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Abstract. In the paper we deal with the Kurzweil-Stieltjes integration of functions having
values in a Banach space X. We extend results obtained by Štefan Schwabik and complete
the theory so that it will be well applicable to prove results on the continuous dependence
of solutions to generalized linear differential equations in a Banach space. By Schwabik,

the integral
∫ b

a
d[F ]g exists if F : [a, b] → L(X) has a bounded semi-variation on [a, b]

and g : [a, b] → X is regulated on [a, b]. We prove that this integral has sense also if F is
regulated on [a, b] and g has a bounded semi-variation on [a, b]. Furthermore, the integration
by parts theorem is presented under the assumptions not covered by Schwabik (2001) and
Naralenkov (2004), and the substitution formula is proved.

Keywords: Kurzweil-Stieltjes integral, substitution formula, integration-by-parts

MSC 2010 : 26A39, 28B05

1. Introduction

It is known that integration processes based on Riemann type sums, such as

Kurzweil and McShane integrals, can be extended to Banach space-valued functions.

Among other contributions it is worth to highlight the monograph by Schwabik and

Ye [13], which studies these types of integrals and their connections e.g. with the

classical ones due to Bochner and Pettis.

Concerning integrals of Stieltjes type, Hönig presented a quite complete study in

[4] dealing with the interior integral. In [8] and [11] Schwabik investigated some

fundamental properties of the Kurzweil-Stieltjes integral.

1 Supported by CAPES BEX 5320/09-7.
2 Supported by the Institutional Research Plan No. AV0Z10190503 and RVO: 67985840
and by FAPESP 2010/52215-2.
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The concepts of generalized (nonlinear) Kurzweil or Kurzweil-Stieltjes integrals in

a Banach space have been the background of several papers related to generalized

differential equations like e.g. [2], [3], [9] and [10].

In this paper we are dealing with the Kurzweil-Stieltjes integral. Our aim is to

supplement the existing knowledge by results needed for treating generalized linear

differential equations. In particular, we prove that if F : [a, b] → L(X) and g :

[a, b] → X, then the integral
∫ b

a
d[F ]g exists provided F is regulated on [a, b] and g

has a bounded semi-variation on [a, b], and the integral
∫ b

a
F d[g] exists provided F has

a bounded semi-variation and g is regulated. Furthermore, the integration by parts

theorem is presented under the assumptions not covered by those by Schwabik [11]

(see Theorems 10, 13, 15 and Corollary 14) or Naralenkov [6] (see Section 3). Finally,

the substitution formula is proved.

2. Preliminaries

Throughout these notes X is a Banach space and L(X) is the Banach space of

bounded linear operators onX. By ‖·‖X we denote the norm in X. Similarly, ‖·‖L(X)

denotes the usual operator norm in L(X).

Assume that −∞ < a < b < +∞ and [a, b] denotes the corresponding closed

interval. A set D = {α0, α1, . . . , αm} ⊂ [a, b] is said to be a division of [a, b] if

a = α0 < α1 < . . . < αm = b.

The set of all divisions of [a, b] is denoted by D[a, b].

A function f : [a, b] → X is called a finite step function on [a, b] if there exists

a division D = {α0, α1, . . . , αm} of [a, b] such that f is constant on every open

interval (αj−1, αj), j = 1, 2, . . . , m.

For an arbitrary function f : [a, b] → X we set

‖f‖∞ = sup
t∈[a,b]

‖f(t)‖X

and

varb
a f = sup

D∈D[a,b]

m∑

j=1

‖f(αj) − f(αj−1)‖X

is the variation of f over [a, b]. If varb
a f < ∞ we say that f is a function of bounded

variation on [a, b]. BV ([a, b], X) denotes the Banach space of functions f : [a, b] → X

of bounded variation on [a, b] equipped with the norm ‖f‖BV = ‖f(a)‖X + varb
a f.
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For F : [a, b] → L(X) and a division D = {α0, α1, . . . , αm} of the interval [a, b],

let

V b
a (F, D) = sup

{∥∥∥∥
m∑

j=1

[F (αj) − F (αj−1)]yj

∥∥∥∥
X

}
,

where the supremum is taken over all possible choices of yj ∈ X, j = 1, 2, . . . , m,

with ‖yj‖X 6 1. Then

(B) varb
a(F ) = sup{V b

a (x, D); D ∈ D[a, b]}

is said to be the semi-variation of F on [a, b], cf. e.g. [4]. Sometimes it is called also

the B-variation of F on [a, b] (with respect to the bilinear triple B = (L(X), X, X),

cf. e.g. [8]). Analogously, we can define the B-variation of a function f : [a, b] → X

using

V b
a (f, D) = sup

{∥∥∥∥
m∑

j=1

Fj [f(αj) − f(αj−1)]

∥∥∥∥
X

}
,

where the supremum is taken over all possible choices of operators Fj ∈ L(X) with

‖Fj‖L(X) 6 1, j = 1, 2, . . . , m.

The set of all functions F : [a, b] → L(X) with (B) varb
a(F ) < ∞ is denoted by

(B)BV ([a, b], L(X)). Analogously to BV ([a, b], X), (B)BV ([a, b], L(X)) is a Banach

space with respect to the norm

F ∈ (B)BV ([a, b], L(X)) 7→ ‖F‖SV = ‖F (a)‖L(X) + (B) varb
a F

(cf. [12]).

A function f : [a, b] → X, is said to be regulated on [a, b] if for each t ∈ [a, b) there

is f(t+) ∈ X such that

lim
s→t+

‖f(s) − f(t+)‖X = 0

and for each t ∈ (a, b] there is f(t−) ∈ X such that

lim
s→t−

‖f(s) − f(t−)‖X = 0.

By G([a, b], X) we denote the set of all regulated functions f : [a, b] → X. For t ∈

[a, b), s ∈ (a, b] we put ∆+f(t) = f(t+) − f(t) and ∆−f(s) = f(s) − f(s−).

A function F : [a, b] → L(X) is B-regulated on [a, b] if for every x ∈ X with

‖x‖X 6 1, the function t ∈ [a, b] 7−→ F (t)x is regulated. Similarly we say that

f : [a, b] → X is B-regulated on [a, b], if the function t ∈ [a, b] 7−→ Tf(t) is regulated

for all T ∈ L(X) with ‖T ‖L(X) 6 1. The set of all (B)-regulated functions F : [a, b] →

L(X) is denoted by (B)G([a, b], L(X)).
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Recall that BV ([a, b], X) ⊂ (B)BV ([a, b], X) and

BV ([a, b], X) ⊂ G([a, b], X) ⊂ (B)G([a, b], X)

while G([a, b], X) * (B)BV ([a, b], X) (cf. e.g. [9, 1.5]). If dimX < ∞, then obviously

BV ([a, b], X) = (B)BV ([a, b], X) and G([a, b], X) = (B)G([a, b], X).

Moreover, it is known that regulated functions are uniform limits of finite step func-

tions (see [4, Theorem I.3.1]).

Now, let us recall the definition and some crucial properties of the Kurzweil-

Stieltjes integral.

As usual, tagged systems P = (D, ξ) ∈ D[a, b] × [a, b]m where D = {α0, α1, . . . ,

αm}, ξ = (ξ1, ξ2, . . . , ξm), are called partitions of [a, b] if

αj−1 6 ξj 6 αj for j = 1, 2, . . . , m.

The set of all partitions of [a, b] is denoted by P [a, b].

Furthermore, functions δ : [a, b] → (0,∞) are said to be gauges on [a, b]. Given

a gauge δ, the partition P = (D, ξ) with D = {α0, α1, . . . , αm}, ξ = (ξ1, ξ2, . . . , ξm),

is δ-fine if

[αj−1, αj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , m.

We remark that for an arbitrary gauge δ on [a, b] there always exists a δ-fine partition

of [a, b]. This is stated by the Cousin lemma (see [7, Lemma 1.4]).

For given functions F : [a, b] → L(X) and g : [a, b] → X and a partition P = (D, ξ)

of [a, b], where D = {α0, α1, . . . , αm}, ξ = (ξ1, . . . , ξm), we define

S(F, dg, P ) =

m∑

j=1

F (ξj)[g(αj) − g(αj−1)]

and

S(dF, g, P ) =
m∑

j=1

[F (αj) − F (αj−1)]g(ξj).

We say that I ∈ X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of F

with respect to g on [a, b] and write

I =

∫ b

a

F d[g]
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if for every ε > 0 there exists a gauge δ on [a, b] such that

‖S(F, dg, P ) − I‖X < ε for all δ-fine partitions P of [a, b].

Similarly, J ∈ X is the KS-integral of g with respect to F on [a, b] if for every ε > 0

there exists a gauge δ on [a, b] such that

‖S(dF, g, P ) − J‖X < ε for all δ-fine partitions P of [a, b].

In this case we write J =
∫ b

a
d[F ]g.

Analogously, if H : [a, b] → L(X), we define the integral
∫ b

a
Hd[F ]g using sums of

the form

S(H, dF, g, P ) =

m∑

j=1

H(ξj)[F (αj) − F (αj−1)]g(ξj).

The KS-integral is linear and additive with respect to intervals. Basic results

concerning the KS-integral can be found in [8] and [15]. Obviously, if the Riemann-

Stieltjes integral (RS)
∫ b

a
F d[g] exists, then the KS-integral

∫ b

a
F d[g] also exists and

∫ b

a

F d[g] = (RS)

∫ b

a

F d[g].

Some further results needed later are summarized in the following assertions:

Proposition 2.1. Let F : [a, b] → L(X) and g : [a, b] → X.

(i) [8, Proposition 10] Let F ∈ (B)BV ([a, b], L(X)) and g : [a, b] → X be such that∫ b

a
d[F ]g exists. Then

∥∥∥∥
∫ b

a

d[F ]g

∥∥∥∥
X

6 ((B) varb
a F )‖g‖∞.

(ii) [8, Proposition 11] Let F ∈ (B)BV ([a, b], L(X)) and gn : [a, b] → X be such

that
∫ b

a
d[F ]gn exists for all n ∈ N and lim

n→∞
‖gn − g‖∞ = 0. Then

∫ b

a

d[F ]g exists and

∫ b

a

d[F ]g = lim
n→∞

∫ b

a

d[F ]gn.

(iii) [8, Proposition 15] Let F ∈ (B)BV ([a, b], L(X)) ∩ (B)G([a, b], L(X)) and let

g ∈ G([a, b], X). Then
∫ b

a
d[F ]g exists.
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(iv) [11, Theorem 13] Let F ∈ G([a, b], L(X)) ∩ (B)BV ([a, b], L(X)) and let g ∈

BV ([a, b], X). Then both the integrals
∫ b

a
F d[g] and

∫ b

a
d[F ]g exist, the sum

∑

a6τ<b

∆+F (τ)∆+g(τ) −
∑

a<τ6b

∆−F (τ)∆−g(τ)

converges in X and the equality

∫ b

a

F d[g] +

∫ b

a

d[F ]g

= F (b)g(b) − F (a)g(a) −
∑

a6t<b

∆+F (t)∆+g(t) +
∑

a<t6b

∆−F (t)∆−g(t)

is true.

3. Main results

In this section we will present our main results. First, we will prove some auxiliary

properties of the KS-integral which, in the case that X 6= Rn, are not available in

literature.

Lemma 3.1. (i) Let F ∈ (B)BV ([a, b], L(X)), g ∈ G([a, b], X) be such that∫ b

a
F d[g] exists. Then

(3.1) ‖S(F, dg, P )‖X 6 2‖F‖SV ‖g‖∞ for each P ∈ P [a, b]

and

(3.2)

∥∥∥∥
∫ b

a

F d[g]

∥∥∥∥
X

6 2‖F‖SV ‖g‖∞.

(ii) Let F ∈ G([a, b], L(X)), g ∈ (B)BV ([a, b], X) be such that
∫ b

a
d[F ]g exists.

Then

(3.3) ‖S(dF, g, P )‖X 6 2‖F‖∞‖g‖SV for each P ∈ P [a, b]

and

(3.4)

∥∥∥∥
∫ b

a

d[F ]g

∥∥∥∥
X

6 2‖F‖∞‖g‖SV .
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P r o o f. It is easy to check that for an arbitrary partition P = (D, ξ) of [a, b]

with D = {α0, α1, . . . , αm} and ξ = (ξ1, ξ2, . . . , ξm), we have

S(F, dg, P )

= F (ξ1)[g(α1) − g(a)] + F (ξ2)[g(α2) − g(α1)] + . . . + F (ξm)[g(b) − g(αm−1)]

= F (b)g(b) − F (a)g(a)

− [F (ξ1) − F (a)]g(a) − [F (ξ2) − g(ξ1)] − . . . − [F (b) − F (ξm)]g(b)

= F (b)g(b) − F (a)g(a) −
m∑

j=0

[F (ξj+1) − F (ξj)]g(αj),

where ξ0 = a and ξm+1 = b. Consequently,

‖S(F, dg, P )‖X

6 (‖F (a)‖L(X) + ‖F (b)‖L(X))‖g‖∞

+

∥∥∥∥
m∑

j=0

[F (ξj+1) − F (ξj)]
g(αi)

‖g(αi)‖X

‖g(αi)‖X

∥∥∥
X

6

(
‖F (a)‖L(X) + ‖F (b)‖L(X) +

∥∥∥∥
m∑

j=0

[F (ξj+1) − F (ξj)]
g(αi)

‖g(αi)‖X

∥∥∥∥
X

)
‖g‖∞

6 (‖F (a)‖L(X) + ‖F (b)‖L(X) + (B) varb
a F )‖g‖∞ 6 2‖F‖SV ‖g‖∞,

i.e. (3.1) is true.

Now, let an arbitrary ε > 0 be given. By our assumptions there is a gauge δ on

[a, b] such that

∥∥∥∥S(F, dg, P ) −

∫ b

a

F d[g]

∥∥∥∥
X

< ε whenever P is δ-fine.

Let P0 be an arbitrary δ-fine partition of [a, b]. Then by (3.1) we have

∥∥∥∥
∫ b

a

F d[g]

∥∥∥∥
X

6

∥∥∥∥S(F, dg, P0) −

∫ b

a

F d[g]

∥∥∥∥
X

+ ‖S(F, dg, P0)‖X

< ε + 2‖F‖SV ‖g‖∞.

Since ε > 0 can be arbitrary, it follows that inequality (3.2) is true.

The proof of (3.3) and (3.4) can be obtained in a similar way. �
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Lemma 3.2. Let g : [a, b] → X be a finite step function. Then for any F : [a, b] →

L(X) the integral
∫ b

a
F d[g] exists.

P r o o f. One can check that g : [a, b] → L(X) is a finite step function if and

only if it is a finite linear combination of functions of the form

χ[a,τ ](t)x̃, χ[σ,b](t)ỹ, χ[a](t)z̃, χ[b](t)w̃,

where τ, σ are some points from (a, b) and x̃, ỹ, z̃, w̃ may be arbitrary elements of X.

Hence, by the linearity of the integral, it is sufficient to prove that the integral exists

for functions g of the form

χ[a,τ ]x̃, χ[τ,b]x̃, χ[a]x̃, χ[b]x̃,

where τ ∈ (a, b) and x̃ ∈ X.

Let τ ∈ (a, b), x̃ ∈ X and g = x̃χ[a,τ ]. Given ε > 0 define

δ(t) =

{
ε if t = τ,

1
2 |τ − t| if t 6= τ.

Then for any δ-fine partition P of [a, b], τ is the tag and S(F, dg, P ) = −F (τ)x̃.

Hence ∫ b

a

F d[g] = −F (τ)x̃.

The proofs of the cases g = χ[τ,b]x̃, g = χ[a]x̃ and g = χ[b]x̃ are analogous. �

The next theorem is the first main result of this paper. It supplements Schwabik’s

result in Prop. 2.1 (iii) and the results known for dimX < ∞, see [14], [16], [17].

Theorem 3.3. (i) If F ∈ G([a, b], L(X)), g ∈ (B)BV ([a, b], X), then the integral∫ b

a
d[F ]g exists.

(ii) If F ∈ (B)BV ([a, b], L(X)), g ∈ G([a, b], X), then the integral
∫ b

a
F d[g] exists.

P r o o f. (i) Let Fn : [a, b] → L(X), n ∈ N, be a sequence of finite step functions

such that

lim
n→∞

‖Fn − F‖∞ = 0.

Since Fn ∈ BV ([a, b], L(X)) for each n ∈ N, it follows from Proposition 2.1 (iii)

that for each n ∈ N the integral
∫ b

a
d[Fn]g exists. Moreover, these integrals define

a Cauchy sequence in the Banach space X. Indeed, given ε > 0 there is n0 ∈ N such

that ‖Fn − F‖∞ < ε for n > n0. Thus, using Lemma 3.1, we obtain

∥∥∥∥
∫ b

a

d[Fn − Fm]g

∥∥∥∥
X

6 2‖Fn − Fm‖∞‖g‖SV 6 4ε‖g‖SV for all m, n > n0.
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Therefore there is I ∈ X such that I = lim
n→∞

∫ b

a
d[Fn]g. This implies that there exists

N ∈ N such that N > n0 and

∥∥∥∥
∫ b

a

d[FN ]g − I

∥∥∥∥
X

< ε.

Let δ be a gauge on [a, b] such that

∥∥∥∥S(dFN , g, P ) −

∫ b

a

d[FN ]g

∥∥∥∥
X

< ε whenever P is δ-fine.

Having this in mind and using (3.3), for an arbitrary δ-fine partition P of [a, b] we

get

‖S(dF, g, P ) − I‖X

6 ‖S(dF, g, P ) − S(dFN , g, P )‖X

+

∥∥∥∥S(dFN , g, P ) −

∫ b

a

d[FN ]g

∥∥∥∥
X

+

∥∥∥∥
∫ b

a

d[FN ]g − I

∥∥∥∥
X

< 2‖F − FN‖∞‖g‖SV + 2ε < 2ε(‖g‖SV + 1),

which concludes the proof of the assertion (i).

The assertion (ii) can be proved by the same arguments using Lemma 3.2 instead

of Proposition 2.1. �

The following assertion is a direct consequence of Lemma 3.1 and Theorem 3.3.

Corollary 3.4. (i) Let g, gn ∈ G([a, b], X), n ∈ N, and lim
n→∞

‖gn− g‖∞ = 0. Then

for any F ∈ (B)BV ([a, b], L(X)), the integrals

∫ b

a

F d[g] and

∫ b

a

F d[gn], n ∈ N,

exist and

lim
n→∞

∫ b

a

F dgn =

∫ b

a

F dg.

(ii) Let F, Fn ∈ G([a, b], L(X)), n ∈ N, and lim
n→∞

‖Fn − F‖∞ = 0. Then for any

g ∈ (B)BV ([a, b], X), the integrals

∫ b

a

d[F ]g and

∫ b

a

d[Fn]g, n ∈ N,
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exist and

lim
n→∞

∫ b

a

d[Fn]g =

∫ b

a

d[F ]g.

Thanks to Theorem 3.3, we are now also able to extend the Integration by Parts

Theorem by Schwabik (cf. Proposition 2.1 (iv) or [11, Theorem 10]) and the Substi-

tution Theorems by Federson (cf. [1, Theorems 11 and 12]) to the form suitable for

dealing with generalized differential equations in a Banach space as needed in our

forthcoming paper [5]. This will be the content of the rest of these notes.

Lemma 3.5. (i) If F ∈ G([a, b], L(X)) and g ∈ (B)BV ([a, b], X) ∩ G([a, b], X),

then

(3.5)

∥∥∥∥
∑

t∈[a,b)

∆+F (t)∆+g(t) −
∑

t∈(a,b]

∆−F (t)∆−g(t)

∥∥∥∥
X

6 4‖F‖∞((B) varb
a g).

(ii) If F ∈ (B)BV ([a, b], L(X)) ∩ G([a, b], L(X)) and g ∈ G([a, b], X), then

∥∥∥∥
∑

t∈[a,b)

∆+F (t)∆+g(t) −
∑

t∈(a,b]

∆−F (t)∆−g(t)

∥∥∥∥
X

6 4((B) varba F )‖g‖∞.

P r o o f. (i) Let F ∈ G([a, b], L(X)) and g ∈ (B)BV ([a, b], X) ∩ G([a, b], X). By

[11, Lemma 11] the series in (3.5) converge. It is known that the points of disconti-

nuities of a regulated function are at most countable (see [4, Corollary I.3.2.b]). Let

{sk} be the set of common points of discontinuity of the functions F and g in (a, b),

so we can write

∑

t∈[a,b)

∆+F (t)∆+g(t) −
∑

t∈(a,b]

∆−F (t)∆−g(t)

= ∆+F (a)∆+g(a) − ∆−F (b)∆−g(b)

+
∞∑

k=1

[∆+F (sk)∆+g(sk) − ∆−F (sk)∆−g(sk)].

For n ∈ N, define

Sn = ∆+F (a)∆+g(a) − ∆−F (b)∆−g(b)

+

n∑

k=1

[∆+F (sk)∆+g(sk) − ∆−F (sk)∆−g(sk)].

Let ε > 0 and n ∈ N be given and let {t1, t2, . . . , tn} ⊂ (a, b) be such that

{t1, t2, . . . , tn} = {s1, s2, . . . , sn} and a < t1 < t2 < . . . < tn < b.
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Then
Sn = ∆+F (a)∆+g(a) − ∆−F (b)∆−g(b)

+

n∑

k=1

[
∆+F (tk)∆+g(tk) − ∆−F (tk)∆−g(tk)].

Furthermore, for each k = 1, 2, . . . , n, choose δk > 0 in such a way that

‖g(tk + δk)− g(tk+)‖X <
ε

8(n + 1)‖F‖∞
, ‖g(tk − δk)− g(tk−)‖X <

ε

8(n + 1)‖F‖∞

and

[tk − δk, tk + δk] ∩ {t1, t2, . . . , tn} = {tk}.

Analogously, let δ0 > 0 be such that

a + δ0 < t1 and ‖g(a + δ0) − g(a+)‖X <
ε

8‖F‖∞

and

b − δ0 > tn and ‖g(b−)− g(b − δ0)‖X <
ε

8‖F‖∞
.

Now, noting that

‖∆+F (t)‖L(X) 6 2‖F‖∞ for t ∈ [a, b)

and

‖∆−F (t)‖L(X) 6 2‖F‖∞ for t ∈ (a, b],

we can see that

‖Sn‖X

< 2‖F‖∞

(
‖g(a+) − g(a + δ0)‖X +

n∑

k=1

‖g(tk+) − g(tk + δk)‖X

)

+

∥∥∥∥∆+F (a)[g(a + δ0) − g(a)] +

n∑

k=1

∆+F (tk)[g(tk + δk) − g(tk)]

∥∥∥∥
X

+ 2‖F‖∞

(
‖g(b − δ0) − g(b−)‖X +

n∑

k=1

‖g(tk − δk) − g(tk−)‖X

)

+

∥∥∥∥∆−F (b)[g(b) − g(b − δ0)] +

n∑

k=1

∆−F (tk)[g(tk) − g(tk − δk)]

∥∥∥∥
X

<
ε

4
+

nε

4(n + 1)
+

ε

4
+

nε

4(n + 1)

+ 2‖F‖∞

∥∥∥∥
∆+F (a)

2‖F‖∞
[g(a + δ0) − g(a)] +

n∑

k=1

∆+F (tk)

2‖F‖∞
[g(tk + δk) − g(tk)]

∥∥∥∥
X

+ 2‖F‖∞

∥∥∥∥
∆−F (b)

2‖F‖∞
[g(b) − g(b − δ0)] +

n∑

k=1

∆+F (tk)

2‖F‖∞
[g(tk) − g(tk − δk)]

∥∥∥∥
X

.
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Summarizing, we have

‖Sn‖X

< ε + 2‖F‖∞

∥∥∥∥
∆+F (a)

2‖F‖∞
[g(a + δ0) − g(a)] +

n∑

k=1

∆+F (tk)

2‖F‖∞
[g(tk + δk) − g(tk)]

∥∥∥∥
X

+ 2‖F‖∞

∥∥∥∥
∆−F (b)

2‖F‖∞
[g(b) − g(b − δ0)] +

n∑

k=1

∆−F (tk)

2‖F‖∞
[g(tk) − g(tk − δk)]

∥∥∥∥
X

6 ε + 4‖F‖∞((B) varb
a g).

As ε > 0 can be arbitrarily small, we finally deduce that the estimate

‖Sn‖X 6 4‖F‖∞((B) varb
a g

)

is true for each n ∈ N, wherefrom the desired estimate (3.5) follows.

(ii) Similarly we can proceed in the case F ∈ (B)BV ([a, b], L(X))∩G([a, b], L(X))

and g ∈ G([a, b], X). �

Corollary 3.6 (Integration by parts). Let F ∈ (B)BV ([a, b], L(X)) ∩ G([a, b],

L(X)) and g ∈ G([a, b], X) (or F ∈ G([a, b], L(X)) and g ∈ (B)BV ([a, b], X) ∩

G([a, b], X)). Then both the integrals

∫ b

a

F d[g] and

∫ b

a

d[F ]g

exist and

(3.6)

∫ b

a

F d[g] +

∫ b

a

d[F ]g

= F (b)g(b) − F (a)g(a) −
∑

a6t<b

∆+F (t)∆+g(t) +
∑

a<t6b

∆−F (t)∆−g(t)

holds.

P r o o f. a) Let F ∈ (B)BV ([a, b], L(X)) ∩ G([a, b], L(X)) g ∈ G([a, b], X) and

let {gn} be a sequence of finite step functions on [a, b] which tends uniformly to g on

[a, b]. Then by Proposition 2.1 (iv) we have

(3.7)

∫ b

a

F d[gn] +

∫ b

a

d[F ]gn − F (b)gn(b) + F (a)gn(a)

= −
∑

a6t<b

∆+F (t)∆+gn(t) +
∑

a<t6b

∆−F (t)∆−gn(t)
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for any n ∈ N. By Proposition 2.1(ii) and Corollary 3.4(i), the relation

lim
n→∞

( ∫ b

a

F d[gn] +

∫ b

a

d[F ]gn − F (b)gn(b) + F (a)gn(a)

)

=

∫ b

a

F d[g] +

∫ b

a

d[F ]g − F (b)g(b) + F (a)g(a)

holds. Further, by Lemma 3.5 (ii) the estimate

∥∥∥∥
∑

a6t<b

∆+F (t)∆+(g(t) − gn(t)) −
∑

a<t6b

∆−F (t)∆−(g(t) − gn(t))

∥∥∥∥
X

6 4((B) varba F )‖g − gn‖∞

is true. Consequently,

lim
n→∞

( ∑

a6t<b

∆+F (t)∆+gn(t) −
∑

a<t6b

∆−F (t)∆−gn(t)

)

=
∑

a6t<b

∆+F (t)∆+g(t) −
∑

a<t6b

∆−F (t)∆−g(t).

Summarizing, letting n → ∞ in (3.7) we obtain (3.6).

b) Similarly we can proceed if F ∈ G([a, b], L(X)) and g ∈ BV ([a, b], X). �

Theorem 3.7 (Substitution Theorem). Asume that H ∈ (B)BV ([a, b], L(X)).

Let F : [a, b] → L(X) and let g : [a, b] → X be such that the integral
∫ b

a
d[F ]g and at

least one of the integrals

∫ b

a

H(t)dt

[ ∫ t

a

d[F ]g

]
,

∫ b

a

Hd[F ]g

exist. Then also the other one has sense and the equality

(3.8)

∫ b

a

H(t)dt

[∫ t

a

d[F ]g

]
=

∫ b

a

Hd[F ]g

holds.
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P r o o f. Put K(t) =
∫ t

a
d[F ]g for t ∈ [a, b]. Let P = (D, ξ), where D =

{α0, α1, . . . , αm}, ξ = (ξ1, . . . , ξm), be an arbitrary partition of [a, b]. Then

(3.9) ‖S(H, dF, g, P ) − S(H, dK, P )‖X

=

∥∥∥∥
m∑

j=1

H(ξj)

(
[F (αj) − F (αj−1)]g(ξj) −

∫ αj

αj−1

d[F ]g

)∥∥∥∥
X

6

∥∥∥∥
m∑

j=1

[H(ξj) − H(ξj−1)]

( m∑

k=j

[F (αk) − F (αk−1)]g(ξk) −

∫ αk

αk−1

d[F ]g

)∥∥∥∥
X

+

∥∥∥∥H(a)

( m∑

k=1

[F (αk) − F (αk−1)]g(ξk) −

∫ αk

αk−1

d[F ]g

)∥∥∥∥
X

.

(Here, analogously to the proof of Theorem 11 in [1], we made use of the relation

m∑

j=1

AjBj =

m∑

j=1

[Aj − Aj−1]

( m∑

k=j

Bk

)
+ A0

( m∑

k=1

Bk

)

valid for arbitrary collections of operators Aj , j = 0, 1, . . . , m, Bj , j = 1, 2, . . . , m.)

Now, let an ε > 0 be given, let δε be a gauge on [a, b] such that

∥∥∥∥S(dF, g, P ) −

∫ b

a

d[F ]g

∥∥∥∥
X

< ε for all δε-fine partitions P of [a, b]

and let P = (D, ξ), where D = {α0, α1, . . . , αm}, ξ = (ξ1, . . . , ξm), be an arbitrary

δε-fine partition of [a, b]. Then, by the Saks-Henstock lemma (cf. e.g. [8, Lemma 16]),

we have

∥∥∥∥
m∑

k=j

[F (αk) − F (αk−1)]g(ξk) −

∫ αk

αk−1

d[F ]g

∥∥∥∥
X

6 ε for j = 1, 2, . . . , m.

Inserting this into (3.9), we get

‖S(HdF, g, P ) − S(H, dK, P )‖X

6

∥∥∥∥ε

m∑

j=1

[H(ξj) − H(ξj−1)]

(
1

ε

m∑

k=j

([F (αk) − F (αk−1)]g(ξk) −

∫ αk

αk−1

d[F ]g)

)∥∥∥∥
X

+

∥∥∥∥H(a)

( m∑

k=1

[F (αk)−F (αk−1)]g(ξk)−

∫ αk

αk−1

d[F ]g

)∥∥∥∥
X

6 ε((B) varba H) + ‖H(a)‖X),

wherefrom the proof immediately follows. �
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The last result of this paper provides a different version of the Substitution The-

orem not covered by Theorem 3.7 and which is also applicable to generalized dif-

ferential equations. On the one hand, it assumes H ∈ G([a, b], L(X)) instead of

H ∈ (B)BV ([a, b], L(X)). On the other hand, F should be of bounded variation on

[a, b] and g bounded on [a, b].

Theorem 3.8 (Second Substitution Theorem). Assume F ∈ BV ([a, b], L(X)),

the function g : [a, b] → X is bounded and let the integral
∫ b

a
d[F ]g exist. Then, for

each H ∈ G([a, b], L(X)), both the integrals in (3.8) exist and the equality (3.8) is

true.

P r o o f. Step 1. First, we show that (3.8) holds for every finite step function

H : [a, b] → L(X).

By the linearity of the integral and since a finite step function H : [a, b] → L(X)

is a finite linear combination of functions of the form

χ[a,τ ](t)H̃1, χ[σ,b](t)H̃2, χ[a](t)H̃3, χ[b](t)H̃4,

where τ, σ ∈ (a, b) and H̃i ∈ L(X), i = 1, 2, 3, 4, it is enough to justify (3.8) for

functions H of such a form.

Let τ ∈ (a, b), H̃ ∈ L(X), H = χ[a,τ ](t)H̃ and K(t) =
∫ t

a
d[F ]g for t ∈ [a, b].

Obviously,

(3.10)

∫ τ

a

Hd[F ]g =

∫ τ

a

Hd[K] = H̃

∫ τ

a

d[F ]g.

Let ε > 0 be given and let

δ(t) =

{
ε if t = τ,

1
2 |τ − t| if τ < t 6 b.

Then for any δ-fine partition P of [τ, b] with

D = {α0, α1, . . . , αm} and ξ = (ξ1, ξ2 . . . , ξm)

we have ξ1 = α0 = τ, α1 < τ + ε and

S(H, dF, g, P ) = H̃ [F (α1) − F (τ)]g(τ) and S(H, dK, P ) = H̃[K(α1) − K(τ)].

As a result and as a consequence of the Hake theorem for KS-integrals (cf. e.g. [8,

Corollary 24]) we get

∫ b

τ

Hd[F ]g = H̃∆+F (τ)g(τ) and

∫ b

τ

Hd[K] = H̃∆+K(τ) = H̃∆+F (τ)g(τ),
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i.e. ∫ b

τ

Hd[F ]g =

∫ b

τ

Hd[K] = H̃∆+F (τ)g(τ).

This together with (3.10) yields (3.8).

The proofs of the remaining cases H = χ[τ,b]H̃, H = χ[a]H̃ and H = χ[b]H̃ can be

done in a similar way.

Step 2. Next, notice that using arguments analogous to those from the proof

of the assertion (i) in Proposition 2.1, we can show that if F ∈ BV ([a, b], L(X)),

H : [a, b] → L(X) and g : [a, b] → X are such that
∫ b

a
Hd[F ]g exists, then the

estimate ∥∥∥∥
∫ b

a

Hd[F (s)]g(s)

∥∥∥∥
X

6 ‖H‖∞(varb
a F )‖g‖∞

holds. As a consequence, the following assertion is true:

Let F ∈ BV ([a, b], L(X)), Hn : [a, b] → L(X) for n ∈ N and let g : [a, b] → X be

bounded. Moreover, let
∫ b

a
Hnd[F ]g exist for n ∈ N and lim

n→∞
‖Hn−H‖∞ = 0. Then

the integral
∫ b

a

Hd[F ]g

exists and

lim
n→∞

∥∥∥∥
∫ b

a

Hnd[F ]g −

∫ b

a

Hd[F ]g

∥∥∥∥
X

= 0.

Step 3. Let H ∈ G([a, b], L(X)). Denote again K(t) =
∫ t

a
d[F ]g for t ∈ [a, b] and

consider the sequence Hn : [a, b] → L(X), n ∈ N, of finite step functions such that

lim
n→∞

‖Hn−H‖∞ = 0. As K ∈ BV ([a, b], L(X)), by Proposition 2.1 (ii) and steps 1

and 2 we have

∫ b

a

H(t)dt

[∫ t

a

d[F ]g

]
=

∫ b

a

Hd[K] = lim
n→∞

∫ b

a

Hnd[K]

= lim
n→∞

∫ b

a

Hnd[F ]g =

∫ b

a

Hd[F ]g,

i.e., (3.8) is true. �
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