
Applications of Mathematics

David M. Gómez; Pablo Dartnell
Simple Monte Carlo integration with respect to Bernoulli convolutions

Applications of Mathematics, Vol. 57 (2012), No. 6, 617–626

Persistent URL: http://dml.cz/dmlcz/143006

Terms of use:
© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143006
http://dml.cz


57 (2012) APPLICATIONS OF MATHEMATICS No. 6, 617–626

SIMPLE MONTE CARLO INTEGRATION WITH RESPECT TO

BERNOULLI CONVOLUTIONS*

David M. Gómez, Pablo Dartnell, Santiago de Chile

(Received December 21, 2010)

Abstract. We apply a Markov chain Monte Carlo method to approximate the integral of a
continuous function with respect to the asymmetric Bernoulli convolution and, in particular,
with respect to a binomial measure. This method—inspired by a cognitive model of memory
decay—is extremely easy to implement, because it samples only Bernoulli random variables
and combines them in a simple way so as to obtain a sequence of empirical measures
converging almost surely to the Bernoulli convolution. We give explicit bounds for the
bias and the standard deviation for this approximation, and present numerical simulations
showing that it outperforms a general Monte Carlo method using the same number of
Bernoulli random samples.
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1. Introduction

Let (Xn : n > 0) be an independent and identically distributed (i.i.d.) sequence of

Bernoulli-distributed random variables in {−1, +1} with P(X0 = +1) = α ∈ (0, 1).

Given λ ∈ (0, 1), the distribution νλ,α of the random series
∑

n>0

Xnλn is known as

the asymmetric Bernoulli convolution. This distribution has been studied for more

than 70 years, revealing important connections with several areas of mathematics,

such as algebraic number theory, dynamical systems [9], and multifractal theory,

since ν1/2,α, also known as binomial measure, is considered a paradigmatic example

of multifractal measure [8], [10]. It is a continuous distribution [6] whose support is

contained in the interval [−(1 − λ)−1, (1 − λ)−1].

*This research was partly supported by the Associative Research Program of CONICYT
(CIE-05 and BASAL-CMM grants).
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In [4], Calabrò and Corbo Esposito have proposed a number of quadrature for-

mulae for binomial measures, although extending their work to general Bernoulli

convolutions is not straightforward. Another possible approach to integration with

respect to these distributions is given by Monte Carlo procedures. In general, these

procedures provide random approximations of an integral
∫

H dF , for a given func-

tion H and a distribution function F . The most general and conceptually simple

method [7] consists in computing a sample U0, U1, . . . , Un drawn from F and esti-

mating

(1.1)

∫

H dF ≈ In =
1

n + 1

n∑

k=0

H(Uk).

This approximation is guaranteed to converge almost surely to I =
∫

H dF as

n grows because of the Law of Large Numbers, but its practical applicability is limited

by the difficulty of sampling F . Some authors [11] proposed a way of sampling a

piecewise linear approximation to νλ,α, allowing us to compute in a straightforward

manner the Monte Carlo estimate. However, keeping this offline approximation and

using it to compute random samples by—for instance—inverse transform sampling

may involve important memory and computational demands.

Dovgoshey and colleagues [5] obtained a recursive expression for the moments

mn =
∫

xn dC(x) of the Cantor function. As the Cantor function is a special case of

Bernoulli convolution when λ = 1
3 (up to a change of scale in the x-axis), a general

integration method with respect to Bernoulli convolutions would provide a way to

compute integrals of the kind
∫

H(x) dC(x) for some broader class of functions H .

In this note we present a Markov chain Monte Carlo procedure (abbreviated

as MCMC, see [1] for an introduction) for integrating with respect to νλ,α, namely

generating a sequence (Uk) of non-independent random variables whose empirical

distributions converge almost surely to νλ,α. This method turns out to have rather

low requirements in terms of memory and computational power.

The motivation for developing this method comes from a cognitive model

of memory: think of an agent who observes a sequence of i.i.d. random out-

comes X0, X1, . . . , Xn, one at a time. It is well known that, in statistical terms, in

order to estimate E(X0) the best that this agent can do is to compute the sample

mean (n + 1)−1(X0 + . . . + Xn). Nonetheless, a more realistic model for a living

agent is to take into account the effect of memory decay, so that the most recent

outcomes are weighted more than the distant ones. This topic has raised a wide de-

bate in psychological literature, and one of the main ways of incorporating memory

strength decay is by what is called exponential decay [12], which implies that the
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agent estimates E(X0) by means of a weighted average

(1.2)
X0λ

n + X1λ
n−1 + . . . + Xn−1λ + Xn

λn + λn−1 + . . . + λ + 1
,

where λ ∈ (0, 1) is a parameter idiosyncratic to the agent, called rate of forgetting.

Since the denominator in expression (1.2) converges to a constant, the asymptotic

behavior of this weighted average is determined by the numerator Un =
n∑

k=0

Xn−kλk.

The properties of this random sum are the ones leading to the method presented in

the next section.

2. The method

Our procedure simplifies the computation of In by using a non-independent, easy-

to-compute sample U0, U1, . . . , Un converging in law to νλ,α. Specifically, based on a

random sample X0, X1, . . . , Xn of a Bernoulli distribution in {−1, +1} we build the

sequence (Ui : i = 0, . . . , n) by means of the recursive procedure

(2.1)

{

U0 = X0,

Ui = Xi + λ · Ui−1 (i = 1, . . . , n).

The sequence (Un) can be thought of as a Markov chain in the countable state

space

A =

{ n∑

k=0

akλk : n > 0, a0, . . . , an ∈ {−1, +1}

}

,

with transitions a → f+(a) = 1 + λa and a → f−(a) = −1 + λa and associated

probabilities α and 1 − α. This approach can be seen as sampling the iterated

function system [2] associated with νλ,α given by f+, f−, and α.

Since (Xk) is i.i.d., Un has the same law as Sn =
n∑

k=0

Xkλk. The space (Sn) con-

verges almost surely to S∞ =
∑

k>0

Xkλk, thus it converges in law to νλ,α and the

same can then be said of (Un). However, we observe that (Un) converges almost

nowhere. This follows from the fact that for any d > 1, with probability one

Xm = Xm+1 = . . . = Xm+d−1 = +1 for infinitely many values of m. For every

such m we have that

Um+d−1 =

m+d−1∑

k=d

Xm+d−1−kλ
k +

d−1∑

k=0

λk = λd
m−1∑

k=0

Xm−1−kλk +
1 − λd

1 − λ

>
−λd

1 − λ
+

1 − λd

1 − λ
=

1 − 2λd

1 − λ
,
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showing that (1−λ)−1 is an accumulation point of (Un). Applying the same reasoning

to the sequence (X̃k = −Xk) we conclude that (Un) also accumulates on −(1−λ)−1,

being then non-convergent.

We thus build our approximation In as given by Equation (1.1). The following

lemma is a crucial step for stating the convergence of In.

Lemma 2.1. Let Fn be the empirical distribution function of U0, . . . , Un:

Fn(y) =
1

n + 1

n∑

k=0

I{Uk 6 y} for any y ∈ R.

Then In =
∫

H dFn.

P r o o f. For k = 0, . . . , n, let Ak be the (finite) atom set of Uk, and denote

Bk = A0 ∪ . . . ∪ Ak. We can write H(Uk) as
∑

y∈Bn

H(y)I{Uk = y}, which implies

In =
1

n + 1

n∑

k=0

∑

y∈Bn

H(y)I{Uk = y} =
∑

y∈Bn

H(y)

n + 1

n∑

k=0

ind{Uk = y}

=
∑

y∈Bn

H(y)(Fn(y) − Fn(y−)) =

∫

H dFn.

�

Theorem 2.1. Let H : R → R be a continuous function. With probability one,

lim
n→∞

In =

∫

H dνλ,α.

P r o o f. Denote by F the distribution function of νλ,α. Given our previous

lemma and the continuity of F , we just need to show that for any y ∈ R

(2.2) lim
n→∞

Fn(y) = F (y) almost surely.

In order to prove this, we employ a result proved in [3], providing almost sure

versions of a wealth of weak limit theorems. Specifically, we are concerned with an

almost sure version of the convergence in law of (Un) to νλ,α. We observe that for k <

n, Un can be written as λn−kUk + U ′
n,k, where U ′

n,k depends only on Xk+1, . . . , Xn.

Hence, denoting cn = λ−n, the dependence of Un on the initial variables X0, . . . , Xk

is given by the term λn−kUk, whose absolute value is bounded by (1 − λ)−1ck/cn.
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The sequence (cn) fulfils all the hypotheses required in Theorem 1 in [3], implying

that for any y ∈ R

lim
n→∞

1

d0 + . . . + dn

n∑

k=0

dkI{Uk < y} = F (y) almost surely,

where the weights dk are given by dk = log(ck+1/ck). We note, however, that in our

case these weights are constant: dk = |log λ|, meaning that

lim
n→∞

Fn(y−) = F (y) almost surely.

From Fn(y) − Fn(y−) = (n + 1)−1
n∑

k=0

I{Uk = y} it follows that Fn(y) and

Fn(y−) are equal for all but an at most countable number of y ∈ R, implying Equa-

tion (2.2) for this class of y and consequently for all y ∈ R. �

Given the fact that we do not sample directly νλ,α, In turns out to be biased. The

following result gives an explicit bound for the bias when H is minimally regular.

Lemma 2.2. Let H be a function of class C1. Then the bias of In is O(n−1).

P r o o f. We first notice that for all k > 0, E(H(Uk)) = E(H(Sk)), and that
∫

H dνλ,α = E(H(S∞)). Then

∣
∣
∣
∣

∫

H dνλ,α − E(In)

∣
∣
∣
∣
6

1

n + 1

n∑

k=0

E(|H(S∞) − H(Sk)|)

6
‖H ′‖∞
n + 1

n∑

k=0

E(|S∞ − Sk|) 6
‖H ′‖∞
n + 1

n∑

k=0

∑

j>k+1

λj

6
λ‖H ′‖∞

(1 − λ)2(n + 1)
,

which concludes the proof (we consider ‖H ′‖∞ to be the maximum computed over

the bounded interval [−(1−λ)−1, (1−λ)−1], which contains the support of νλ,α). �

We remark that a better speed of convergence for the bias can be obtained with

slight changes of In, and essentially the same proof: for instance, given δ ∈ (0, 1), the

bias of (n − ⌈δn⌉ + 1)−1
n∑

k=⌈δn⌉

H(Uk) is O(n−1λδn) for any function H of class C1.
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3. Standard deviation

In the general Monte Carlo approach where the samples are independent, it is

known that the standard deviation of In is proportional to n−1/2. In our case, by

observing that for any j > i, the quantity ∆ij = Uj − λj−iUi depends only on

Xi+1, . . . , Xj , we conclude that Cov(Ui, Uj) = λj−i Var(Ui) > 0 and thus the decay

of the variance of In may, in principle, be slower. However, our last result will

show that if H has one more continuous derivative then the decay of the standard

deviation of In is still O(n−1/2).

Theorem 3.1. Let H be a function of class C2. Then the standard deviation

of In is O(n−1/2).

P r o o f. By using the Taylor expansion of H around y = ∆ij , we can write for

j > i

H(Uj) = H(∆ij) + H ′(∆ij)λ
j−iUi + εij .

Recalling that Ui and ∆ij are independent, we write Cij = Cov(H(Ui), H(Uj)) as

Cij = λj−i Cov(H(Ui), H
′(∆ij)Ui) + Cov(H(Ui), εij)

= λj−i
E(H ′(∆ij))Cov(H(Ui), Ui) + Cov(H(Ui), εij).

Given that the magnitude of the residual εij is bounded by
1
2U2

i ‖H
′′‖∞λ2(j−i), we

can bound also this covariance as follows:

|Cij | 6 Var(H(Ui))
1/2(λj−i|E(H ′(∆ij))|Var(Ui)

1/2 + Var(εij)
1/2)

6 Var(H(Ui))
1/2(λj−i‖H ′‖∞ Var(Ui)

1/2 + E(ε2
ij)

1/2)

6 λj−i Var(H(Ui))
1/2

(

‖H ′‖∞ Var(Ui)
1/2 +

1

2
E(U4

i )1/2‖H ′′‖∞

)

︸ ︷︷ ︸

Ki

.

Thus,

n∑

i=0

n∑

j=i+1

|Cov(H(Ui), H(Uj))| 6

n∑

i=0

Ki

n∑

j=i+1

λj−i 6
λ

1 − λ

n∑

i=0

Ki.

This gives, in turn, the following bound for Var(In):

Var(In) 6
1

(n + 1)2

[ n∑

k=0

Var(H(Uk)) +
2λ

1 − λ

n∑

i=0

Ki

]

.
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Finally, the convergence in law of (Ui) to νλ,α allows us to use the following

asymptotically equivalent bound

Var(H(νλ,α))

n + 1
(3.1)

+
2λ · Var(H(νλ,α))1/2

(1 − λ)(n + 1)

(

‖H ′‖∞ Var(νλ,α)1/2 +
1

2
E(ν4

λ,α)1/2‖H ′′‖∞

)

.

�

Equation (3.1) allows for a quick comparison with a general Monte Carlo method,

whose variance is given by (n + 1)−1 Var(H(νλ,α)) when using n + 1 independent

samples of νλ,α. The overhead given by the second term in (3.1) can be seen as a

penalty for building an estimate from sampling a much simpler distribution. How-

ever, in the next section we show that this overhead can in practice be smaller than

the savings represented by avoiding the sampling of νλ,α.

4. Numerical assessment

In this last section, we show a numerical comparison between our proposed method

and a general Monte Carlo approach in the case of the binomial measure µα = ν1/2,α.

The latter will be implemented by using independent samples of an approximation

to µα.

We selected two functions from [4], namely1 H1(y) = sin(πy) + 1
4 cos(8πy) and

H2(y) =
√

|y|. We deliberately chose H2 not of class C
1 in order to evaluate conver-

gence when our bounds are uninformative.

For implementing the general Monte Carlo procedure, we remind the reader that

Sn =
n∑

k=0

Xk2−k converges in law to µα, and moreover, the distance between µα and

the distribution of Sn in uniform norm is O(Mn), with M = max{α, 1 − α} (see

Corollary 2.4 in [11]). Hence, a way of simulating approximately µα is sampling SN

for big N . We took this approach rather than computing an offline approximation

to the distribution of µα, because it allows us to make a fair comparison between

methods based on sampling only Bernoulli random variables, and with little memory

consumption (as opposed to keeping a detailed offline approximation to µα, such as

the one proposed in [11]). In fact, we chose the parameters for both methods so

that the number of Bernoulli samples is equated. That is, whereas for our proposed

1Actually, H2 is an adaptation of the function
√

y these authors utilized. We did so
because they assumed the binomial measure to be supported in the interval [0, 1], whereas
we work in [−2, 2].
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method we consider (n + 1) random samples from a Bernoulli distribution used to

build In, we define n′ = (n + 1)/(N + 1)−1 and take random samples V0, V1, . . . , Vn′

of SN for computing

IMC
n′ =

1

n′ + 1

n′

∑

k=0

H(Vk),

which is the approximation given by the general Monte Carlo approach. In what

follows, we fix N = 19 and take several values for n. In order to estimate the variance

of In and IMC
n′ , we computed 10000 simulations of the associated sampling processes.

All computations were done using Octave version 3.2.3 (http://www.octave.org/).

The actual values for
∫

Hi dνλ,α, i = 1, 2, were approximated by substituting νλ,α

by an exact, offline computation of the distribution of S24. This choice is due to

the convergence in law of (Sn) to µα, and to the fact that the difference between
∫

H dSn for n = 23, 24 is much smaller—by several orders of magnitude—than the

approximation errors of the two random estimates In, IMC
n′ that we compare in

this section. However, other ways of computing the value of these integrals may be

considered (such as the adaptive procedure presented in [4]), giving similar numbers.

In Fig. 1A we show the average relative error of both the methods as a function

of the number of Bernoulli random samples involved, whereas Fig. 1B depicts their

standard deviations. Notice that in average In is at least as good as the general

Monte Carlo approximation IMC
n′ , and in some cases it gives much better results.

Fig. 1 B shows that the standard deviation of the approximation In for the integral

of H1 decays as n−1/2, just as it is the case for IMC
n′ . We omit the corresponding

graphic for H2, because the situation is qualitatively the same (despite the fact that

H2 has a discontinuous derivative at y = 0).
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