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Solution of distributive-like

quasigroup functional equations

FEDIR M. SOKHATSKY, HALYNA V. KRAINICHUK

Abstract. We are investigating quasigroup functional equation classification up
to parastrophic equivalence [Sokhatsky F.M., On classification of functional
equations on quasigroups, Ukrainian Math. J. 56 (2004), no. 4, 1259-1266 (in
Ukrainian)]. If functional equations are parastrophically equivalent, then their
functional variables can be renamed in such a way that the obtained equations are
equivalent, i.e., their solution sets are equal. There exist five classes of generalized
distributive-like quasigroup functional equations up to parastrophic equivalence
[Sokhatsky F.M., On classification of distributive-like functional equations, Book
of Abstracts of the 8t" International Algebraic Conference in Ukraine, July 512
(2011), Lugansk, Ukraine, p. 79].

In the article, we find the solution sets of four generalized distributive-like
quasigroup functional equations of different classes. In consequence, we solve
one of the equations on topological quasigroup operations, defined on arbitrary
topological space as well as on the space of real numbers with the natural topo-
logy.

The fifth class contains the generalized left distributivity functional equation.
V.D. Belousov [Some remarks on the functional equation of generalized distribu-
tivity, Aequationes Math. 1 (1968), no. 1-2, 54-65] described only a subset of
its solution set. The set of all solutions still remains an open problem in the
quasigroup theory and in the functional equation theory.

Keywords: quasigroup, functional equation, distributive quasigroup, distributive-
like functional equation, quasigroup solution, solution set, quasigroup identity,
parastrophic equivalence

Classification: 20N05, 05B15

Introduction

We continue investigation of the problem of quasigroup functional equations
classification up to parastrophic equivalence [11]. This problem was considered in
many articles, in particular, in [7], [9], [10].

In [12] it was stated that every generalized distributive-like quasigroup func-
tional equation is parastrophically equivalent to at least one of the equations
(2)-(6). The notion ‘distributive-like’ means that the equation has three different
individual variables and the number of their appearances is equal to 2, 2, 3. To
classify generalized distributive-like quasigroup functional equations up to para-
strophic equivalence, we have to find their solution sets.
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In this paper, we solve the equations (3)—(6). Earlier the results were stated
in [8]. As a consequence, one can get a set of all solutions of (3)—(6) over arbitrary
set of functions which are closed under composition. To give an example, we solve
the equation (3) over the set of all topological quasigroup functions, defined on
a topological space (Corollary 5). In particular, we solve (3) when the space
coincides with the topological space of real numbers with the natural topology
(Corollary 6).

The set of all solutions of the quasigroup functional equation (2) is still unsolved
and it is a well-known problem in the quasigroup theory and in the functional
equation theory. V.D.Belousov [5] described its partial solution.

1. Preliminaries

An operation f, defined on a carrier set @, is said to be left-invertible (right-
invertible) if every of its right (left) translation is a permutation of ). In other
words, the equation f(x;a) = b (respectively, f(a;y) = b) has a unique solution
for all a, b € Q and it is denoted by f(b;a) (respectively, by f"(a;b)). It is easy
to see that f¢ and f” are binary operations on @ which are called left and right
divisions of f. A quasigroup operation f, its divisions, divisions of the divisions,
... are called parastrophs of f. It is easy to verify that every quasigroup operation
has at most six different parastrophs. Left- and right-invertible operation is called
invertible or quasigroup operation. A groupoid (Q; f) is called a quasigroup if f
is invertible.

So, the equalities

F(FYz;y).y) ==, FY{(F(z;y),y) =z,

M F(x; F'(x5y) =y, F'(z;F(x39) =y

are superidentities on A, i.e., they hold for all 2,y € @) and for all values of F' in
the set A of all invertible functions, defined on Q.

Let W,V be terms and [IW] denote the set of all individual variables appearing
in W. Let

{z1,... 2y} = [W]U[V];
then the formula
(Vz1)...(Vz,) W=V

is called a functional equation. As usual, the universal quantifiers are omitted.
A sequence of operations, defined on a set @, is called a solution on @ of a
functional equation if the sequence reduces the equation to an identity [1]. If all
components of a solution are invertible, then it is called a quasigroup solution. The
set of all solutions on @ will be called solution set of the equation. A functional
equation is called:

e a generalized functional equation if all its functional variables are pairwise
different;
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e a binary functional equation if all functional variables are binary, i.e., they
are assumed to take their values in a set of binary operations;

e a quasigroup functional equation if its functional variables are assumed to
take their values in a set of quasigroup operations (i.e., invertible func-
tions);

o a distributive-like functional equation if it is binary and has three individ-
ual variables with appearances 2, 2, 3.

Here we consider binary quasigroup functional equations having neither individual
nor functional constants.

Two functional equations are said to be parastrophically equivalent [11] if one
can be obtained from the other in a finite number of the following steps:

1) application (1);
changing the sides of the equation;

2)
3) renaming of individual variables;
4) renaming of functional variables.

In [12], it was stated that every generalized distributive-like quasigroup func-
tional equation is parastrophically equivalent to at least one of the equations

2

FlmFQ( ) F3
y; Fa(z; 2)

(2) ( ) Fy(;y); Fs (2;2)),
(3) ( )
(4) Fy(Fy(2:9);)
(5) ( )
(6) (v; )

(

(Fu(y; F5(x; 2)); @),
Fy(w; Fy(F5(x; 2); 2)),

(

(

3 Fy F3

5

(2;
Fi(z; Fy(z; 2)) = F3(Fa(F5(z;9);y); 2),
6 )

Fy(y; Fy(z; 2

F5(y; Fy(z; F5(x; 2))).

If an operation is denoted by f; and an element is denoted by e, then we agree
to denote the corresponding left and right translations by L; and R; respectively,
ie.,

(7) Lix := fl(e,x), Rz := fz(xae), 1=1,23,...

Operations f, g are called orthogonal (f L g) if the system

f(z;y) = a,
g(z;y) =0

has a unique solution for all a,b € Q.

Let g(z;y) := v ! f(az; By) for some permutations «, (3, v of Q; then g is
called an isotope of f and is denoted by g := f(a,8,7); the triplet (a,5,7) is
called isotopism between g and f; the corresponding relation on the set of all
binary operations, defined on @, is called an isotopy.
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Any isotope of a parastroph of f is called an isostroph of f. It is easy to verify
that an arbitrary isostroph is a parastroph of an isotope of f and any isostroph
of an invertible operation is invertible as well.

The well-known functional equation of generalized associativity

(8) Fi(Fy(z;y); 2) = F3(z; Fu(y; 2))

was solved by V.D. Belousov in [3] but its proof was published in [2]. Here we
need some specification of Belousov’s solution and so, we are giving proof of the
corresponding theorem.

Note that if (Q;-) is an arbitrary semigroup, a, 8, v are arbitrary transfor-
mations and §, v are permutations of ), then it is easy to see that a quadruple
(g91;92; 93; g4) of functions, defined by

gi(t;2) =0t vz,  ga(z3y) =07 Yax - By),
g3(w;u) = ax - vu, 9a(y;2) = v~ (By - v2),

9)

is a solution of (8). Here we consider quasigroup solutions only.

Theorem 1. Let (Q);-) be a group and «a, 3, v, 8, v be permutations on ). Then
a quadruple (g1; g2; g3; 94), defined by (9), is a quasigroup solution of (8) on Q.

Vice versa, if a quadruple (g1;g2; g3; g4) of operations is a quasigroup solution
of (8), then for any element e € () there exists a unique sequence (-; a; 3;; 6; V)
of invertible operations, defined on @), such that (Q;-) is a group with the neutral
element e, e = ve = e and the equalities (9) are true. In this case, the operations
(), a, B, v, 6, v can be defined by

(10) oz = gi1(z; g7 (e;€)), aw = ga(x;€), ve = gs(gi(e; €); o)
o =gi(e;x), x-y =g (07 (2);7v" (y)), Br = dga(gh(e;e); m).

ProOF: Let a quadruple of operations (g1; g2; g3; g4) be defined by (9). All oper-
ations are invertible, since all of them are isotopic to (-).

Vice versa, let (g1; g2; g3; g4) be a quasigroup solution of (8) on Q. This means
that the equality

(11) 91(92(7;9); 2) = g3(z; 94(y; 2))

is an identity on () and each of the operations g1, g2, g3, g4 is invertible. Let e
be an arbitrary element of ). We define (-) and «, 8, 7, §, v by (10). Operations
(), a, B, v, ¢, v are invertible, since g1, g2, g3, g4 are invertible.

Note that de = ve = e and the element e is neutral for the operation (-). Really,

10 1 10 1
se 2 gi(e; gi(ese)) e, ve & g3(g5(e;e)se) De.



Solution of distributive-like quasigroup functional equations 451

Taking into consideration (1), the equalities (10) imply v 'z = gj(e;z) and

7 H(z) = gf(x; g7 (e;€)). That is why

10 r r 1
v-e D gi(gl(mgl(ese)) gl (ese)) L a.

—

Since de = e, we have §~'e = e and

) = gi(e;gl(e;z) Lo

N

e-x=g (0" esy!
Thus, (Q;-) is a loop and e is its neutral element.

The equalities (10) imply the first identity of (9). We put the obtained expres-
sion for gy in (11):

(12) 6ga(z;y) - vz = ga(2; 94(y; 2)).

Combining z := g&(e;e), (10), (12), we get By - vz = vga(y; 2). Consequently, the
forth equality of (9) is true. Substituting the obtained value for g4 in (12), we
have

(13) 5ga(25y) - vz = ga(a; v~ (By - 2)).

We put z =y e:

(14) 8g2(z;y) = gs(z;v™" By).

Integrating (14) in (13), we obtain

gs(z; v By) - vz = ga(z; v " (By - 72)).

We replace vz with z and we put y = B~ te: az -z = gz(z;v12), i.e., the third

v

equality of (9) is true. Putting the expression for g; in (14), we get the second
equality of (9).

Combining (9) and (11), we obtain associativity of (). So, the existence of (9)
is established.

To prove the uniqueness, we assume that an operation sequence (o; a1, 81,71, 01,
v1) satisfies the conditions of the theorem, i.e., (Q);0) is a group, e is its neutral
element, d1e = v1e = e and

g1(t;2) = dit oy 2, g2(z5y) =0 Hawz 0 fry),

(15) 1
gs(miu) =arwoviu,  ga(y;z) = vy (Bryomz).
Comparing (9) and (15) for g1, we obtain the identity:

0t - vz = b1t oy 2.

If t = e, then v = ;. Replacing z with v~ 'e, we come to 6 = ;. Thus,
(1) = (o). Equating two expressions for g3 of (9) and (15), we get the identity
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ar -vu = a;z-vu. If u=e, then a = a;. If z = a 'e, then v = v;. Equating
two expressions for g, we obtain 8 = /. O

Recall that the left multiplication @ and the right multiplication & of binary
l r

operations are defined by

(g 9 h)(z;y) := g(h(z;9);y), (9 @ h)(z;y) = g(z; h(z;y)).

r

Lemma 2 ([4]). Let g, h be invertible operations; then the following assertions
are true:

g @ h is invertible < g L h, g @ h is invertible & g 1L h".
£ r

Recall that an invertible operation f, defined on @), is called topological in a
topological space (Q;T) if f, f¢, f" are continuous.

Lemma 3. Let (Q;T) be an arbitrary topological space, f be a topological quasi-
group operation in (Q;T), g be defined on (), and g have a neutral element. If f,
g are isotopic and at least one component of the isotopism is a homeomorphism
of (Q;T), then g is a topological quasigroup in (Q;T) and all components of the
isotopism are homeomorphisms of (Q;T).

ProOOF: Let (a, 3,7) denote isotopism between operations f and g, i.e.,

(16) flasy) = v glaw; By)

for all z,y € Q. So, g is invertible. Let @ := o~ 'e and b := 3~ 'e, where e denotes
the neutral element of g. Put z = a and y = b in (16):

Lf =+ and Rg =~"'a.
Since f is a topological quasigroup operation, all its translations and their inverses
are homeomorphisms. So, the lemma follows from the above equalities. O
2. Solution of distributive-like functional equations

Functional equation (2) is well known as a generalized left distributivity quasi-
group functional equation. Its solutions set is unknown. Here the solution of
(3)-(6) and some corollaries are given. The other functional equation which is
parastrophically equivalent to (3), has been solved in [7].

Theorem 4. Let (Q;-) be a group; g be a quasigroup and g*L(-); a, 8, 7, 6, p
be permutations of Q; then the quintuple (f1,..., f5) of operations, defined on a

set () by
filzy) =ax-0y;  folw;z) = 0671 (g(z572) - y);
(17) fs(@iy) =Bz -vy;  falzy) = B oz - py);
fs(x;2) = ptg(z;72),
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is a quasigroup solution of (3).
Conversely, if a quintuple (f1,..., f5) is a quasigroup solution of (3), then for

3 )

an arbitrary element e € ) there exists a unique sequence (-, g,a,(3,v,0,u) of
quasigroup operations such that (Q;-) is a group with neutral element e, ae =
Be = de =e, g' L(-), (17) is valid and

az = fi(zie), Br=fi(z;filee), vz = file),
(18) oy = fi(esy) nx = f3(file;z); fi(ese)),

v-y=f3(B7 ;v y), g(zim) = pfs(v s 2).

Proor: Let (Q;-) be a group, a, 83, v, §, u be arbitrary permutations of @, g
be an arbitrary binary quasigroup operation, g¢ 1 (-), and operations f,..., f5 be
defined by (17). Because the operations f1, f3, f1, f5 are isostrophs of an invertible
operation, each of them is invertible. According to Lemma 2, orthogonality g¢ L (-)
and invertibility of g imply invertibility of f,. Now we prove the identity

(19) fi(y; fo(252)) = f3(fa(y; f5(252)); ).

For this purpose we calculate its left and right parts:

fi(y; fo(252)) = ay - 6 fa(w; 2) = ay - g(z;vz) - v,

fs(faly; f5 (x5 2));2) = Bfaly: f5(252)) - ye =
=ay - pfs(z;2) vz =ay - g(z;yz) -y
These right parts are identically equal that is why the left parts are identically
equal too. This means that (fi,..., f5) is a quasigroup solution of (3).
Conversely, let (fi,..., fs) be a quasigroup solution of (3). This means that
the identity (19) is true.

Let e be an arbitrary element of (). Combining (7) and (19) with y = e, we
obtain fao(x;2) = Ly f3(Lafs(z;2); ). We put the expression in (19):

Si(y; Ly fa(La fs (s 2); @) = fs(faly: fs (@ 2))s @).

The variable t := Ly f5(x; z) together with z takes all values in @, therefore,

(20) fa(fa(y: LT )i @) = fu(y; LT fa(ts ).

for all z,y,t € Q. We introduce the following notation:

1)  gi:=fs,  gt) = faly; L', gs(ysu) == fily; L ')

(20) means that the quadruple (g1;¢g2;93;¢91) of operations is a solution of the
generalized functional equation of associativity (8). Theorem 1 implies the equal-
ities (9) and (10) with g4 = g;. (21) and (7) imply that e is a left neutral element
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for both g» and gs:
21 _ 7 _
g2(e; ) (21) fale; Lyta) @ Lyl 'z =,

g3(e; ) (21) fi (e;Ll_la:) ) L1L1_1:U =z.

Therefore, g&(e;e) = e and from (10) we have v = &, ae = e and 3 = §:

Bx = 6g2(g§(e; e);x) = dga(e;x) = ox.
Combining (21) and (9), we obtain:

fi(z; Lflu) @ g3(z;u) © azx - u, f3(t; 2) @ g1(t; 2) © Bt vz,

-1,y (21) 9 -
fiz; L'y) = ga(wsy) = B~ (az - By).
Denoting ¢ := L; and p := L4, we get the equalities for fi, f3, f1 of (17) and
dependence (18) for «, 3, v, 4, (-), u. Now we return to (19):

ay - 0fa(z;2) = ay - ufs(z; ) - ya.
We reduce the equality by ay and get 0 fo(x; 2) = pfs(x; z) - yx. Define

g(ziz) == pfs(y 'w;2).

Therefore, §fo(y~'x;2) = g(z;2) - 2. Since the operation fo is invertible, by

Lemma 2, this equality implies orthogonality g¢L(-). Thus, we obtain the expres-
sions (17) for f, and f5. The proof of uniqueness is the same as in Theorem 1. O

Corollary 5. Let (Q;T) be an arbitrary topological space and a quintuple
(f1;...; f5) of operations be defined on a set ) by (17), where (Q;-) is a topo-
logical group, (Q;g) is a topological quasigroup, g*1(-), a, 8, 7, 6, u are home-
omorphisms of (Q);T). Then (fi;...;f5) is a topological quasigroup solution of
the functional equation (3).

Conversely, if a quintuple (f1;...; f5) of topological quasigroup operations is a
solution of (3), then for an arbitrary element e € () there exists a single sequence
(s g; a; B;7v; §; u) of operations such that (Q;-) is a topological group and e is its
neutral element, g is a topological quasigroup operation and g*1(-), a, 3, 7, 8, p
are homeomorphisms, ae = fSe = de = e and (17) are fulfilled. In this case the
sequence (-; g; «; B;7; 0; ) is defined by (18).

ProOF: Let operations fi,..., f5 be defined by (17); then they are topological,
since each of them is a composition of topological operations. According to The-

orem 4, the quintuple (fi,..., f5) of operations is a quasigroup solution of the
functional equation (3).
Conversely, let fi,..., f5 be topological quasigroup operations in the topolog-

ical space (@;T) and a quintuple (fi;...;f5) be a solution of (3). Theorem 4
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implies (17) and (18). The equalities (18) imply that the operations «, 3, 7, 0,
i, (+), g are topological in (@Q;T). O

Corollary 6. Let R be the topological space of the real number with the natural
topology and binary operations fi,..., f5 be defined on R. Then a quintuple

3 3

(f1;...;f5) Is a topological quasigroup solution of the functional equation (3)
if and only if there exist homeomorphisms «, (3, v, u, §, @ of the space and
a quasigroup topological operation g such that g° is orthogonal to the additive
operation (+) of the field R and

filzyy) = oloax +6y),  folw;2) =67 (g(z; ) + vx),
(22) fs(ziy) = 0By +yx),  falzyy) = 67" (ax + py),
fs(z;y) = ptg(y;ve).

Proor: Let (fi,..., fs) be arbitrary topological quasigroup solution of (3) on R.
According to Corollary 5, there exists a topological group (R; ), topological quasi-
group (R; g) and homeomorphisms «, 3, v, §, u of R such that the equalities (17)
are valid. It is well known [6] that the topological groups (R;:) and (R;+) are
topologically isomorphic, i.e., there exists a homeomorphism ¢ of R such that

(23) -y =ple (@) +¢ '),

where (+) denotes addition of the real numbers. Using this relationship, the
equalities (17) can be written as follows:

Lax + ¢~ 1dy),

fi(zy) = p(p~
fola;z) = 07 oo™ g(z; ) + ¢~ 1a),
fa(z;y) = (o' By + ¢ ),

fa(zsy) = 67 p(o™ aw + ™ py).
Now we make another notation:

a0 =y ta, Bo=¢ B8, v i=¢ ly,

(25) —1 —1 —1
po = ', b0 =@ 6, golwsy) == tg(Tey)
and we obtain the following expressions for fi, fs and f4:

fi(z;y) = plaoz + doy),  fa(w;y) = w(Boy + Y0),
fa(z;y) = By Haor + poy).

455
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For f; and f5 we have:

24
Folw;2) B 61 (0~ g(2 y2) + o~ ya) =

25 _
= 5 (e~ g (2 (0~ ) + o~ lya) E 85 " (90(2;70T) + Y0z),

Fs(asy) 2 u g (yive) = p el glys ol ya)) F

(25) 1 _ (25) _
= 1y e gy er0r) = 15 90 (y; o).

Since fo(z;2) = 65 " (g0(2;702) + Vo), it follows that
dofa(eii'2) = mlzia) + 7= ()9 (i)

By Lemma 2, (+) L g{.
The inverse statement immediately follows from Corollary 5. O

Corollary 7. Let a set () have a prime order p and binary operations fi,..., f5
be defined on Q. Then (f1;...;fs) is a quasigroup solution of the functional
equation (3) if and only if there exist bijections «, 3, v, u, d, ¢ between @) and
Z,,! a quasigroup operation g such that (+) L g¢°, and the equalities (22) are
true.

PRrOOF: It is well known that all groups of the same prime order are pairwise
isomorphic. In other words, there exists a bijection ¢ between () and the set Z,
of residues modulo p such that the groups (Q;-) and (Z,; +) are isomorphic, i.e.,
the equality (23) is true. Combining (23), (25) and Theorem 4, we obtain the
corollary. O

Theorem 8. Let fi,...,fs be binary operations, defined on a set (). Then
(f1;...; f5) Is a quasigroup solution of the functional equation (4) if and only if
f1, f3 and f4 are quasigroup operations and there exist permutations « and 6 of
() such that the identities

(26)  fa(z;0z) =az,  folzsy) = fllazsy),  fs(ziy) = fi(0zy)
hold.

PRrROOF: Let a quintuple (f1;...; f5) of quasigroup operations be a solution of (4).
This means that
(27) filfa(@;y)iy) = fa(z; fa(fs(w:2); 2))

is an identity on (). Let e be an element of (). We define a and 6 by a := R Rs,
0 := R4R5.2

1Z, denotes the field of residues modulo p and (+) is the additive operation of the field.
>Notation is given in (7).
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If y = 2 = e, then (27) implies the first identity of (26). It implies that
fi(z;ax) = fx. Put z = e in (27) and obtain fi(f2(z;y);y) = fs(z;60z) =
ax. So, the second identity of (26) is true. Putting y = e in (27), we have
f3(x; fa(fs5(x;2); 2)) = aw. Applying the definition of right division for f3, we get
fa(fs(x; 2);2) = fi(x;ax) = 6z. Using the definition of left division for fs, we
obtain the third identity of (26).

Vice versa, let the relationships (26) be true and the operations fi, fs, f4 be
invertible. Then f5 and f5 are invertible, since each of them is an isostroph of an
invertible operation. Moreover, we have

flfa(zy)iy) = fi(ff(az;y)iy) = ax = fa(a;02) =
= falw; fa(fi(0x;2); 2)) = fa(xs fa(fs(2:2); 2)),
i.e., (27) is an identity. Thus, the quintuple (fi;...; f5) of operations is a quasi-
group solution of the functional equation (4). O

Proposition 1. For any solution (f1;...; fs) there exists only one pair («;6) of
permutations of () such that the equalities (26) are valid.

Really, let (a1;62) and («;6) be pairs of permutations of @ satisfying (26).
Therefore,
folaiy) = fllaum;y),  fs(@y) = fi(6ra5y),
fola;y) = flaam;y),  fs(w;y) = fi(Bam5y).
So, fl(auz;y) = fl(asz;y) and fL(612;9) = fi(Baz;y), therefore, a; = as,
61 = 0s.
Theorem 9. Let () be a set and fi,..., f5 be binary operations, defined on ().
Then (f1;...; f5) is a quasigroup solution of the functional equation (5) if and only

if f1, f2 and f4 are quasigroup operations, fi L fi and there exists a permutation
a of () such that the identities

(28) falw;z) = fila o fala e 2));  f(zsy) = filamsy)
hold.

ProoOF: Let a quintuple (f1;...; f5) satisfy the conditions of the theorem. The
operation fs is invertible, since it is an isostroph of the invertible operation f;.
By Lemma 2, the invertibility of f; follows from f; L fj. Using the definition of
the left division for fg, the relation (28) implies

(29) fi(; fa(x;2)) = falax;z),  fa(fs(z1y)iy) = az.

This means that the identity

(30) fi(@; f2(w;2)) = f3(fa(fs(z:9)59); 2)

holds. Consequently, (f1,..., f5) is a quasigroup solution of the functional equa-

tion (5).
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Vice versa, let a quintuple (f1;...; f5) of quasigroup operations be a solution
of (5), therefore, the identity (30) is valid. Let e be an element of @ and a :=
R4 R5. Substituting y = e in (30), we obtain the first equality of (29). Combining
the obtained identity and (30), we get the second equality of (29). From these
identities, we obtain (28). According to Lemma 2, the first equality of (29) and
invertibility of f1, fa, f5 follow fi L fJ. O

Proposition 2. For any solution (fi;...; f5) of (5) there exists exactly one per-
mutation « such that (28) hold.

Really, let a, a; be permutations of @) satisfying (28). Therefore,

fs(miy) = filawsy),  fs(ziy) = filaam;y).
Comparing the identities, we obtain a; = a.

Theorem 10. Let () be a set and fi,..., fs be binary operations, defined on Q).
Then (f1;...;fs) is a quasigroup solution of the functional equation (6) if and
only if the operations fo, f3 and fs; are quasigroups, fo L f5 and there exists a
permutation a of @) such that the identities

(31) filziy) = fs(may),  falziy) = afa(z; f5(z;y)
hold.
PROOF: Let a quintuple (fi;...; f5) of operations satisfy conditions of the theo-

rem. The operation f; is invertible, since it is an isotope of an invertible operation.
According to Lemma 2, fo L f5 implies invertibility of f4. Let us prove that the
equality

(32) fi(y; fa(z;2)) = faly; fa(; fs (@5 2)))
is an identity. For this purpose we calculate its left and right sides:

fi(y; fa(w;2)) = fay; afa(w; 2)),
f3(y; falz; fs (23 2))) = fa(ys afolx; f5(z; fs(2;2)))) = fa(y; afa(z; 2)).

We obtain the same expression, so (32) is true. This means that (fi1;...;f5) is a
quasigroup solution of (6).
Vice versa, let a quintuple (f1;...; f5) of quasigroup operations be a solution

of (6), i.e., the identity (32) is true, and let e € ). Combining (32), y = e and
a:=L;'L;, we get

(33) fa(@; f5(z; 2)) = afa(a; 2).

Using the equality, we make replacement in the right side of (32):

fi(y; f2(x;2)) = f3(y; afa(w; 2)).
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Replacing fo(z; z) with ¢, we obtain the first identity of (31). Defining the oper-
ation f4 from the equality (33), we get the second identity of (31). According to
Lemma 2, invertibility of a=!f; implies fo L fs. O

Proposition 3. For any solution (fi,..., f5) of the functional equation (6) there
exists exactly one permutation o such that the equalities (31) are valid.
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