arbitrary permutations of Q, gbe an arbitrary binary quasigroup operation, g`?(�), and operations f1,. . . , f5 bede�ned by (17). Be
ause the operations f1, f3, f4, f5 are isostrophs of an invertibleoperation, ea
h of them is invertible. A

ording to Lemma 2, orthogonality g`?(�)and invertibility of g imply invertibility of f2. Now we prove the identity(19) f1(y; f2(x; z)) = f3(f4(y; f5(x; z));x):For this purpose we 
al
ulate its left and right parts:f1(y; f2(x; z)) = �y � Æf2(x; z) = �y � g(z; 
x) � 
x;f3(f4(y; f5(x; z));x) = �f4(y; f5(x; z)) � 
x == �y � �f5(x; z) � 
x = �y � g(z; 
x) � 
x:These right parts are identi
ally equal that is why the left parts are identi
allyequal too. This means that (f1; : : : ; f5) is a quasigroup solution of (3).Conversely, let (f1; : : : ; f5) be a quasigroup solution of (3). This means thatthe identity (19) is true.Let e be an arbitrary element of Q. Combining (7) and (19) with y = e, weobtain f2(x; z) = L�11 f3(L4f5(x; z);x). We put the expression in (19):f1(y;L�11 f3(L4f5(x; z);x)) = f3(f4(y; f5(x; z));x):The variable t := L4f5(x; z) together with z takes all values in Q, therefore,(20) f3(f4(y;L�14 t);x) = f1(y;L�11 f3(t;x)):for all x; y; t 2 Q. We introdu
e the following notation:(21) g1 := f3; g2(y; t) := f4(y;L�14 t); g3(y;u) := f1(y;L�11 u):(20) means that the quadruple (g1; g2; g3; g1) of operations is a solution of thegeneralized fun
tional equation of asso
iativity (8). Theorem 1 implies the equal-ities (9) and (10) with g4 = g1. (21) and (7) imply that e is a left neutral element
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hukfor both g2 and g3: g2(e;x) (21)= f4(e;L�14 x) (7)= L4L�14 x = x;g3(e;x) (21)= f1(e;L�11 x) (7)= L1L�11 x = x:Therefore, g3̀(e; e) = e and from (10) we have � = ", �e = e and � = Æ:�x = Æg2(g3̀(e; e);x) = Æg2(e;x) = Æx:Combining (21) and (9), we obtain:f1(x;L�11 u) (21)= g3(x;u) (9)= �x � u; f3(t; z) (21)= g1(t; z) (9)= �t � 
z;f4(x;L�14 y) (21)= g2(x; y) (9)= ��1(�x � �y):Denoting Æ := L1 and � := �L4, we get the equalities for f1, f3, f4 of (17) anddependen
e (18) for �, �, 
, Æ, (�), �. Now we return to (19):�y � Æf2(x; z) = �y � �f5(x; z) � 
x:We redu
e the equality by �y and get Æf2(x; z) = �f5(x; z) � 
x. De�neg(z;x) := �f5(
�1x; z):Therefore, Æf2(
�1x; z) = g(z;x) � x. Sin
e the operation f2 is invertible, byLemma 2, this equality implies orthogonality g`?(�). Thus, we obtain the expres-sions (17) for f2 and f5. The proof of uniqueness is the same as in Theorem 1. �Corollary 5. Let (Q;T ) be an arbitrary topologi
al spa
e and a quintuple(f1; : : : ; f5) of operations be de�ned on a set Q by (17), where (Q; �) is a topo-logi
al group, (Q; g) is a topologi
al quasigroup, g`?(�), �, �, 
, Æ, � are home-omorphisms of (Q;T ). Then (f1; : : : ; f5) is a topologi
al quasigroup solution ofthe fun
tional equation (3).Conversely, if a quintuple (f1; : : : ; f5) of topologi
al quasigroup operations is asolution of (3), then for an arbitrary element e 2 Q there exists a single sequen
e(�; g;�;�; 
; Æ;�) of operations su
h that (Q; �) is a topologi
al group and e is itsneutral element, g is a topologi
al quasigroup operation and g`?(�), �, �, 
, Æ, �are homeomorphisms, �e = �e = Æe = e and (17) are ful�lled. In this 
ase thesequen
e (�; g;�;�; 
; Æ;�) is de�ned by (18).Proof: Let operations f1; : : : ; f5 be de�ned by (17); then they are topologi
al,sin
e ea
h of them is a 
omposition of topologi
al operations. A

ording to The-orem 4, the quintuple (f1; : : : ; f5) of operations is a quasigroup solution of thefun
tional equation (3).Conversely, let f1; : : : ; f5 be topologi
al quasigroup operations in the topolog-i
al spa
e (Q;T ) and a quintuple (f1; : : : ; f5) be a solution of (3). Theorem 4
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tional equations 455implies (17) and (18). The equalities (18) imply that the operations �, �, 
, Æ,�, (�), g are topologi
al in (Q;T ). �Corollary 6. Let R be the topologi
al spa
e of the real number with the naturaltopology and binary operations f1; : : : ; f5 be de�ned on R. Then a quintuple(f1; : : : ; f5) is a topologi
al quasigroup solution of the fun
tional equation (3)if and only if there exist homeomorphisms �, �, 
, �, Æ, ' of the spa
e anda quasigroup topologi
al operation g su
h that g` is orthogonal to the additiveoperation (+) of the �eld R and(22) f1(x; y) = '(�x + Æy); f2(x; z) = Æ�1(g(z; 
x) + 
x);f3(x; y) = '(�y + 
x); f4(x; y) = ��1(�x+ �y);f5(x; y) = ��1g(y; 
x):Proof: Let (f1; : : : ; f5) be arbitrary topologi
al quasigroup solution of (3) on R.A

ording to Corollary 5, there exists a topologi
al group (R; �), topologi
al quasi-group (R; g) and homeomorphisms �, �, 
, Æ, � of R su
h that the equalities (17)are valid. It is well known [6℄ that the topologi
al groups (R; �) and (R; +) aretopologi
ally isomorphi
, i.e., there exists a homeomorphism ' of R su
h that(23) x � y = '('�1(x) + '�1(y));where (+) denotes addition of the real numbers. Using this relationship, theequalities (17) 
an be written as follows:(24) f1(x; y) = '('�1�x+ '�1Æy);f2(x; z) = Æ�1'('�1g(z; 
x) + '�1
x);f3(x; y) = '('�1�y + '�1
x);f4(x; y) = ��1'('�1�x + '�1�y):Now we make another notation:�0 := '�1�; �0 := '�1�; 
0 := '�1
;�0 := '�1�; Æ0 := '�1Æ; g0(x; y) := '�1g(x;'y)(25)and we obtain the following expressions for f1, f3 and f4:f1(x; y) = '(�0x+ Æ0y); f3(x; y) = '(�0y + 
0x);f4(x; y) = ��10 (�0x+ �0y):
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hukFor f2 and f5 we have:f2(x; z) (24)= Æ�1'('�1g(z; 
x) + '�1
x) == Æ�1'('�1g(z;'('�1
x)) + '�1
x) (25)= Æ�10 (g0(z; 
0x) + 
0x);f5(x; y) (17)= ��1g(y; 
x) = ��1'('�1g(y;'('�1
x))) (25)=(25)= ��10 '�1g(y;'
0x) (25)= ��10 g0(y; 
0x):Sin
e f2(x; z) = Æ�10 (g0(z; 
0x) + 
0x), it follows thatÆ0f2(z; 
�10 x) = g0(z;x) + x = �(+) �̀ g0� (x; y):By Lemma 2, (+) ? g0̀.The inverse statement immediately follows from Corollary 5. �Corollary 7. Let a set Q have a prime order p and binary operations f1; : : : ; f5be de�ned on Q. Then (f1; : : : ; f5) is a quasigroup solution of the fun
tionalequation (3) if and only if there exist bije
tions �, �, 
, �, Æ, ' between Q andZp,1 a quasigroup operation g su
h that (+) ? g`, and the equalities (22) aretrue.Proof: It is well known that all groups of the same prime order are pairwiseisomorphi
. In other words, there exists a bije
tion ' between Q and the set Zpof residues modulo p su
h that the groups (Q; �) and (Zp; +) are isomorphi
, i.e.,the equality (23) is true. Combining (23), (25) and Theorem 4, we obtain the
orollary. �Theorem 8. Let f1; : : : ; f5 be binary operations, de�ned on a set Q. Then(f1; : : : ; f5) is a quasigroup solution of the fun
tional equation (4) if and only iff1, f3 and f4 are quasigroup operations and there exist permutations � and � ofQ su
h that the identities(26) f3(x; �x) = �x; f2(x; y) = f1̀(�x; y); f5(x; y) = f4̀(�x; y)hold.Proof: Let a quintuple (f1; : : : ; f5) of quasigroup operations be a solution of (4).This means that(27) f1(f2(x; y); y) = f3(x; f4(f5(x; z); z))is an identity on Q. Let e be an element of Q. We de�ne � and � by � := R1R2,� := R4R5.21Zp denotes the �eld of residues modulo p and (+) is the additive operation of the �eld.2Notation is given in (7).



Solution of distributive-like quasigroup fun
tional equations 457If y = z = e, then (27) implies the �rst identity of (26). It implies thatfr3 (x;�x) = �x. Put z = e in (27) and obtain f1(f2(x; y); y) = f3(x; �x) =�x. So, the se
ond identity of (26) is true. Putting y = e in (27), we havef3(x; f4(f5(x; z); z)) = �x. Applying the de�nition of right division for f3, we getf4(f5(x; z); z) = fr3 (x;�x) = �x. Using the de�nition of left division for f4, weobtain the third identity of (26).Vi
e versa, let the relationships (26) be true and the operations f1, f3, f4 beinvertible. Then f2 and f5 are invertible, sin
e ea
h of them is an isostroph of aninvertible operation. Moreover, we havef1(f2(x; y); y) = f1(f1̀(�x; y); y) = �x = f3(x; �x) == f3(x; f4(f4̀(�x; z); z)) = f3(x; f4(f5(x; z); z));i.e., (27) is an identity. Thus, the quintuple (f1; : : : ; f5) of operations is a quasi-group solution of the fun
tional equation (4). �Proposition 1. For any solution (f1; : : : ; f5) there exists only one pair (�; �) ofpermutations of Q su
h that the equalities (26) are valid.Really, let (�1; �2) and (�; �) be pairs of permutations of Q satisfying (26).Therefore, f2(x; y) = f1̀(�1x; y); f5(x; y) = f4̀(�1x; y);f2(x; y) = f1̀(�2x; y); f5(x; y) = f4̀(�2x; y):So, f1̀(�1x; y) = f1̀(�2x; y) and f4̀(�1x; y) = f4̀(�2x; y), therefore, �1 = �2,�1 = �2.Theorem 9. Let Q be a set and f1; : : : ; f5 be binary operations, de�ned on Q.Then (f1; : : : ; f5) is a quasigroup solution of the fun
tional equation (5) if and onlyif f1, f2 and f4 are quasigroup operations, f1 ? fr2 and there exists a permutation� of Q su
h that the identities(28) f3(x; z) = f1(��1x; f2(��1x; z)); f5(x; y) = f4̀(�x; y)hold.Proof: Let a quintuple (f1; : : : ; f5) satisfy the 
onditions of the theorem. Theoperation f5 is invertible, sin
e it is an isostroph of the invertible operation f4.By Lemma 2, the invertibility of f3 follows from f1 ? fr2 . Using the de�nition ofthe left division for f6, the relation (28) implies(29) f1(x; f2(x; z)) = f3(�x; z); f4(f5(x; y); y) = �x:This means that the identity(30) f1(x; f2(x; z)) = f3(f4(f5(x; y); y); z)holds. Consequently, (f1; : : : ; f5) is a quasigroup solution of the fun
tional equa-tion (5).
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hukVi
e versa, let a quintuple (f1; : : : ; f5) of quasigroup operations be a solutionof (5), therefore, the identity (30) is valid. Let e be an element of Q and � :=R4R5. Substituting y = e in (30), we obtain the �rst equality of (29). Combiningthe obtained identity and (30), we get the se
ond equality of (29). From theseidentities, we obtain (28). A

ording to Lemma 2, the �rst equality of (29) andinvertibility of f1, f2, f3 follow f1 ? fr2 . �Proposition 2. For any solution (f1; : : : ; f5) of (5) there exists exa
tly one per-mutation � su
h that (28) hold.Really, let �; �1 be permutations of Q satisfying (28). Therefore,f5(x; y) = f4̀(�x; y); f5(x; y) = f4̀(�1x; y):Comparing the identities, we obtain �1 = �.Theorem 10. Let Q be a set and f1; : : : ; f5 be binary operations, de�ned on Q.Then (f1; : : : ; f5) is a quasigroup solution of the fun
tional equation (6) if andonly if the operations f2, f3 and f5 are quasigroups, f2 ? f5 and there exists apermutation � of Q su
h that the identities(31) f1(x; y) = f3(x;�y); f4(x; y) = �f2(x; fr5 (x; y))hold.Proof: Let a quintuple (f1; : : : ; f5) of operations satisfy 
onditions of the theo-rem. The operation f1 is invertible, sin
e it is an isotope of an invertible operation.A

ording to Lemma 2, f2 ? f5 implies invertibility of f4. Let us prove that theequality(32) f1(y; f2(x; z)) = f3(y; f4(x; f5(x; z)))is an identity. For this purpose we 
al
ulate its left and right sides:f1(y; f2(x; z)) = f3(y;�f2(x; z));f3(y; f4(x; f5(x; z))) = f3(y;�f2(x; fr5 (x; f5(x; z)))) = f3(y;�f2(x; z)):We obtain the same expression, so (32) is true. This means that (f1; : : : ; f5) is aquasigroup solution of (6).Vi
e versa, let a quintuple (f1; : : : ; f5) of quasigroup operations be a solutionof (6), i.e., the identity (32) is true, and let e 2 Q. Combining (32), y = e and� := L�13 L1, we get(33) f4(x; f5(x; z)) = �f2(x; z):Using the equality, we make repla
ement in the right side of (32):f1(y; f2(x; z)) = f3(y;�f2(x; z)):



Solution of distributive-like quasigroup fun
tional equations 459Repla
ing f2(x; z) with t, we obtain the �rst identity of (31). De�ning the oper-ation f4 from the equality (33), we get the se
ond identity of (31). A

ording toLemma 2, invertibility of ��1f4 implies f2 ? f5. �Proposition 3. For any solution (f1; : : : ; f5) of the fun
tional equation (6) thereexists exa
tly one permutation � su
h that the equalities (31) are valid.Referen
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