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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 3 , PAGES 5 0 2 – 5 1 7

POSITIONED AGENTS IN ECO-GRAMMAR SYSTEMS
WITH BORDER MARKERS AND PURE REGULATED
GRAMMARS

Miroslav Langer, Alica Kelemenová

In this paper we follow our previous research in the field of positioned agents in the eco-
grammar systems and pure grammars. We extend model of the positioned eco-grammar systems
by boundary markers and we introduce bordered positioned eco-grammar systems (BPEG sys-
tems, for short) and that way we show one of the possible answers to the question stated in [9].
Namely we compare generative power of the BPEG systems with three types of pure regulated
grammars with appearance checking.

Keywords: positioned eco-grammar systems, bordered positioned eco-grammar systems,
pure regulated grammars with appearance checking

Classification: 22E46, 53C35, 57S20

1. INTRODUCTION

Positioned eco-grammar systems (PEG systems, for short) were introduced in [10]. Sim-
ilarly as in eco-grammar systems, the motivation is an attempt to describe interplay be-
tween evolving environment and community of agents living in this environment, whereas
we focus on agent’s position in the environment. We combine the approaches from PM-
colonies (see [12]) and eco-grammar systems (see [2, 3]). The environment of the PEG
system is represented by 0L scheme and position of each agent in the environment is
given by its identifier.

In this paper we follow our previous results concerning PEG systems and their re-
lation to pure (regulated) grammars. In [9] we showed that the families of languages
generated by the pure (regulated) grammars without appearance checking are proper
subsets of PEG languages. In the conclusion we have stated an open question; the rela-
tion between the language classes of the PEG systems and pure regulated grammar with
appearance checking. Motivated by PM colonies which work with the border markers,
in the present paper we study slightly modified positioned eco-grammar systems with
additional border markers. This allows us more thoroughly to search the environment
and it gives possibility to present relation to languages of pure regulated grammars with
appearance checking.

We introduce bordered positioned eco-grammar systems (BPEG systems, for short)
and we compare generative capacity of the BPEG systems with the generative capacity
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of pure regulated grammars with appearance checking. We show that the families of
languages generated by pure regulated grammars with appearance checking are (proper)
subsets of the family of BPEG languages.

2. PRELIMINARIES ON PURE GRAMMARS

We assume that the reader is familiar with formal language theory including Linden-
mayer systems (see [7, 13]) and regulated grammars (see [4, 6]).

In the present section we recall the notion of the pure grammars with regulated rewrit-
ings, namely pure matrix grammars with appearance checking, the pure programmed
grammars with appearance checking and the pure random context grammars with ap-
pearance checking. We summarize results on the generative power of these grammars.

A pure grammar is a grammar with only one alphabet, a finite set of axioms and
with the sequential derivation. All derived words belong to the language generated by
the pure grammar. To specify different types of the pure grammars we start with the
pure context-free grammars.

A pure context-free grammar is a triple G = (V, P, S), where V is a finite nonempty
alphabet, S is a finite set of words from V ∗ called axioms and P is a finite set of
context-free productions of the form a → w, a ∈ V, w ∈ V ∗.

We say that x ∈ V + directly derives y ∈ V ∗, denoted as x =⇒ y, if x = z1az2,
y = z1wz2 and a → w ∈ P for some z1, z2, w ∈ V ∗ and a ∈ V . The relation =⇒∗

denotes the reflexive and transitive closure of the relation =⇒. The language of the
pure context-free grammar G is L(G) = {y : x =⇒∗ y, x ∈ S}.

Typical example of the pure context-free language is the language {aicbi : i ≥ 0}.
On the other hand, the language {aibi : i ≥ 0} is not included in the pure context-free
language class.

To present pure grammars with regulated rewriting, we start with the matrix (context-
free) grammars, where the order of the application of productions in the derivation is
specified by finite sequences of productions. All the productions in the chosen sequence
have to be used in a given order in the derivation with only exception of the productions
from the given set. These productions can be omitted in the case they are not applicable
in an actual string. Formally:

A pure matrix grammar is a quadruple G = (V,M, S, F ), where V is a finite nonempty
alphabet, S is a finite set of axioms over V , M = {m1, . . . ,ms} is a finite set of finite se-
quences of productions mi, 1 ≤ i ≤ s, of the type: (ai,1 → wi,1,
ai,2 → wi,2, . . . ai,ki → wi,ki) for ai,j ∈ V,wi,j ∈ V ∗, 1 ≤ j ≤ ki and F is a subset
of occurrences of in mi, 1 ≤ i ≤ s from M .

We say that x =⇒mi y for 1 ≤ i ≤ s iff x = y0 =⇒ y1 =⇒ y2 . . . =⇒ yki = y, where
either yj−1 = zjai,jz

′
j , yj = zjwi,jz

′
j for ai,j → wi,j or ai,j does not occur in yj−1,

yj = yj−1 and ai,j → wi,j ∈ F for 1 ≤ j ≤ ki.
The language of pure matrix grammar is the set of all words y which are obtained

by iterative application of matrices to the words from S and of all intermediate words
yj of these applications.

The set F has an appearance checking function for the pure matrix grammar.
The class of the all pure matrix context-free languages with the appearance checking

is denoted by L(pM,CF, ac).
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The class of the all pure matrix context-free languages without the appearance check-
ing is denoted by L(pM,CF ).

Furthermore we present pure programmed grammars, where each production is asso-
ciated with set of productions which can be applied in the forthcoming derivation step
and the other set of productions to be applied in the case that the production itself
cannot be applied to the current word.

A pure programmed grammar is a triple G = (V, P, S), where V is a finite nonempty
alphabet, S is a finite set of axioms over V , P is a finite set of productions of the
form (r : a → w, σ(r), ϕ(r)), where r is the unique label of this production, a ∈ V ,
w ∈ V ∗, σ(r) and ϕ(r) are subsets of the set of labels of the productions in P .

The language defined by the pure programmed grammar is the set of all words y
such that there exists a derivation s = y0 =⇒r1 y1 =⇒r2 . . . =⇒rn

yn = y where
s ∈ S, (ri : ai → wi, σ(ri), ϕ(ri)) ∈ P for 1 ≤ i ≤ n and

yi−1 = z1aiz2, yi = z1wiz2, ri+1 ∈ σ(ri), or
ai does not occur in yi−1, yi = yi−1 and ri+1 ∈ ϕ(ri), for 1 ≤ i ≤ n.
The set ϕ(r) has an appearance checking function for the pure programmed grammar.
The class of the all pure programmed context-free languages with appearance checking

is denoted by L(pP,CF, ac).
The class of the all pure programmed context-free languages without appearance

checking is denoted by L(pP,CF ).
Last type of grammars with regulated rewriting considered in the present paper is

the pure random context context-free grammars.
A pure random context grammar is a triple G = (V, P, S), where V is a finite

nonempty alphabet, S is a finite set of axioms, P is a finite set of productions of the
form (a → w,Q,R), where a ∈ V, w ∈ V ∗, Q ⊆ V and R ⊆ V.

We say that x directly derives y, x =⇒rc y for x, y ∈ V ∗ if there is (a → w,Q,R) in
P such that x = x′ax′′, y = x′wx′′, every letter of Q occurs in x′x′′ and no letter of R
occurs in x′x′′.

The language generated by the pure random context context-free grammar G is de-
fined as L(G) = {y : x =⇒∗

rc y, x ∈ S}, where =⇒∗
rc is a reflexive and transitive closure

of relation =⇒rc.
The set R has an appearance checking function for the pure random context gram-

mars.
The class of all pure random context context-free languages with appearance checking

is denoted by L(pRC,CF, ac).
The class of all pure random context context-free languages without appearance

checking is denoted by L(pRC,CF ).

Proposition 2.1. (Dassow and Păun [4]) L(pCF ) ⊂ L(pM,CF, ac)∩L(pP,CF, ac)∩
L(pRC,CF, ac)

Classes of languages L(pM,CF, ac),L(pP,CF, ac),L(pRC,CF, ac) are pairwise not
comparable.

The following properties hold (see [4]):

• L1 = {anbncn : n ≥ 1} ∪ {an+1bncn : n ≥ 1} ∪ {an+1bn+1cn : n ≥ 1} belongs to
L(pM,CF )− (L(pP,CF, ac) ∪ L(pRC,CF, ac))
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• L2 = {a, a5} ∪ {a7+10n : n ≥ 0} ∪ {a11+10n : n ≥ 0} belongs to L(pP,CF ) −
(L(pM,CF, ac) ∪ L(pRC,CF, ac))

• L3 = {bba} ∪ {a4+3nba1+3m : n ≥ 0,m ≥ 0} ∪ {ba5+3k : k ≥ 0} belongs to
L(pRC,CF )− (L(pM,CF, ac) ∪ L(pP,CF, ac)).

For the proofs and further results on pure grammars we refer to [4, 6].
In the next section we will use also generative systems (grammars) with totally par-

allel rewriting steps, known as L systems (see [7, 13]).
0L system, L system with no interaction, is a construct G = (V, P, w0), where V is

a finite nonempty alphabet, w0 is a word over V and P is a finite set of rules of the
form a → w, where a ∈ V and w ∈ V ∗. We say that x directly derives y in the 0L
system, x =⇒ y for x, y ∈ V ∗ if x = x1x2 . . . xn, y = w1w2 . . . wn and xi → wi ∈ P for
1 ≤ i ≤ n.

3. BORDERED POSITIONED ECO-GRAMMAR SYSTEMS

In the present section we will deal with the bordered positioned eco-grammar systems.
They are modification of the earlier introduced positioned eco-grammar systems ([10]),
motivated by endmarkers of PM colonies (see [12]). Further information on eco-grammar
systems can be found also e. g. in [2, 3].

Definition 3.1. Bordered positioned eco-grammar system (BPEG system, for short)
of degree m, m ≥ 1, is an (m + 4)-tuple Σ = (VE ,#, NB , E, B1, . . . , Bm), where

• VE ∪ {#} is a finite nonempty alphabet of the environment,

• # is the special border marker,

• NB = {[j] : 1 ≤ j ≤ m} is the set of identifiers of agents, [j] defines position of the
jth type agent in the environment,

• E = (VE ∪{#}, PE) is a 0L, where the rule # → # is the only rule for the border
marker used in PE ,

• Bj = ([j], Qj), is the jth type agent for 1 ≤ j ≤ m and Qj is a set of rules of the
form:

– a[j]b → u, where ab ∈ VE is a symbol marking (left or right) vicinity with
the agent [j] and u ∈ (VE ∪NB)∗, or

– #[j] → #u or [j]# → u#, where u ∈ (VE∪NB)∗, the rules for the interaction
with border marker.

Note that the BPEG system requires at least one agent by the definition.
A configuration of the BPEG system is introduced as follows:

Definition 3.2. A configuration of the bordered positioned eco-grammar system Σ =
(VE ,#, NB , E, B1, . . . , Bm) is a string #v#, where v ∈ (VE ∪ NB)∗. The starting con-
figuration is called an axiom.
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Agents in the BPEG system will work parallel. Each agent appearing in an actual
string has to rewrite one symbol on its right or left context in each derivation step,
otherwise the derivation is blocked.

We describe the derivation step in BPEG system as follows:

Definition 3.3. A derivation step of the bordered positioned eco-grammar system Σ =
(VE ,#, NB , E, B1, . . . , Bm) is a binary relation =⇒Σ on #(VE ∪ NB)∗#, such that
#w# =⇒Σ #w

′
# iff

• w = α0a1[j1]b1α1 . . . αn−1an[jn]bnαn, where

αk ∈ V ∗
E for 0 ≤ k ≤ n and akbk ∈ VE , [jk] ∈ NB , 1 ≤ k ≤ n,

• w
′
= α

′

0β1α
′

1 . . . α
′

n−1βnα
′

n, where

ak[jk]bk → βk ∈ Qk for 1 ≤ k ≤ n and αk ⇒E α
′

k for 0 ≤ k ≤ n.

A rule #[j1] → #β1 ∈ Q1 is used for α0a1b1 = ε and [jn]# → βn# ∈ Qn is used for
ambmαm = ε.

By =⇒∗ we denote the reflexive and transitive closure of the relation =⇒.

All agents work in parallel. Each agent rewrites one symbol on its right or left hand
side together with its own identifier, in each derivation step. The rest of the symbols
(i. e. those not touched by agents) are rewritten by the rules of the environment.

If two agents want to rewrite the same symbol the derivation is blocked as well as in
the case when there is no rule for the agent in its actual context.

The language defined by a bordered positioned eco-grammar system is given by all
words produced by the system from the axiom, ignoring agents identifiers and border
markers.

Definition 3.4. The language defined by the bordered positioned eco-grammar system
Σ = (VE ,#, NB , E, B1, . . . , Bm) and the axiom #w#, w ∈ (VE∪NB)∗ is a set of strings:

L(Σ,#w#) = {γ(u) : u ∈ (VE ∪NB)∗,#w# ⇒∗
Σ #u#},

where γ is the morphism such that γ(a) = a for a ∈ VE and γ(b) = ε for
b ∈ NB .

The family of languages defined by bordered positioned eco-grammar systems (BPEG
languages) is denoted L(BPEG).

Even though the relation between positioned eco-grammar systems and bordered posi-
tioned eco-grammar systems was not investigated, it is obvious that
L(PEG) ⊆ L(BPEG).

4. BPEG SYSTEMS VERSUS PURE REGULATED GRAMMARS
WITH APPEARANCE CHECKING

Strings produced in all derivation steps of BPEG systems are considered in BPEG
languages. From that point of view, to compare them with adequate sequential devices,
we consider regulated derivatives of pure context-free grammars of Chomsky hierarchy.
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As we already mentioned in Section 2, Proposition 2.1, each pair of families of the
following pure context-free languages (each one with appearance checking): matrix,
random context, programmed are incomparable. In the present section we prove that
all these pure regulated context-free language families with appearance checking are the
subsets of the family of BPEG languages.

Lemma 4.1. The family of languages generated by the pure programmed context-free
grammars with appearance checking is a subset of the family of languages generated by
the bordered positioned eco-grammar systems.
L(pP,CF, ac) ⊆ L(BPEG).

P r o o f . Consider G = (V, P, S) a pure programmed context-free grammar with ap-
pearance checking, where P consists of the finite set of productions of the form (r : a →
w, σ(r), ϕ(r)), 1 ≤ r ≤ n.

We construct a BPEG system

Σ = (V,#, NB , E, BI , BD, B1, . . . , Bn, B1R
, . . . , BnR

, B1C
, . . . , BnC

),

with 3n + 2 agents, where n = |P | is number of production of grammar G and we
determine the axiom #α#, such that L(Σ,#α#) = L(G). The alphabet V of the
BPEG system Σ is identical with that one of the pure grammar G. The non-evolving
environment of BPEG system Σ is determined by the 0L scheme E = (V ∪ {#},
{a → a : a ∈ (V ∪ {#})}).

The BPEG system Σ has five types of agents: the initiating agent BI , the deleting
agent BD, and the returning agent BiR

, the checking agent BiC
and the simulating agent

Bi for each production of the grammar G. So the corresponding agents positions in Σ
form the set NB = {[D], [I], [1], . . . , [n], [1R], . . . , [nR], [1C ], . . . , [nC ]}.

The agents are specified as follows:

• Initiating agent BI = ([I], QI), where
QI = {[I]a → [iR]y : a ∈ V, y ∈ S, 1 ≤ i ≤ n}.

• Deleting agent BD = ([D], QD), where QD = {[D]a → ε : a ∈ V }.

For production (i : ai → wi, σ(i);ϕ(i)) ∈ P, 1 ≤ i ≤ n, we define:

• Returning agent BiR
= ([iR], QiR

), where
QiR

= {b[iR] → [iR]b : b ∈ V } ∪ {#[iR] → #[iC ]}
It moves to the left # and then transforms to the checking agent.

• Checking agent BiC
= ([iC ], QiC

), where
QiC = {[iC ]b → b[iC ] : b ∈ (V \ {ai})} ∪ {[iC ]ai → [i]ai} ∪ {[iC ]# → [jR]# : j ∈
ϕ = (i)}
It moves to the right and it transforms to the simulating agent immediately af-
ter finding ai on its right neighbour or to the returning agent of the next used
production, otherwise.
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• Simulating agent Bi = ([i], Qi), where
Qi = {[i]ai → [rR]wi : r ∈ σ(i)}∪ {[i]b → b[i] : b ∈ V } ∪ {c[i] → [i]c : c ∈ V }
It replaces one of the occurrences of ai to wi and at the same derivation step it
transforms to the returning agent corresponding to the rule which will be used in
the next derivation step in G.

The axiom is #α# = #[I]a1[D]a2 . . . [D]ak#, where a1a2 . . . ak ∈ S is some of the
axioms of the grammar G.

We prove the equality L(G) = L(Σ,#α#) by showing both set inclusions. First we
call attention to the fact that by the construction of Σ, its environment is stable and all
changes in the derivation are done by the agents.

The inclusion L(G) ⊆ L(Σ,#α#) : Assume that w ∈ L(G) and its derivation in G is
y = w0 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ ws = w. We will find corresponding derivation of w in Σ.
To get y in Σ from the axiom #α# we simply use initiating and deleting agents in the
following derivation step

#α# = #[I]a1[D]a2 . . . [D]ak# ⇒ #[iR]y#,

where the agent [iR] is chosen so that the number i identifies the rule
(i : ai → wi, σ(i), ϕ(i)) used in the step y ⇒ w1 in G.

Now it is sufficient to describe the derivation #[jR]wi# ⇒∗ #[tR]wi+1# in Σ which
corresponds to the derivation step wi ⇒ wi+1 and uses the production
(j : a → w, σ(j), ϕ(j)), 0 ≤ i ≤ s − 1. The production used in the (i + 1)-st step
of G is t. For wi = uiavi (a is a letter of wi) and t ∈ σ(j) we have in Σ derivation:

#[jR]wi# ⇒ #[jC ]wi# ⇒∗ #ui[jC ]aui# ⇒ #ui[j]aui# ⇒∗ u
′

i[j]au
′

i ⇒ u
′

i[tR]wu
′

i ⇒∗

#[tR]wi+1#.

For string wi which does not contain a and t ∈ ϕ(j) we have wi+1 = wi and corresponding
derivation in Σ.

#[jR]wi# ⇒ #[jC ]wi# ⇒∗ #wi[jC ]# ⇒ #wi[tR]# ⇒∗ #[tR]wi# = #[tR]wi+1#.

In these two last derivations we obtain word wi or wi+1 by eliminating the agents
position symbols in derived words. As we have shown we are able to simulate correctly all
derivation steps of G in Σ and thus we can prove the inclusion
L(G) ⊆ L(Σ,#α#).

To prove the opposite inclusion L(Σ,#α#) ⊆ L(G) we assume that
w ∈ L(Σ,#α#) and its derivation in Σ is of the form

#α# = #[I]a1[D]a2 . . . [D]ak# ⇒ #[iR]y# ⇒ #w2# ⇒ · · · ⇒ #ws#

where w = γ(ws).
We will describe a derivation of w in G. According to the construction γ(α) and y

are axioms of G. Assume that wk contains returning agent for some k and γ(wk) is in
L(G). String w2 is the first with that property. According to the construction of the
BPEG system Σ the derivation follows in that way: The returning agent BiR

moves to
the left side of the environment and changes itself into the checking agent BiC

. Checking
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agent searches the environment for the symbol ai. If the symbol is not present in the
environment, then the checking agent will rewrite itself into the returning agent BjR

,
where j ∈ ϕ(i). If the symbol ai is in the environment, then the agent BiC

rewrites itself
into the agent Bi. The agent Bi searches the environment for the symbol ai. In all the
steps for derived word #wr# we have γ(wr) = γ(wk) so it is in L(G). The derivation
does not change the environment, until the rule [i]ai → [rR]wi of the simulation agent
is used for r ∈ σ(i). This take place exactly when γ(wr) fulfill the conditions for using
the rule (r : a → w, σ(r), ϕ(r)) in G. Hence the simulating agent rewrites symbol ai and
produces returning agent in the step

#y1[i]aiy2# ⇒ #y1[rR]wiy2#.

This derivation step corresponds the derivation step

y1aiy2 ⇒ y1wiy2

in the grammar G. The derivation continues in the same way as it was described above,
so it holds L(Σ,#α#) ⊆ L(G). Hence L(Σ,#α#) = L(G). �

Lemma 4.2. The family of languages generated by the pure matrix context-free gram-
mars with appearance checking is a subset of the family of languages generated by the
bordered positioned eco-grammar systems.
L(pM,CF, ac) ⊆ L(BPEG)

P r o o f . Consider a pure matrix context-free grammar with appearance checking G =
(V,M, S, F ), where M = {m1,m2, . . . ,mn} is a finite set of finite sequences of produc-
tions, mi : (ai,1 → wi,1, ai,2 → wi,2, . . . , ai,ri → wi,ri), ai,j ∈ V , wi,j ∈ V ∗, 1 ≤ i ≤ n,
1 ≤ j ≤ ri.

We construct a BPEG system Σ = (V,#, NB , E, BI , BD, B(1,1), . . . , B(1,r1), . . . ,
B(n,1), . . . , B(n,rn), B(1,1)R

. . . , B(n,rn)R
, B(1,1)C

. . . , B(n,rn)C
), where n = |M | and ri is

the number of productions in mi, 1 ≤ i ≤ n, such that L(Σ,#α#) = L(G) for some
axiom #α#.

Alphabet V of the BPEG system Σ is identical with that of the pure grammar G.
E = (V ∪ {#}, {a → a : a ∈ V ∪ {#}}) is 0L scheme of BPEG system Σ.

Σ has five types of agents: the initiating agent BI , the deleting agent BD, and for each
the production m(i,j) ∈ M of the grammar G we define: the returning agent B(i,j)R

,
the checking agent B(i,j)C

, the simulating agent B(i,j). The set of corresponding agents
positions is NB = {[D], [I]} ∪ {[i, j] : 1 ≤ i ≤ n, 1 ≤ j ≤ ri}∪ {[(i, j)R] : 1 ≤ i ≤ n, 1 ≤
j ≤ ri} ∪ {[(i, j)C ] : 1 ≤ i ≤ n, 1 ≤ j ≤ ri}.

Agents are specified as follows:

• Initiating agent BI = ([I], QI), where
QI = { [I]a → [(i, 1)]y : a ∈ V, 1 ≤ i ≤ n, y ∈ S }.

• Deleting agent BD = ([D], {[D]a → ε : a ∈ V }).

For ai,j → wi,j the jth production of the ith matrix of grammar G we define three
agents:
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• Returning agent B(i,j)R
= ([(i, j)R], Q(i,j)R

) where
Q(i,j)R

= {b[(i, j)R] → [(i, j)R]b : b ∈ V } ∪ {#[(i, j)R] → #[(i, j)C ]}.
It is able to move left and on the leftmost position it changes itself to the checking
agent.

• Checking agent B(i,j)C
= ([(i, j)C ], Q(i,j)C

), where Q(i,j)C
depends on whether the

rule ai,j → wi,j occurs in the set F or not.
For ai,j → wi,j /∈ F we have
Q(i,j)C

= {[(i, j)C ]b → b[(i, j)C ] : b ∈ (V \ {ai,j})} ∪ {ai,j [(i, j)C ] → ai,j [(i, j)]}.
For ai,j → wi,j ∈ F furthermore
Q(i,j)C

= Q(i,j)C
∪ {[(i, j)C ]# → [(k, l)R]#},

where either k = i and l = j + 1 for 1 ≤ j < ri, or 1 ≤ k ≤ n and l = 1 for j = ri.
Checking agent moves to the right and it looks for the symbol ai,j . It can changes
itself into the simulating agent.

• Simulating agent B(i,j) = ([(i, j)], Q(i,j)) where
Q(i,j) = {[(i, j)]ai,j → [(k, l)R]wi,j} ∪ {[(i, j)]b → b[(i, j)] : b ∈ V }∪
{c[(i, j)] → [(i, j)]c : c ∈ V } for 1 ≤ j ≤ ri, 1 ≤ i ≤ n, where either k = i
and l = j + 1 for 1 ≤ j < ri, or 1 ≤ k ≤ n and l = 1 for j = ri.
Simulating agent moves in the environment and changes one of the occurrences of
the symbol ai,j in the environment into wi,j . At the same time it changes itself to
the returning agent of the next production used in the derivation of G.

α = [I]a1[D]a2 . . . [D]ak, where a1a2 . . . ak is one of the words from set S of the
axioms of the grammar G.

We prove L(G) = L(Σ,#α#) by showing both set inclusions.
First we call attention to the fact that by the construction of Σ its environment is

determined by the non-evolving 0L scheme E = (V ∪ {#}, {a → a : a ∈ V ∪ {#}}) and
all changes in the derivation are done by the agents.

Inclusion L(G) ⊆ L(Σ,#α#) :
Let y ⇒ x1 ⇒ · · · ⇒ xn be the derivation in G, y ∈ S.
In the first derivation step of the BPEG system, each deleting agent deletes itself and

the symbol on its right hand side and the initiating agent rewrites neighbouring symbol
by one of the axioms of the grammar G with returning agent of the first production of
an arbitrary matrix of the grammar G. The first derivation step of the BPEG system
corresponds to the choice of the axiom and the first rule of the matrix of productions of
the grammar G

#[I]a1[D]a2 . . . [D]ak# ⇒ #[(i, 1)R]y#.
Assume in general that xi−1 ⇒mi,j xi is derivation in G.
Returning agent moves to the left side of the environment and it rewrites itself into

checking agent in the next derivation steps.
#y1[(i, j)R]y2# ⇒∗ #[(i, j)R]xi−1# ⇒ #[(i, j)C ]xi−1#, where xyy2 = xi−1

Checking agent moves itself to the right side and looks for the symbol which corre-
sponds to the left side of the production which is the agent simulating. If the checking
agent finds the symbol then it will rewrite itself into the simulating agent of the produc-
tion it simulates.

#y1[(i, j)C ]ai,jy2# ⇒ #y1[(i, j)]ai,jy2#, where y1ai,jy2 = xi−1
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If the symbol ai,j is not present in the environment and the simulated production is
in the set F then the checking agent will rewrite itself into returning agent of the next
production in the matrix. Otherwise the derivation is blocked.

#[(i, j)C ]xi−1# ⇒∗ #xi−1[(i, j)C ]# ⇒ #xi−1[(k, l)R]#,
where either k = i and l = j + 1 for 1 ≤ j < ri, or 1 ≤ k ≤ n and l = 1 for j = ri.

Simulating agent looks for the symbol to rewrite according to the production it simu-
lates. (Agent does not have to rewrite the first found matching symbol). Once the agent
decides to use the rewriting rule simulating the corresponding production of matrix of
grammar G, it rewrites found matching symbol in the same way as the production of
matrix of grammar G and replaces itself with another returning agent simulating next
production used in matrix grammar G. Agent simulating the last production of the ma-
trix after rewriting matching symbol according to the production it simulates changes
itself into one of the returning agent simulating first production of the any matrix of
grammar G. That simulates choice of the next matrix after applying all the productions
of right simulating productions of matrix.

#y1[(i, j)]ai,jy2# ⇒ #y1[(k, l)R]wi,jy2#,
where either k = i and l = j + 1 for 1 ≤ j < ri, or 1 ≤ k ≤ n and l = 1 for
j = ri, y1ai,jy2 = xi−1 and y1wi,jy2 = xi.

We obtain in each derivation step of the BPEG system Σ the same word as by the
pure matrix context-free grammar G, hence L(G) ⊆ L(Σ, α).

Inclusion L(Σ,#α#) ⊆ L(G) :

In the first derivation step of the BPEG system Σ, each deleting agent deletes itself
and the symbol on its right-hand side and the initiating agent rewrites its neighbouring
symbol to word w0 ∈ S with returning agent of the first production of matrix i, (i, 1)R,
1 ≤ i ≤ n.

#[I]a1[D]a2 . . . [D]ak# ⇒ #[(i, 1)R]w0#.

Corresponding derivation by the grammar G is:
w0 ⇒∗ w0.

According to the construction of the BPEG system Σ the derivation follows in that
way: The returning agent B(i,j)R

moves to the left side of the environment and changes
itself into the checking agent B(i,j)C

. The checking agent searches the environment
for the symbol ai,j . If the symbol is not present in the environment and production
ai,j → wi,j ∈ F , then checking agent will rewrite itself into the returning agent B(k,l)R

,
where k = i and l = j + 1 for 1 ≤ j < ri, 1 ≤ k ≤ n and l = 1 for j = ri. If the symbol
ai,j is in the environment, then the agent B(i,j)C

rewrites itself into the agent B(i,j).
The agent B(i,j) search the environment for the symbol ai,j . All these derivation steps
do not change the environment, hence the corresponding derivation by the grammar G
is:

y ⇒∗ y.

The simulating agent rewrites symbol ai,j and itself as follows:
#y1[(i, j)]ai,jy2# ⇒ #y1[(k, l)R]wi,jy2#,

where either k = i and l = j + 1 for 1 ≤ j < ri, or 1 ≤ k ≤ n and l = 1 for
j = ri. The following derivation corresponds to this derivation step by the grammar G:

y1ai,jy2 ⇒ y1wi,jy2.
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The derivation continues in the same way as it was described above, so it holds
L(Σ,#α#) ⊆ L(G).

We proved both inclusions, hence
L(Σ,#α#) = L(G).

�

Lemma 4.3. The family of languages generated by the pure random context context-
free grammars with appearance checking is a subset of the family of languages generated
by the bordered positioned eco-grammar systems.
L(pRC,CF, ac) ⊆ L(BPEG)

P r o o f . Consider a pure random context context-free grammar with appearance check-
ing G = (V, P, S), where P = {(ai → wi, Qi, Ri) : 1 ≤ i ≤ n}, ri = |Qi|. We construct
BPEG system Σ = (V,#, NB , E, BI , BD, BPC , B1R

, . . . , BnR
, B1B

, . . . , BnB
, B1,1, . . . ,

Bn,rn , Bc(1,1), . . . , Bc(n,rn), B1C
, . . . , BnC

, B1S
, . . . , BnS

), with axiom #α# which gener-
ates the same language as G, i. e. L(Σ,#α#) = L(G) for which
α = [I]a1[D]a2 . . . [D]ak, where a1a2 . . . ak is is one of the words from the set of ax-
ioms S of G.

The alphabet V of the environment is identical with the alphabet of the grammar G.
The environment of Σ is determined by the stable 0L scheme E = (V ∪ {#},

{a → a : a ∈ V ∪ {#}}). Agents of BPEG system Σ correspond to the rules of the
grammar G.

BPEG system Σ contains following types of agents: initiating agent BI , deleting
agent BD, production choosing agent BPC , production checking agents BiB

,BiR
, corre-

sponding to the set Ri, production checking agents Bi,j , Bc(i,j), corresponding to the
set Qi and production simulating agents BiS

.

• Initiating agent BI = ([I], {[I]a → [PC]y : a ∈ V, y ∈ S}).

• Deleting agent BD = ([D], {[D]a → ε : a ∈ V }).

• Production choosing agent BPC = ([PC], QPC) where
QPC = {[PC]a → [iB ]a : a ∈ (V ∪{#}), 1 ≤ i ≤ n} chooses one of the productions
to be applied by [iB ].

The axiom #α# = #[I]a1[D]a2 . . . [D]ak# is rewritten to one of the axioms of the
grammar G and to the production choosing agent. The first two derivation steps of the
BPEG system Σ are

#[I]a1[D]a2 . . . [D]ak# ⇒ #[PC]y# ⇒ #[iB ]y#.
Production checking agents and production simulating agents of the BPEG system

Σ are related to the productions of the grammar G. Assume that the ith production
(ai → wi, Qi, Ri) of G,1 ≤ i ≤ n has the set Qi indexed so that ai is the last symbol in
Qi for ai ∈ Qi. So Qi = {ai,j : 1 ≤ j ≤ ri}, where ai,j 6= ai for all j < ri and ai,ri = ai

in the case that ai ∈ Qi.

• Production checking agents for conditions Ri, 1 ≤ i ≤ n:

– BiB
= ([iB ], QiB

), where
QiB

= {a[iB ] → [iB ]a : a ∈ V } ∪ {#[iB ] → #[iR]},
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– BiR
= ([iR], QiR

), where
QiR

= {[iR]a → a[iR] : a ∈ (V \Ri)} ∪ {[iR]# → [i, 1]#}.

Agent BiB
moves to the left # and changes to checking agent BiR

. Agent BiR
moves

from the left # to the right and reaches # in the case that none of the letters from Ri

is in the current string. Agent changes to the checking agent for conditions Qi.

• Production checking agents for conditions Qi, where Qi = {ai,j : 1 ≤ j ≤ ri},
1 ≤ i ≤ n :

– Bi,j = ([i, j], Qi,j), where
Qi,j = {a[i, j] → [i, j]a : a ∈ V } ∪ {#[i, j] → #[c(i, j)]} and

– Bc(i,j) = ([c(i, j)], Qc(i,j)), where
Qc(i,j) = {[c(i, j)]a → a[c(i, j)] : a ∈ V \ {ai,j}}∪
{[c(i, j)]ai,j → ai,j [i, j + 1]} for j 6= ri.
Qc(i,ri) = {[c(i, ri)]a → a[c(i, ri)] : a ∈ V } ∪ {[c(i, ri)]ai,ri → ai,ri [iS ]} for
ai /∈ Qi.
Qc(i,ri) = {[c(i, ri)]ari → ari [iC ]} ∪ {[c(i, ri)]a → a[c(i, ri)] : a ∈ V \ {ari}}
for ai ∈ Qi.

– BiC
= ([iC ], QiC

), where
QiC

= {[iC ]ai → [iS ]ai}∪ {[iC ]a → a[iC ] : a ∈ V \ {ai}}.

The agent identifier [i, j] moves to the left # and it changes itself to the [c(i, j)],
which moves to the right and changes itself to [i, j +1] for j 6= ri when it meets ai,j . For
j = ri the [c(i, ri)] changes itself directly to [iS ] in the case ai /∈ Qi or through [iC ] for
ai ∈ Qi.

• Simulating agents BiS
= ([iS ], QiS

) for 1 ≤ i ≤ n
QiS

= {ai[iS ] → wi[PC]} ∪ {a[iS ] → [iS ]a, [iS ]a → a[iS ] : a ∈ V }.

Simulating agent searches the environment for the symbol it has to rewrite to simulate
the production of the grammar G. (Agent does not have to rewrite the first found
matching symbol). Once the agent uses the rewriting rule simulating corresponding
production of grammar G, it replaces itself with production choosing agent.

We prove L(Σ,#α#) = L(G) by verifying both inclusions L(G) ⊆ L(Σ,#α#) and
L(Σ,#α#) ⊆ L(G).

Assume that w ∈ L(G) for pure random context context-free grammar with appear-
ance checking G = (V, P, S). This means there is the derivation

y = u1 ⇒ . . . ui ⇒ ui+1 ⇒ · · · ⇒∗ un = w

for some y ∈ S in G. We have to prove that w ∈ L(Σ,#α#), ie. we have to find a
derivation

#[I]a1[D]a2 . . . [D]ak# ⇒ #[PC]y# ⇒∗ #u#
in Σ such that γ(u) = w. Evidently γ(α) ∈ S and γ([PC]y) = y ∈ S. It is sufficient to
show that to each derivation step ui ⇒ ui+1 , 1 ≤ i ≤ n − 1 there is a corresponding
derivation
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#αi# ⇒∗ #αi+1#
in Σ such that γ(αi) = ui and #αi# = #βi[PC]δi#.

Let the production (aj → wj , Qj , Rj) be used in the derivation step ui ⇒ ui+1 in G.
So ui = xiajzi, ui+1 = xiwjzi, no letter from Rj occurs in xizi and all letters from Qj

occur in xizi. Corresponding derivation in Σ is

#αi# = #βi[PC]δi# ⇒∗ #βi[iB ]δi# ⇒∗ #[iR]βiδi#
⇒∗ #βiδi[iR]# ⇒ #βiδi[i, 1]# ⇒∗ #[i, 1]βiδi# ⇒ #[c(i, 1)]βiδi#

For ai /∈ Qi we get:
⇒∗ #xi[c(i, ri)]aizi# ⇒ #xi[iS ]aizi#

For ai ∈ Qi we get:
⇒∗ #xi[iC ]aizi# ⇒ #xi[iS ]aizi#

The derivation continues for both cases:

⇒∗ #xiai[iS ]zi# ⇒ #xiwi[PC]zi#.

This gives L(G) ⊆ L(Σ,#α#).
To prove that L(Σ,#α#) ⊆ L(G) we assume that w ∈ L(Σ,#α#) for the BPEG

system Σ. This means there is a derivation
#α# ⇒∗ #u#

in Σ such that γ(u) = w. To show that w ∈ L(G) we have to find corresponding
derivation of w in G. First we call attention to the fact that by the construction
of Σ its environment is determined by the non-evolving 0L scheme E = (V ∪ {#},
{a → a : a ∈ V ∪ {#}) and all changes in the derivation are done by the agents. More-
over derivation

#α# ⇒j #uj#
gives uj with exactly one agent identifier for j ≥ 1.

Let
#ut# ⇒ #ut+1#

be a derivation step in the derivation
#α# ⇒∗ #ut#

for ut 6= α. Then γ(ut) and γ(ut+1) can differ only for simulating agents. In the case
that the agent in #ut# is a production choosing agent or a production checking agent
it holds γ(ut) = γ(ut+1). So it is sufficient to verify that γ(ut+1) ∈ L(G) for

#ut# ⇒ #ut+1#,
where ut = xai[iS ]z and γ(ut) ∈ L(G). From the construction of Σ it follows that the
only way to derive #x[iS ]z# in Σ is the following:

#α# ⇒∗ #x
′
[PC]z

′
# ⇒ #x

′
[iB ]z

′
# ⇒∗ #[iB ]x

′
z

′
# ⇒ #[iR]x

′
z

′
# ⇒∗ #x

′
z

′
[iR]#

(the derivation guarantees that x
′
z

′
does not contain letters from Ri). The derivation

continues as follows:

⇒ #x
′
z

′
[i, 1]# ⇒∗ #[i, 1]x

′
z

′
# ⇒ #[c(i, 1)]x

′
z

′
# ⇒∗ #x

′′
[c(i, 1)]ai,1z

′′
# ⇒

#x
′′
ai,1[i, 2]z

′′
#
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(this gives x
′
z

′
= x

′′
ai,1z

′′
for ai,1 from Qi). The derivation continues testing occurrences

of all other letters from Qi in x
′
z

′
.

⇒∗ #y1[c(i, ri)]ai,riy2# ⇒+ #y1ai,ri [iS ]y2#

(the last configuration guarantees that y1ai,riy2 contains all letters from Qi)

⇒∗ #xai[iS ]z# ⇒ #xwi[PC]z#.

Evidently γ(ut+1) = γ(xwi[PC]z) = xwiz. According to the notes in the derivation
x

′
z

′
= xaiz and xaiz ⇒ xwiz in G gives xwiz ∈ L(G).

In this way the BPEG system Σ simulates derivations of the pure random context
context-free grammar G and vice versa, hence L(Σ,#α#) = L(G). �

5. MAIN RESULTS

In the previous section we have shown that all the families of languages generated by
the pure regulated context-free grammars with appearance checking are subsets of the
family of BPEG languages. All these subsets are proper subsets of the family of BPEG
languages. For the proof of this statements we will use languages from the second section
of this paper.

Theorem 5.1. The family of languages generated by the pure programmed context-
free grammars with appearance checking is the proper subset of the family of languages
generated by the bordered positioned eco-grammar systems.
L(pP,CF, ac) ( L(BPEG)

P r o o f . According to the lemma 4.1 it holds: L(pP,CF, ac) ⊆ L(BPEG). According
to the lemma 4.2 it holds: L(pM,CF, ac) ⊆ L(BPEG). According to the [4] for the
language L1 from the proposition 2.1 it holds: L1 ∈ L(pM,CF ) and L1 /∈ L(pP,CF, ac),
hence: L(pP,CF, ac) ( L(BPEG). �

Theorem 5.2. The family of languages generated by the pure matrix context-free gram-
mars with appearance checking is the proper subset of the family of languages generated
by the bordered positioned eco-grammar systems.
L(pM,CF, ac) ( L(BPEG)

P r o o f . According to the lemma 4.2 it holds: L(pM,CF, ac) ⊆ L(BPEG). According
to the lemma 4.1 it holds: L(pP,CF, ac) ⊆ L(BPEG). According to the [4] for the
language L2 from the proposition 2.1 it holds: L2 ∈ L(pP,CF ) and L2 /∈ L(pM,CF, ac),
hence: L(pM,CF, ac) ( L(BPEG). �

Theorem 5.3. The family of languages generated by the pure random context context-
free grammars with appearance checking is the proper subset of the family of languages
generated by the bordered positioned eco-grammar systems.
L(pRC,CF, ac) ( L(BPEG)
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P r o o f . According to the lemma 4.3 it holds: L(pRC,CF, ac) ⊆ L(BPEG). According
to the lemma 4.2 it holds: L(pM,CF, ac) ⊆ L(BPEG). According to the [4] for the lan-
guage L1 from the proposition 2.1 it holds: L1 ∈ L(pM,CF ) and L1 /∈ L(pRC,CF, ac),
hence: L(pRC,CF, ac) ( L(BPEG). �

Corollary. The family of languages generated by pure regulated context-free gram-
mars with appearance checking is a proper subset of the family of BPEG languages.

6. CONCLUSION

The main result of the paper formulated in Section 5 states that families of pure pro-
grammed, matrix and random context context-free languages with appearance checking
are properly included in the family of BPEG languages. The question whether pure reg-
ulated languages with appearance checking are included in the PEG languages remains
opened. Neither was studied the relation between PEG and BPEG systems.
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[6] J. Dassow, Gh. Păun, and A. Salomaa: Grammars with controlled derivations. In: Hand-
book of Formal Languages, Vol. 2 (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag,
Berlin 1997, pp. 101–154.

[7] L. Kari, G. Rozenberg, and A. Salomaa: L-systems. In: Handbook of Formal Languages.
Vol.1 (G. Rozenberg, A. Salomaa. eds.), Springer-Verlag, Berlin 1997, pp. 253–324.



Positioned agents in eco-grammar systems with border markers 517
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