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Projective metrizability in Finsler geometry

David Saunders

Abstract. The projective Finsler metrizability problem deals with the ques-
tion whether a projective-equivalence class of sprays is the geodesic class
of a (locally or globally defined) Finsler function. This paper describes an
approach to the problem using an analogue of the multiplier approach to
the inverse problem in Lagrangian mechanics.

1 Introduction
Let M be a manifold of class C∞ which is Hausdorff, second-countable and con-
nected; let τ : T ◦M →M denote its slit tangent bundle; let (xi) be local coordinates
coresponding to some chart on M , and let (xi, yi) be the corresponding fibred co-
ordinates on T ◦M .

A Finsler function [1] is a smooth map F : T ◦M → R which is positive, positively
homogeneous so that F (kv) = kF (v) for v ∈ T ◦M whenever k ∈ R, k > 0, and
strongly convex so that at each point of T ◦M the matrix

gij = 1
2

∂2(F 2)

∂yi ∂yj

is positive definite. Each Finsler function F gives rise to a variational problem
on M of a special kind, where if γ : (a, b) → M is an extremal (in other words, a
geodesic) then so is γ ◦ φ where φ : (a, b)→ (a, b) with φ′(t) > 0.

On the other hand, a spray [5] is a vector field Γ on T ◦M which is second-order,
so that S(Γ) = ∆ where S is the almost tangent structure on T ◦M , and which is
also homogeneous, so that [∆,Γ] = Γ where ∆ is the vector field on T ◦M given by
the restriction of the dilation field on the tangent manifold TM . Locally

Γ = yi
∂

∂xi
− 2Γi

∂

∂yi
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for some local functions Γi which are positively homogeneous of degree 2. Two
sprays Γ1,Γ2 are said to be projectively related if Γ1−Γ2 = α∆ for some function α.

Every Finsler function F gives rise to a projective class of sprays in the following
way. The Hilbert form of F is the 1-form θF = S(dF ) given locally by

θF =
∂F

∂yi
dxi

and having the property that if γ : (a, b)→M is a geodesic of F then γ′ : (a, b)→
T ◦M is an integral curve of a spray Γ ∈ ker dθF . Furthermore, if γ ◦ φ is a
reparametrized geodesic then (γ ◦ φ)′ is an integral curve of a projectively related
spray Γ− α∆ ∈ ker dθF , and indeed

ker dθF = 〈Γ,∆〉 .

The projective metrizability problem is about the converse question. Given a
projective class {Γ} of sprays on T ◦M , when are these sprays derived from a Finsler
function F on T ◦M , either locally or globally? Here, ‘locally’ means on T ◦U where
v ∈ T ◦M and U is an open neighbourhood of τ(v). There are several approaches
to this problem; we consider only the multiplier approach as an analogue of a
similarly-named approach to the inverse problem in Lagrangian mechanics (see [4]
for a recent survey of this latter problem). We also restrict attention to dimM ≥ 3.

This paper is based on a talk given by the author at the satellite thematic session
‘Geometric Methods in Calculus of Variations’ of the 6th European Congress of
Mathematics in Kraków, July 2012, and reports on joint work with Mike Crampin
and Tom Mestdag [2][3].

2 The comparison with Lagrangian mechanics
Lagrangian mechanics, in the time-independent case, considers a function L on the
tangent manifold TM , and the corresponding local Euler-Lagrange equations

∂L

∂xj
=

d

dt

∂L

∂yj
;

by writing zi = ẏi = ẍi the total derivative d/dt on the right-hand side may be
replaced to give the explicit formulation

∂L

∂xj
= zi

∂2L

∂yi ∂yj
.

If the Hessian matrix hij = ∂L/∂yi ∂yj is regular then this equation may be solved
locally for the second derivatives zi, and there is a unique vector field Γ on TM
satisfying S(Γ) = ∆ and with the property that if γ is a solution of the Euler-
Lagrange equations (an extremal of the variational problem defined by L) then γ′

is an integral curve of Γ.
The inverse problem of Lagrangian mechanics is to start with a vector field Γ

satisfying S(Γ) = ∆, and to determine whether Γ arises from a Lagrangian in this
way. Any such vector field may again be written locally as

Γ = yi
∂

∂xi
− 2Γi

∂

∂yi
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(without, of course, any homogeneity condition on the functions Γi), and any in-
tegral curve of Γ will be the derivative of a curve in M satisfying the second-
order equation zi + 2Γi = 0. Comparing this with the Euler-Lagrange equations
zihij = ∂L/∂xj for a possible Lagrangian L shows the importance of the regularity
of the multiplier matrix hij in the study of this problem.

3 Positivity and strong convexity
The projective metrizability problem for Finsler geometry is, on the face of it, quite
similar to the inverse problem of Lagrangian mechanics. A spray is a vector field
on T ◦M ⊂ TM of the required form, and a Finsler function may be regarded as a
Lagrangian. The difference is that a Finsler function is required to be positively
homogeneous, and so its Hessian matrix can never be regular; indeed

yj
∂2F

∂yi ∂yj
= 0 .

We shall, though, need some kind of regularity, and we can see how to approach
this by writing

hij =
∂2F

∂yi ∂yj
, gij = 1

2

∂2(F 2)

∂yi ∂yj
= hijF +

∂F

∂yi
∂F

∂yj
.

Define hij to be positive quasidefinite if hij(y)vivj ≥ 0, with equality only when
v = λy; say that a function F on T ◦M is a pseudo-Finsler function if it is positively
homogeneous and if its Hessian hij is positive quasidefinite. The following result
is essentially Theorem 1 of [2].

Theorem 1. If F is a pseudo-Finsler function on T ◦M then locally there is a Finsler
function F̃ such that F − F̃ is a total derivative, so that F and F̃ satisfy the same
Euler-Lagrange equations and therefore have the same geodesics. If in addition F
is positive then gij is positive definite, so that F is itself a Finsler function. If F is
absolutely homogeneous, so that F (kv) = |k|F (v) for any k 6= 0 rather than only
for k > 0, then F is necessarily positive, so that again it is a Finsler function.

4 Projective classes of sprays
The projective metrizability problem considers a projective class {Γ} of sprays,
and asks whether there is a corresponding Finsler function F . (Given F , one may
select a distinguished spray from the class by requiring Γ(F ) = 0; this gives rise to
a different inverse problem, starting with a single spray, which we do not consider
here.)

We approach this problem by adapting a technique which has been used to
study the inverse problem in Lagrangian mechanics. Every spray on T ◦M gives
rise to a nonlinear connection on τ with horizontal projector

HΓ = 1
2 (I − LΓS) = dxi ⊗

(
∂

∂xi
− ∂Γj

∂yi
∂

∂yj

)
;

the connection allows us to define the horizontal lift Xh = HΓ(X) of a vector field
X along τ (that is, of a section of the pull-back bundle τ∗TM → T ◦M). We may
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also use the almost tangent structure to define the vertical lift Xv = S(X); in
coordinates, if X = Xi∂/∂xi where Xi are locally defined functions on T ◦M then

Xh = Xi

(
∂

∂xi
− ∂Γj

∂yi
∂

∂yj

)
, Xv = Xi ∂

∂yi
.

We now define the dynamical covariant derivative ∇ and the Jacobi endomor-
phism Φ acting on a vector field X along τ by

[Γ, Xh] = (∇X)h + (ΦX)v , [Γ, Xv] = −Xh + (∇X)v .

With these tools at hand, we can now state a result which is essentially Theorem 2
of [2].

Theorem 2. Suppose given a projective class of sprays. If, in a contractible chart,
a positive quasidefinite matrix of functions hij satisfies the Helmholtz conditions

hji = hij ,
∂hij
∂yk

=
∂hik
∂yj

, hijy
j = 0

and

(∇h)ij = 0 , hijΦ
k
j = hkjΦ

k
i ,

where ∇h and Φkj are the dynamical covariant derivative and Jacobi endomorphism
of any spray in the class, then there is a local pseudo-Finsler function F with Euler-
Lagrange equations satisfied by the geodesics of the sprays.

It follows from Theorem 1 that, when these conditions are satisfied, there is a local
Finsler function with Euler-Lagrange equations satisfied by the geodesics of the
sprays.

5 Global aspects
The result of Theorem 2 has been given in coordinates and is essentially local,
although it is valid for complete fibres (it is ‘y-global’ in the terminology of Finsler
geometry). To consider the existence of a pseudo-Finsler function globally on T ◦M ,
we use the techniques of Čech cohomology.

If {Uλ} is an open cover of M , then we say that {Uλ} is a good cover if all
nonempty finite intersections of the sets Uλ are contractible. It may be shown
that if there is a spray defined on M then M admits a good cover by the domains
of coordinate charts ([2], Appendix B); the proof uses Whitehead’s result on the
existence of geodesically convex sets [6][7].

Let {Uλ} be such a cover. Given a projective class of sprays and a (0,2) tensor
field h along τ whose components in each chart satisfy the conditions of Theorem 2,
there is a pseudo-Finsler function Fλ defined on each Uλ. If Uλ ∩ Uµ is nonempty
then

Fλ − Fµ = yi
∂φλµ
∂xi

for some function φλµ defined on T ◦(Uλ∩Uµ) which is unique to within a constant.
Also, if Uλ ∩ Uµ ∩ Uν is nonempty then

φµν − φλν + φλµ = kλµν
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is constant on the connected set T ◦(Uλ ∩ Uµ ∩ Uν), and if Uκ ∩ Uλ ∩ Uµ ∩ Uν is
nonempty then

kλµν − kκµν + kkλν − kκλµ = 0

on T ◦(Uκ∩Uλ∩Uµ∩Uν). We see from this that the obstruction to the construction
of a global pseudo-Finsler function lies in the second Čech cohomology group of
the cover, and as we have taken a good cover this is isomorphic to the de Rham
cohomology group H2(M). The following result is essentially the second part of
Theorem 3 of [2].

Theorem 3. Suppose given a projective class of sprays. If there is a (0,2) tensor
field h along τ such that

• in each chart of a good atlas the components hij satisfy the Helmholtz con-
ditions and are positive quasidefinite, and

• H2(M) = 0,

then there is a global pseudo-Finsler function F with Euler-Lagrange equations
satisfied by the geodesics of the sprays, and each point of T ◦M has a neighbourhood
on which there is a corresponding local Finsler function.

The example of the spray

Γ = y1 ∂

∂x1
+ y2 ∂

∂x2
+ y3 ∂

∂x3
+
√

(y1)2 + (y2)2 + (y3)2

(
y1 ∂

∂y2
− y2 ∂

∂y1

)
defined on T ◦R3, which is in the projective class of sprays arising from the global
pseudo-Finsler function

F =
√

(y1)2 + (y2)2 + (y3)2 + 1
2 (x2y1 − x1y2) ,

shows that there need not be a global Finsler function giving rise to the projective
class.

6 Multiplier tensors and 2-forms
In a global formulation, the multiplier matrix hij is the coordinate representation
of a symmetric (0,2) tensor field h along the projection T ◦M →M (that is, locally
h = hij dxi ⊗ dxj). This tensor field is closely related to a 2-form on T ◦M which,
given the existence of a Finsler function F , will be the differential dθF of its Hilbert
form. We can therefore translate the conditions on h given above into conditions
on the 2-form; these results are essentially Theorems 5 and 6 of [3].

Theorem 4. Suppose given a spray Γ and a 2-form ω on T ◦M , and let {dxi , φi =
HΓ(dyi)} be a local basis of 1-forms on T ◦M . If

• 〈Γ,∆〉 ⊂ kerω and LΓω = 0,

• ω(V1, V2) = 0 if V1, V2 are vertical, and

• dω(H,V1, V2) = 0 if V1, V2 are vertical and H horizontal
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then in any chart we may write

ω = hijdx
i ∧ φj

where hij satisfies the Helmholtz conditions. It is also the case that a 2-form ω
satisfying the stated conditions must be closed.

It follows that if the matrix hij obtained above is positive quasidefinite on a con-
tractible chart then there will be a local pseudo-Finsler function for Γ.

Theorem 5. Suppose given a projective class of sprays. If there is a 2-form ω
satisfying the conditions of Theorem 4 for any spray in the class, and if the functions
hij are positive quasidefinite, and if furthermore H2(M) = 0, then there is a global
pseudo-Finsler function F with Euler-Lagrange equations satisfied by the geodesics
of the sprays.
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