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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 5 , PAGES 1 0 4 5 – 1 0 6 3

BIAS CORRECTION ON CENSORED LEAST
SQUARES REGRESSION MODELS

Jesus Orbe and Vicente Núñez-Antón

This paper proposes a bias reduction of the coefficients’ estimator for linear regression mod-
els when observations are randomly censored and the error distribution is unknown. The pro-
posed bias correction is applied to the weighted least squares estimator proposed by Stute [28]
[W. Stute: Consistent estimation under random censorship when covariables are present. J.
Multivariate Anal. 45 (1993), 89–103.], and it is based on model-based bootstrap resampling
techniques that also allow us to work with censored data. Our bias-corrected estimator proposal
is evaluated and its behavior assessed in simulation studies concluding that both the bias and
the mean square error are reduced with the new proposal.

Keywords: bias, censoring, least squares, linear regression, Kaplan–Meier estimator

Classification: 62N01, 62F40

1. INTRODUCTION

In duration and survival data analysis we are usually unable to completely observe the
variable of interest T , known as lifetime, failure time, duration or survival. Instead, we
observe Y = min(T,C), where C represents the censoring variable. One of the most
important objectives in this area, as in the case of non-censored data, is to be able to
measure or estimate the effects the X covariates have on the censored variable under
study, T . Researchers working on censored data analysis have treated this problem from
two possible modelling approaches. The first one consists of modelling the covariates’
effect on the hazard function or hazard rate λ(t, x) = f(t, x)/[1 − F (t, x)], where f(·)
and F (·) are, respectively, the probability density and distribution functions for the
censored variable of interest T . Under this approach, the most commonly used model is
the proportional hazards regression model (PH) proposed by Cox [6]:

λ(t, x) = λ0(t)exT β ,

where β is the vector of regression coefficients and λ0(t) is an unspecified function.
The second approach consists of directly analyzing the effect the covariates have on the
censored variable of interest T or on some transformation of it, such as for example,
lnT , with the use of a linear regression model:

ti = xT
i β + εi
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Under the second approach we have the accelerated failure time models (AFT). The most
commonly used model is the proportional hazards regression model and the main reasons
for its use are: (i) the possibility of estimating the covariates’ effect without assuming any
specific probability distribution for the censored variable T after maximizing the partial
likelihood function (see [7]) and, (ii) the availability of this methodology in almost every
statistical software package. However, this model is based on the proportional hazards
assumption and this may not hold in general for some studies. Moreover, in a review
of survival analyses in cancer journals, Altman et al. [2] reported that only five per
cent of all studies using the Cox PH model attempted to verify the PH assumption.
In addition, Cox indicated in Reid [24] that the accelerated failure time models are in
many ways more appealing because of their quite direct physical interpretation. Besides,
Stare et al. [27] claimed that results obtained from the Cox model fits are more difficult
to explain to non-statisticians and provide less information than those obtained from
linear regression fits. Furthermore, if the objective of the study is to be able to make
predictions, then the linear regression modelling approach is clearly more appropriate
than the hazard regression modelling approach.

Wei [36] and Stare et al. [27] pointed out that if there are no censored data, the
most likely modelling approach to be used would be the linear regression modelling
approach instead of the proportional hazards regression modelling approach. Therefore,
the linear regression model could clearly be an interesting alternative to the proportional
hazards model. However, its main disadvantage is that the usual estimation procedure
for AFT models requires the assumption of some probability distribution for T and is
based on maximizing the likelihood function taking into account the presence of censored
observations. In addition, another drawback of the AFT modelling approach is that this
probability distribution function is, in most cases, unknown to the practitioners. In
order to solve this problem, several alternative approaches have been proposed in the
literature for the estimation of the accelerated failure time models without the need
to assume any probability distribution function for T . More specifically, rank-based
methods for censored data have been studied in Tsiatis [35], Ritov [25], Lai and Ying
[17] and Jin et al. [14], and least squares based methods for censored data have been
investigated by Miller [20], Buckley and James [3], Koul et al. [16] and Stute [28].

In this paper, we will focus on least squares based methods, which, as we have just
mentioned, have been approached from quite different perspectives. Our focus on these
methods as alternative to the aforementioned ones is mainly motivated by the fact that,
in our view, least squares methods are flexible enough to be able to handle censored
data situations and, in addition, these methods are commonly and widely used, and well
understood. More specifically, as will be described later in this section, we focus on Stute
[28]’s approach because it is general enough, flexible, it does not require any iterative
procedure for estimating the parameters, and, in addition, it can be easily extended to
partial linear models (Orbe et al. [22]) or to nonlinear models (Stute [33]). Miller [20]
used a least squares minimization procedure with a weighted sum of squares. These
weights took into account the effect of the censored observations and were computed by
estimating the distribution function of the error distribution based on the residuals of the
linear regression using the Kaplan–Meier estimator (see Kaplan and Meier [15]). Thus,
this methodology requires an iterative procedure and, in addition and for the consistency
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of the estimators, it also requires that the censoring variable C have the same assumed
regression model as that of the variable T . Buckley and James [3] proposed to replace
each censored data point yi by an estimate of the conditional expectation E(Ti|Ti > yi)
based on the Kaplan–Meier estimator of the error distribution, which is estimated from
the residuals of the linear regression, and then, they applied the usual least squares
procedure. This methodology also requires an iterative procedure and, as the authors
have pointed out, iterations may eventually settle down to oscillation between two values,
although it seems that the values of the estimator proposed by Buckley and James are
closer than those of the estimator advocated by Miller. Koul et al. [16], proposed to
replace each observed data point yi by the estimated value of δiyi[1 − G(yi)]−1, where
δi = I(ti ≤ ci), and G is the distribution function of the censoring variable, which
could be estimated by using the Kaplan–Meier estimator, and then, they also applied
the usual least squares procedure. The main advantage of this latter estimator is that
it is not necessary to use an estimating iterative procedure. However, Koul et al. [16]
suggested to truncate larger observations in the data. In addition, this method requires
that the censoring variable be independent from the covariates in the model. Stute [28]
proposed a weighted least squares estimator, where the weights considered the effect
of the censoring data and were computed estimating the distribution function of the T
variable based on the Kaplan–Meier weights of the observed variable Y . This estimator
is quite simple to implement, it does not require any computational iteration scheme, it
is consistent under minimal distributional assumptions (see [28]), it allows for random
covariates, and it is easy to generalize to the multiple linear regression models case or
to any other more complex models, such as for example, partial linear models (see Orbe
et al. [22]) or nonlinear models (see Stute [33]).

There are several papers where the aforementioned proposals are compared. Miller
and Halpern [21] concluded that the Buckley and James estimator proposal is more reli-
able than those by Miller and Koul et al. Heller and Simonoff [13] compared the Buckley
and James estimator with those proposed by Chatterjee and McLeish [4], Leurgans [18]
and Schmee and Hahn [26], and concluded that the Buckley and James estimator is
clearly preferred. Stute [28] compared the Buckley and James estimator with his own
proposal and the results indicated that his proposed estimator outperformed that of
the Buckley and James estimator. Against this backdrop, this paper focuses on Stute’s
[28] approach and its main objective is to propose a bias-corrected estimator for Stute’s
proposal that can improve his results for small samples and also for situations where the
bias is an important problem. As will be seen later in the paper, this new proposal not
only reduces the bias but also the mean square error of the estimators.

The rest of the paper is organized as follows. Section 2 describes the estimation
method proposed by Stute [28]. Our proposal for bias correction is introduced in Sec-
tion 3. Section 4 assesses the performance of our proposal and compares it to that of
previous ones through simulation studies. Section 5 provides some concluding remarks.

2. A CENSORED REGRESSION MODEL

We now briefly describe the methodology proposed by Stute [28]. Let us assume that
t1, . . . , tn are independent observations from some unknown distribution function F and,
because of the censoring, not all of the T ’s are available. That is, rather than observing
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ti, we observe

yi = min(ti, ci), δi =

{
1; if ti ≤ ci

0; if ti > ci,

where c1, . . . , cn are the values for the censoring variable C from some unknown distri-
bution function G, which is assumed to be independent of the duration variable T , and
δi is the indicator for the observed failure. In addition, xi represents the k-dimensional
vector of covariates for the ith individual and, for identifiability reasons, Stute [28] as-
sumed that P (T ≤ C|T,X) = P (T ≤ C|T ). As Stute [28] indicates, this condition states
that given the time of failure, the covariates do not provide any further information as
to whether censoring will take place or not. In addition, this condition is also satisfied
if either C is independent of (T,X) or δ and X are independent conditionally on T (see,
Stute [33]). Under these settings, we consider that the relation between the covariates
and the duration is given by

ln ti = xT
i β + εi with E[εi|xi] = 0, (1)

where the εi’s are assumed to be i.i.d. random variables. The estimator of β can be
obtained by minimizing

∑n
i=1 Win[ln y(i) − xT

i β]2, where xi is the vector of covariates
associated to the i-ordered Y -value, y(1) ≤ . . . ≤ y(n) are the ordered Y -values, and
where ties between censored values or uncensored values are arbitrarily ordered, and
ties between uncensored and censored times are treated as if the former precedes the
latter. Thus, y(i) is the ith ordered value of the observed response variable Y and Win

is the Kaplan–Meier weight of the i-order statistic (i. e., the mass attached to the y(i)

order statistic). These weights can be calculated as:

Win = F̂n(y(i))− F̂n(y(i−1)) =
δi

n− i + 1

i−1∏
j=1

[
n− j

n− j + 1

]δj

, (2)

where F̂n is a Kaplan–Meier estimator (see [15]) of the distribution function F , and
F̂n(y(0)) ≡ 0. These weights can be also calculated by using the redistribute to the
right algorithm in Efron [9]. For the uncensored case, these weights take 1/n value and,
thus, this proposal coincides with that of the ordinary least squares method. Thus, the
estimator for β is given by

β̂ = (XT WX)−1(XT W lnY ), (3)

where lnY = (ln y(1), . . . , ln y(n))T , W is a diagonal matrix with the Kaplan–Meier
weights on its main diagonal, and X = [x1, . . . , xn]T is the design matrix or matrix
of covariates. Model (1) can be considered within the class of accelerated failure time
models. However, it allows for the estimation without assuming any distribution for
the duration variable and, therefore, this model can be considered as an interesting
alternative to the previously proposed ones.

The theoretical properties for this estimator for regression with censored data are
provided under very general hypotheses. Stute [28] extended the nonparametric maxi-
mum likelihood estimator of the distribution function F proposed by Kaplan and Meier
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[15], F̂n(t), to a multivariate Kaplan–Meier estimator F̂ 0
n(t, x) to be able to study the

joint distribution of X and T . He proved a general strong law for Kaplan–Meier in-
tegrals,

∫
ϕdF̂ 0

n , for a general function ϕ instead of for an indicator function, which is
the usual in the literature on censored data estimation. Based on this idea, he proved
the consistency of the new regression parameter estimator in the context of the censored
linear regression model. Stute [31] proved the asymptotically normal distribution for the
Kaplan–Meier integrals when covariates are present and Stute [32] provided a consistent
jackknife estimate of the variance of a Kaplan–Meier integral.

3. BOOTSTRAP BIAS CORRECTION PROPOSAL

The issue of the resulting bias for Kaplan–Meier integrals has been previously investi-
gated. In fact, for an indicator function, Gill [12] proved that F̂n(t) is always biased
downwards. Mauro [19] extended this result to a general Kaplan–Meier function, and
Zhou [38] established a lower bound for this bias. Stute [29] derived an explicit formula
for the bias and, in addition, he indicated that the bias of a Kaplan–Meier integral may
be zero if there is no censoring, or it may decrease to zero at different rates depending
on the ϕ function and censoring level in the right tails. Therefore, the objective of the
reduction of the bias is an important task indeed. For the case of indicator functions,
Chen et al. [5] proposed to modify the Kaplan–Meier estimator F̂n(t), so that the indi-
cator of the observed failure for the largest observed value y(n) takes value 1. That is,
δn = 1 regardless of whether the largest observed value is uncensored or not. Wellner
[37] compared both estimators and concluded that the upward bias of the Chen et al.’s
proposal was worse than the downward bias of the usual Kaplan–Meier estimator. Using
the same bias reduction ideas, Stute [30] proposed a modification of the Kaplan–Meier
estimator F̂n(t) based on a bootstrap correction term of the cumulative hazard function.
In order to be able to extend his proposal to a general Kaplan–Meier integral, Stute and
Wang [34] presented the jackknife estimator of the bias of the Kaplan–Meier integral
and a bias-corrected jackknife estimate of the Kaplan–Meier integral. More specifically,
their proposal corrects the estimator of a Kaplan–Meier integral using the estimated
jackknife bias of a Kaplan–Meier integral. As described in Stute and Wang [34], this
estimated jackknife bias is obtained with the same ideas from the usual methodology for
not censored cases, but replacing the empirical distribution function with the Kaplan–
Meier estimator of the distribution function. They basically show that the proposed
jackknife correction modifies the weight assigned to the largest observation, Wnn, by
Wnn + (n− 1)αn/n, where αn is the weight associated to the largest observation in the
Kaplan–Meier estimator, computed for the whole sample that does not include the one
before the last ordered observation.

All of the aforementioned research on the bias of Kaplan–Meier integrals has studied
situations where the covariates are not present in the model. In this paper we concentrate
on the reduction of the bias for the estimator proposed by Stute for the regression
coefficients. We are not aware of any scientific study or attempt that has tried to
correct the bias in those situations, where the estimator for the regression coefficients
is biased. In this way, as can be seen in (3), this estimator is calculated using the
Kaplan–Meier integrals, where the elements of the matrices (XT WX) and (XT W lnY )
are Kaplan–Meier integrals of different ϕ functions. Therefore, we try to reduce the bias
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using and extending the ideas in Stute and Wang [34] for the estimator of the regression
coefficients and, in addition and most importantly, given that it is the main objective in
this paper, we also put forward a different approach that consists in estimating the bias
by using bootstrap techniques, and then building the bias-corrected estimator. In order
to do this, we have proposed a new procedure to generate the bootstrap resamples for
the case of random censorship and a heterogeneous model.

If we review the literature on bootstrap with censored observations, we can basically
find two different approaches to obtain the bootstrap samples, Reid [23] and Efron [10].
The procedure proposed by Efron [10] consists in estimating, by Kaplan–Meier, the
distribution functions for the duration and the censoring variables, F̂n and Ĝn. Then,
using these estimated distribution functions, he generated one sample for the duration
variable, t∗1, . . . , t

∗
n, and another for the censoring variable, c∗1, . . . , c

∗
n. Finally, and as

described in Section 2, he considered the following bootstrap resample:

y∗i = min{t∗i , c∗i }, δ∗i =

{
1; if t∗i ≤ c∗i
0; if t∗i > c∗i

As an alternative, the procedure proposed by Reid [23] consists in estimating, also by
Kaplan–Meier, the distribution function for the duration variable F̂n and, in generating
the bootstrap resample using this estimator. Akritas [1] concluded that the procedure
proposed by Efron is better than the one considered by Reid. These two resample
generating methods were proposed to be applied in homogeneous models; that is, for
models without covariates. In our case, we have covariates in the model because our
modelling objectives focus on the possibility of estimating the effect these covariates have
on the duration variable. For these specific settings, we have two possible approaches:
(i) resampling cases approach, i. e., resampling from (yi, δi, xi); or (ii) a model-based
resampling approach. If there is a belief that the model is correctly specified and we
have a fixed design, the model-based approach is more appropriate (for more details,
see, e. g., Davison and Hinkley [8], or Efron and Tibshirani [11]). Therefore and given
that we have a fixed design and the process generates the sample for a given assumed
model, we propose a new model-based approach bootstrap procedure that can handle the
presence of covariates in the duration model. It is a regression model-based bootstrap
that does not require the assumption of any distribution for the error term, and that
also allows us to work with censored data. In addition, it is a general procedure that
can consider different censoring schemes to generate the bootstrap samples, which is the
main motivation for the proposal included in this paper. Moreover, the process uses
Stute’s identifiability condition described in Section 2, which is a weaker condition than
that of assuming independence between C and (T,X). Finally, our proposal is very
flexible because it does not need to assume any model or probability distribution for the
censoring variable. We now describe the steps required to obtain the proposed bootstrap
bias-corrected estimations:

• Step 1: Following the proposal described in Section 2, estimate model (1).

• Step 2: Obtain the residuals for the aforementioned estimated model:

ε̂i = ln y(i) − xT
i β̂, for i = 1, . . . , n.
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• Step 3: Using the residuals in Step 2 and the indicator of the observed failure;
that is, (ε̂i, δi), compute the distribution function of the residuals by using the
Kaplan–Meier estimator and, thus, obtain the bootstrap resample for the errors:
ε∗1, . . . , ε

∗
n.

• Step 4: Generate the bootstrap sample for the variable of interest by doing model-
based bootstrap. That is,

ln t∗i = xT
i β̂ + ε∗i ; for i = 1, . . . , n.

• Step 5: Generate a vector of Bernoulli variables δ∗i , where

P (δ∗i = 1|t∗i , xi) = 1− Ĝ(t∗−i ), for i = 1, . . . , n,

and obtain the bootstrap indicator for the observed failure. Here, Ĝ denotes the
Kaplan–Meier estimator of the distribution function for the censoring variable,
where Ĝ is computed as in the case of the Kaplan–Meier estimator of the distribu-
tion function for the duration variable but changing the indicator for the observed
failure, so that it now assigns value one to a censored observation.

• Step 6: Generate the censoring variable. If ln T ∗i = ln t∗i and δ∗i = 1, C∗
i is taken

from Ĝ restricted to the interval [t∗i ,+∞), and if lnT ∗i = ln t∗i and δ∗i = 0, C∗
i is

taken from Ĝ restricted to the interval [0, t∗i ).

• Step 7: Estimate model (1), for the bootstrap sample, using the same estimation
procedure as in Step 1. That is:

min
β

n∑
i=1

W ∗
in[ln y∗(i) − xT

i β]2.

• Step 8: Go back to Step 3 and repeat the process M times (i. e., M bootstrap
samples are obtained). This will generate the corresponding M bootstrap estimates
for the parameter β, β̂∗(1), . . . , β̂∗(M).

• Step 9: Using the M bootstrap estimates for parameter β in Step 8, obtain the
bias bootstrap estimate:

b̂ias =
∑M

m=1 β̂∗(m)

M
− β̂.

• Step 10: Finally, obtain the bootstrap bias-corrected estimator, defined as

β̂c2 = β̂ − b̂ias = 2β̂ −
∑M

m=1 β̂∗(m)

M
.

Note that, in Step 5, we use the aforementioned identifiability condition assumed by
Stute [28]; that is, P (T ≤ C|T,X) = P (T ≤ C|T ). Moreover, by jointly using Steps 5
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and 6 above, we generate the variables (X, T,C), where the conditions that T and C
are independent and, in addition, that P (T ≤ C|T,X) = P (T ≤ C|T ) hold. We would
also like to mention that not every joint distribution of the vector (X, T,C) satisfying
these aforementioned conditions can be generated by the proposed algorithm. More
specifically the algorithm may not reflect the possible dependence between C and X.
Of course, these two conditions are also satisfied if C is independent of (T,X). Finally,
in Step 7, as in Section 2, we obtain the bootstrap resample of observed durations as

ln y∗i =

{
ln t∗i ; if δ∗i = 1
ln c∗i ; if δ∗i = 0

The value of M in Step 8 depends on the objective of the study. If we wish to
estimate the distribution of the estimators or to obtain confidence intervals, we need
a large value of at least M = 1000. However, if we are just interested in obtaining
their standard deviations or bias, far lower values are sufficient. For more details about
bootstrap procedures see, e. g., Davison and Hinkley [8] or Efron and Tibshirani [11].

4. SIMULATION STUDY

We have conducted simulation studies to be able to assess the performance of the pro-
posed bias-corrected estimator. The values of the duration variable of interest T were
generated from the model:

lnT = β0 + β1X1 + β2X2 + ε, (4)

where X1 and X2 follow a uniform distribution on the interval (0, 5), β0 = β1 = β2 = 1,
and ε is normally distributed with mean 0 and as standard deviation taking different
values σ = {1, 0.75, 0.5}. The values for the censoring variable C were generated by
using different uniform distribution functions. We consider three possible censoring
levels: 15%, 30 %, and 50%. Table 1 presents the estimated bias results for Stute’s
estimator (i. e., β̂), for the bias-corrected jackknife estimator using the idea presented in
Stute and Wang [34] (i. e., β̂c1), and for the bootstrap bias-corrected estimator proposed
here (i. e., β̂c2). Results reported in Table 1 correspond to a sample of size n = 40 based
on 1000 simulated datasets and using M = 199 bootstrap replicates in each generated
dataset. A brief summary of the more relevant results follows:

• As can be seen in the results reported in Table 1, the resulting bias for the new
proposal, β̂c2, is the smallest one when compared to the estimator without bias
correction or to the jackknife bias-corrected estimator for all of the estimated
regression parameters, for all σ values and censoring levels. The bias reduction
observed for the new proposal is larger for large censoring levels and σ values.

• The univariate mean square error (mse) for each one of the estimated parameters
is smaller for the bootstrap bias-corrected proposal in all cases considered here.

• If we analyze the global estimation performance, using as an indicator the mul-
tivariate mean square error, we can observe in Table 2 that, for all the cases
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(a): Estimates with censoring level 50%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.4388 0.3196 0.5122 -0.1789 0.0332 0.0652 -0.1769 0.0370 0.0683

β̂c1 0.4374 0.3224 0.5137 -0.1781 0.0340 0.0657 -0.1758 0.0380 0.0689

β̂c2 -0.0493 0.3485 0.3509 -0.0543 0.0441 0.0470 -0.0497 0.0466 0.0491

0.75 β̂ 0.3071 0.1900 0.2843 -0.1180 0.0203 0.0342 -0.1163 0.0241 0.0376

β̂c1 0.3053 0.1913 0.2846 -0.1172 0.0207 0.0344 -0.1154 0.0246 0.0379

β̂c2 -0.0345 0.1950 0.1962 -0.0293 0.0248 0.0257 -0.0244 0.0281 0.0287

0.5 β̂ 0.1696 0.0984 0.1272 -0.0616 0.0102 0.0140 -0.0635 0.0130 0.0170

β̂c1 0.1685 0.0994 0.1278 -0.0612 0.0103 0.0141 -0.0630 0.0132 0.0172

β̂c2 -0.0192 0.0933 0.0937 -0.0121 0.0115 0.0116 -0.0119 0.0136 0.0137

(b): Estimates with censoring level 30%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.2611 0.2368 0.3050 -0.0855 0.0217 0.0290 -0.0944 0.0206 0.0295

β̂c1 0.2508 0.2421 0.3050 -0.0822 0.0228 0.0295 -0.0903 0.0216 0.0298

β̂c2 -0.0221 0.2499 0.2504 -0.0227 0.0246 0.0252 -0.0218 0.0247 0.0251

0.75 β̂ 0.1563 0.1393 0.1637 -0.0470 0.0126 0.0149 -0.0575 0.0125 0.0158

β̂c1 0.1477 0.1445 0.1663 -0.0440 0.0136 0.0155 -0.0543 0.0133 0.0162

β̂c2 -0.0145 0.1375 0.1377 -0.0101 0.0135 0.0136 -0.0127 0.0139 0.0141

0.5 β̂ 0.0740 0.0637 0.0692 -0.0204 0.0058 0.0062 -0.0280 0.0058 0.0066

β̂c1 0.0708 0.0656 0.0706 -0.0194 0.0060 0.0064 -0.0268 0.0061 0.0069

β̂c2 -0.0060 0.0623 0.0623 -0.0039 0.0061 0.0061 -0.0060 0.0063 0.0063

(c): Estimates with censoring level 15%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.1336 0.2010 0.2189 -0.0402 0.0174 0.0190 -0.0441 0.0165 0.0185

β̂c1 0.1213 0.2079 0.2227 -0.0371 0.0181 0.0195 -0.0391 0.0179 0.0195

β̂c2 -0.0104 0.2021 0.2022 -0.0089 0.0184 0.0184 -0.0082 0.0178 0.0179

0.75 β̂ 0.0713 0.1179 0.1230 -0.0201 0.0100 0.0104 -0.0240 0.0095 0.0101

β̂c1 0.0623 0.1217 0.1256 -0.0174 0.0105 0.0108 -0.0210 0.0100 0.0105

β̂c2 -0.0077 0.1176 0.1177 -0.0032 0.0103 0.0103 -0.0038 0.0100 0.0100

0.5 β̂ 0.0250 0.0525 0.0532 -0.0077 0.0044 0.0044 -0.0081 0.0042 0.0043

β̂c1 0.0190 0.0545 0.0548 -0.0062 0.0045 0.0046 -0.0060 0.0045 0.0045

β̂c2 -0.0084 0.0517 0.0518 -0.0003 0.0044 0.0044 0.0003 0.0043 0.0043

Tab. 1. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the two

bias-corrected proposals for different values of σ = {1, 0.75, 0.5} and

different censoring levels, 50%, 30 % and 15%.

considered here, the proposed bootstrap bias-corrected estimator, β̂c2, presents
the smallest multivariate mean square error. Here, the multivariate mean square
error is defined as the sum of the individual univariate mean square errors for the
three estimators being considered in the regression model (i. e., β̂0, β̂1 and β̂2) for
each one of the proposed bias-corrected estimators.
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σ %C 50 30 15
1 β̂ 0.6457 0.3635 0.2564
1 β̂c1 0.6483 0.3643 0.2617
1 β̂c2 0.4470 0.3007 0.2385

0.75 β̂ 0.3561 0.1944 0.1435
0.75 β̂c1 0.3569 0.1980 0.1469
0.75 β̂c2 0.2506 0.1654 0.1380
0.5 β̂ 0.1582 0.0820 0.0619
0.5 β̂c1 0.1591 0.0839 0.0639
0.5 β̂c2 0.1190 0.0747 0.0605

Tab. 2. Multivariate mean square errors for estimations without bias

correction versus the two bias-corrected proposals for different values

of σ = {1, 0.75, 0.5} and different censoring levels, 50%, 30%

and 15 %.

(σ,%C) 50 30 15
1 1.445 1.209 1.075

0.75 1.421 1.175 1.040
0.5 1.329 1.098 1.023

Tab. 3. Ratio of multivariate mean square errors for estimations

without bias correction (i. e., β̂) versus the proposed bootstrap

bias-corrected procedure (i. e., β̂c2) for different values of

σ = {1, 0.75, 0.5} and different censoring levels, 50%, 30% and 15 %.

• In relation to the previous comment, Table 3 shows that the advantage of using
the proposed bootstrap bias-corrected estimator is greater when the censoring level
increases and/or the value of σ is larger. Thus, for example, if we consider the
case of a 50% censoring level and σ = 1, the loss when using the non-corrected
version compared to the bootstrap bias-corrected version results in an increment
of 44.5 % on the multivariate mean square error.

• In addition, for the three estimators considered here, when the value for the pa-
rameter σ decreases, the biases and variances corresponding to each coefficient
decrease and, thus, both the univariate and multivariate mean square errors also
decrease. This variance effect is quite clear because by changing σ we increase
or decrease the model’s variability. As suggested by Heller and Simonoff [13], the
effect over the bias could be induced by the asymmetric effect of increasing the σ
parameter on the censoring of the response variable. Thus, a larger positive εi error
in model (1) corresponds to a probably larger and censored ln ti response, while a
larger negative εi error corresponds to a probably uncensored ln ti response.
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(a): Estimates with censoring level 50%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.5303 0.3178 0.5990 -0.2387 0.0277 0.0847 -0.2354 0.0328 0.0882

β̂c1 0.5302 0.3178 0.5989 -0.2387 0.0277 0.0847 -0.2353 0.0329 0.0882

β̂c2 -0.1819 0.3288 0.3618 -0.0613 0.0373 0.0411 -0.0552 0.0429 0.0460

0.75 β̂ 0.3756 0.1984 0.3395 -0.1629 0.0179 0.0444 -0.1521 0.0226 0.0457

β̂c1 0.3754 0.1985 0.3394 -0.1629 0.0179 0.0444 -0.1520 0.0227 0.0458

β̂c2 -0.1325 0.1924 0.2099 -0.0308 0.0216 0.0225 -0.0203 0.0253 0.0257

0.5 β̂ 0.1830 0.1004 0.1339 -0.0811 0.0095 0.0160 -0.0663 0.0124 0.0168

β̂c1 0.1829 0.1005 0.1339 -0.0810 0.0095 0.0160 -0.0663 0.0124 0.0168

β̂c2 -0.0681 0.0895 0.0941 -0.0097 0.0100 0.0101 -0.0009 0.0115 0.0115

(b): Estimates with censoring level 30%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.3766 0.2226 0.3644 -0.1267 0.0177 0.0337 -0.1422 0.0174 0.0377

β̂c1 0.3764 0.2230 0.3647 -0.1266 0.0177 0.0337 -0.1419 0.0176 0.0377

β̂c2 -0.0927 0.2412 0.2498 -0.0246 0.0225 0.0231 -0.0272 0.0226 0.0234

0.75 β̂ 0.2455 0.1272 0.1875 -0.0773 0.0103 0.0162 -0.0916 0.0100 0.0184

β̂c1 0.2449 0.1273 0.1873 -0.0770 0.0103 0.0162 -0.0914 0.0100 0.0184

β̂c2 -0.0657 0.1353 0.1396 -0.0117 0.0124 0.0125 -0.0122 0.0121 0.0123

0.5 β̂ 0.1135 0.0580 0.0709 -0.0348 0.0047 0.0059 -0.0421 0.0047 0.0065

β̂c1 0.1132 0.0580 0.0708 -0.0348 0.0047 0.0059 -0.0419 0.0047 0.0065

β̂c2 -0.0347 0.0599 0.0611 -0.0037 0.0054 0.0054 -0.0025 0.0053 0.0053

(c): Estimates with censoring level 15%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.1849 0.1970 0.2312 -0.0545 0.0163 0.0193 -0.0636 0.0142 0.0182

β̂c1 0.1841 0.1970 0.2309 -0.0542 0.0164 0.0194 -0.0633 0.0142 0.0182

β̂c2 -0.0292 0.2085 0.2094 -0.0096 0.0179 0.0180 -0.0107 0.0167 0.0168

0.75 β̂ 0.1009 0.1104 0.1205 -0.0281 0.0092 0.0099 -0.0344 0.0083 0.0095

β̂c1 0.1003 0.1105 0.1206 -0.0279 0.0092 0.0100 -0.0342 0.0083 0.0095

β̂c2 -0.0169 0.1133 0.1136 -0.0034 0.0096 0.0096 -0.0047 0.0092 0.0092

0.5 β̂ 0.0430 0.0495 0.0513 -0.0123 0.0041 0.0043 -0.0139 0.0038 0.0040

β̂c1 0.0424 0.0495 0.0513 -0.0122 0.0041 0.0043 -0.0137 0.0038 0.0040

β̂c2 -0.0117 0.0510 0.0512 -0.0008 0.0042 0.0042 -0.0003 0.0041 0.0041

Tab. 4. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the two

bias-corrected proposals for different values of σ = {1, 0.75, 0.5} and

different censoring levels, 50%, 30 % and 15% for a constant

censoring scheme.

• We can also try to reduce the width of the support for the censoring up to a
minimum value, so that we are artificially changing the case of random censoring
to that of not random censoring (i. e., when the censoring distribution is constant).
In practice, this is a very common and realistic situation. We can then observe the
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results reported in Table 4, where the bias reduction and the improvement of the
multivariate mean square errors still hold for the proposed bootstrap bias-corrected
estimator, β̂c2.

• It is also important to mention that the width of the support for the censoring
variable has an effect on the resulting bias as well. More specifically, a smaller
width of the support of the censoring variable results in a larger bias for all of the
three estimators being compared here (see Tables 1 to 4). This result is consistent
with the one obtained in Heller and Simonoff [13] for other estimation methods.
In addition, this result can be easily motivated by the fact that a smaller width in
the support of the censoring variable implies that the upper limit for the censoring
is also smaller. As a consequence, we lose information about the duration variable
on the right tail of its distribution probability. In this problematic but common
situation, the advantage of using the proposed bootstrap bias-corrected estimator
is much greater because the bias reduction, and also that of the multivariate mean
square error, is larger (see Table 3).

• Finally, we have to point out that, as expected, as the censoring level decreases,
the mean square errors in each estimator also decrease.

As can be seen from the aforementioned conclusions, the bootstrap bias-corrected
proposal behaves reasonably well, reducing both the estimator’s bias and mean square
error. In addition, we have studied the performance of the bootstrap bias-corrected
proposal considering different alternative scenarios that may be of interest to researchers
in the area and possibly common in real data set situations. We now describe these new
simulations and the conclusions we have obtained from them.

• We start by considering a situation where we have correlated discrete and con-
tinuous covariates. Thus, we consider the situation where the duration variable
T is generated as in equation (4), but where the covariate X1 follows a binomial
probability distribution with parameters p = 1/2 and n = 5, and the covariate X2

is generated in such a way that it is correlated with X1. That is, X2 = X1 + v,
where v is assumed to be normally distributed with mean 0 and standard deviation
1. The error term, ε, has been generated as in the previous simulation study. That
is, ε is normally distributed with mean 0 and standard deviation taking different
values σ = {1, 0.75, 0.5}. The censoring variable C has been generated by using
different uniform distributions, so that we can consider three possible censoring
levels: 15 %, 30 %, and 50 %. Table 5 presents the results for the estimators’ biases
and mean square errors for all of the cases considered here.

• We have also considered other alternative probability distributions for the duration
variable T . That is, distributions different from the log-normal distribution for T ,
which is equivalent to considering distributions different from the normal for the
ε term. In this way, we have studied the case of an exponential regression model,
which assumes a constant hazard function and, in addition, two different Weibull
regression models, where the assumption of a constant hazard function is relaxed.
In order to do this, the duration variable T is now generated from the model:

lnT = β0 + β1X1 + β2X2 + γε, (5)
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where X1 and X2 follow a uniform distribution on the interval (0, 5), β0 = β1 =
β2 = 1, but now ε follows an extreme value distribution, and, in addition, γ takes
on two possible different values, 1.5 and 0.5 for the Weibull regression model, and
value 1 for the exponential regression model. The corresponding supports for the
censoring variable C have been appropriately modified so that three possible cen-
soring levels are obtained: 50%, 30 % and 15 %. Results for the estimators’ biases
and mean square errors are reported in Table 6, for the exponential regression
model, and in Table 7, for the Weibull regression models.

• Finally, we have also considered two other censoring scheme distributions. The first
one studies the case generated by model (4) but where the censoring variable is
now generated from a normal probability distribution with changing mean value,
so that three possible censoring levels are obtained: 50%, 30% and 15 %, and
with standard deviation taking value 1. The second one considers the situation of
a censoring distribution that depends on one of the covariates in the model. In this
way, we use model (4) with a censoring variable generated as ln C = a + bX2 + u,
where u is normally distributed with mean 0 and standard deviation σ. Different
values of a and b are used so that the aforementioned censoring levels are also
obtained. Tables 8 and 9 present the results for the estimators’ biases and mean
square errors under these two settings.

• As a brief summary of the results obtained under these alternative settings and
reported in Tables 5 to 9, we can see that the bias for the bootstrap bias-corrected
proposal are, in general, smaller than those of the estimator without the bias
correction. As for the mean square error, results in some of the new simulations
are very similar for the bootstrap bias-corrected proposal and for the estimator
without the bias correction and, thus, the gain in terms of mean square error is,
in those cases, quite modest.

5. CONCLUSIONS

It is very common to study a problem where the variable under study is not completely
observed because of censoring. That is, we really observe either the actual duration, if
the observation is not censored, or only know that the duration is larger that a given
value, if the observation is censored. Under these settings, if the appropriate estima-
tor is not used, we can obtain estimators that are seriously biased. For example, in
a situation where the censoring dominates the right tail of the response’s probability
distribution, a serious problem of bias can arise, which could in turn produce misleading
conclusions. However, this would also be a smaller problem when the data are analyzed
by regression models based on hazard functions than in models based on transforma-
tions of the censored outcome. The goal of this paper is to put forward a new proposal
that tries to reduce the bias of the coefficients’ estimator for linear regression models.
Thus, we propose a new bootstrap bias-corrected estimator for the regression coefficient
estimators for censored data originally proposed by Stute [28]. This new procedure is
appropriate to be applied in heterogeneous censored models (i. e., with the presence of
covariates). In addition, it is also very general because it does not assume any model or
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(a): Estimates with censoring level 50%

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.2842 0.2239 0.3047 -0.2264 0.1221 0.1734 -0.1257 0.0764 0.0922

β̂c2 -0.1163 0.2198 0.2333 -0.0683 0.1451 0.1497 -0.0286 0.0858 0.0866

0.75 β̂ 0.1995 0.1332 0.1730 -0.1554 0.0719 0.0961 -0.0801 0.0433 0.0497

β̂c2 -0.0645 0.1243 0.1285 -0.0387 0.0762 0.0777 -0.0200 0.0463 0.0467

0.5 β̂ 0.1074 0.0635 0.0750 -0.0823 0.0352 0.0420 -0.0409 0.0199 0.0215

β̂c2 -0.0265 0.0568 0.0575 -0.0161 0.0345 0.0347 -0.0113 0.0206 0.0208

(b): Estimates with censoring level 30%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.2142 0.1673 0.2131 -0.1307 0.0764 0.0935 -0.0900 0.0584 0.0665

β̂c2 -0.1135 0.1685 0.1814 -0.0311 0.0887 0.0897 -0.0150 0.0629 0.0631

0.75 β̂ 0.1253 0.0969 0.1126 -0.0727 0.0451 0.0504 -0.0536 0.0326 0.0355

β̂c2 -0.0609 0.0962 0.0999 -0.0090 0.0505 0.0505 -0.0117 0.0335 0.0336

0.5 β̂ 0.0623 0.0436 0.0475 -0.0367 0.0212 0.0225 -0.0243 0.0155 0.0161

β̂c2 -0.0215 0.0421 0.0425 -0.0061 0.0224 0.0224 -0.0058 0.0157 0.0157

(c): Estimates with censoring level 15%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.1698 0.1474 0.1762 -0.0623 0.0642 0.0681 -0.0865 0.0486 0.0560

β̂c2 -0.0814 0.1464 0.1530 -0.0108 0.0715 0.0716 -0.0169 0.0516 0.0519

0.75 β̂ 0.0995 0.0875 0.0974 -0.0338 0.0359 0.0371 -0.0518 0.0287 0.0314

β̂c2 -0.0410 0.0819 0.0835 -0.0048 0.0387 0.0387 -0.0088 0.0303 0.0304

0.5 β̂ 0.0421 0.0393 0.0411 -0.0096 0.0163 0.0164 -0.0273 0.0133 0.0140

β̂c2 -0.0172 0.0368 0.0371 0.0024 0.0170 0.0170 -0.0075 0.0137 0.0137

Tab. 5. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the

bootstrap bias-corrected proposal considering correlated discrete and

continuous covariates for different values of σ = {1, 0.75, 0.5} and

different censoring levels, 50%, 30 % and 15%.

probability distribution for the censoring variable and, because of its flexibility, it can
consider different censoring schemes to generate the bootstrap samples.

We have studied the behavior of the proposed bootstrap bias-corrected estimator for
some very general simulation settings. The bias for this estimator has proved to be the
smallest for all the situations considered here. Our proposal has been compared to the
non-corrected version of the estimator and with another bias-corrected estimator that
is based on the ideas originally proposed by Stute and Wang [34] for a general Kaplan–
Meier integral without covariates. The bias is reduced when using the bootstrap bias-
corrected estimator proposal. In addition, the multivariate mean square errors for our
new proposal are always smaller than those of the non-corrected estimator.

Comparisons for bias reduction and for the ratio of the multivariate mean square
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β0 β1 β2
C bias var mse bias var mse bias var mse

50 % β̂ 0.5479 0.5313 0.8315 -0.2274 0.0568 0.1085 -0.1983 0.0654 0.1048

β̂c2 -0.0737 0.6817 0.6872 -0.0750 0.0850 0.0906 -0.0475 0.0948 0.0970

30 % β̂ 0.4244 0.4075 0.5876 -0.1388 0.0353 0.0546 -0.1391 0.0448 0.0641

β̂c2 -0.0533 0.4643 0.4671 -0.0303 0.0432 0.0441 -0.0326 0.0559 0.0569

15 % β̂ 0.2588 0.2904 0.3574 -0.0753 0.0208 0.0265 -0.0728 0.0290 0.0343

β̂c2 -0.0163 0.3299 0.3301 -0.0198 0.0243 0.0247 -0.0177 0.0325 0.0328

Tab. 6. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the

bootstrap bias-corrected proposal for an exponential regression model

for different censoring levels, 50%, 30% and 15 %.

(a): Weibull regression model with γ = 1.5

β0 β1 β2
C bias var mse bias var mse bias var mse

50 % β̂ 0.9028 0.8767 1.6918 -0.3235 0.0911 0.1958 -0.4093 0.1362 0.3037

β̂c2 0.1490 1.5687 1.5910 -0.1579 0.1491 0.1740 -0.2210 0.2468 0.2956

30 % β̂ 0.6068 0.7619 1.1302 -0.1860 0.0745 0.1091 -0.2439 0.0949 0.1544

β̂c2 0.0395 1.0906 1.0922 -0.0679 0.1033 0.1079 -0.0959 0.1441 0.1533

15 % β̂ 0.3300 0.6399 0.7488 -0.0854 0.0621 0.0694 -0.1121 0.0672 0.0798

β̂c2 0.0394 0.7306 0.7321 -0.0313 0.0692 0.0702 -0.0340 0.0821 0.0832

(b): Weibull regression model with γ = 0.5

β0 β1 β2
C bias var mse bias var mse bias var mse

50 % β̂ 0.2320 0.1374 0.1912 -0.0716 0.0132 0.0183 -0.0982 0.0231 0.0327

β̂c2 0.0058 0.1526 0.1526 -0.0239 0.0156 0.0162 -0.0283 0.0285 0.0293

30 % β̂ 0.0909 0.1010 0.1093 -0.0244 0.0088 0.0094 -0.0336 0.0122 0.0133

β̂c2 -0.0066 0.1042 0.1042 -0.0058 0.0093 0.0093 -0.0028 0.0136 0.0136

15 % β̂ 0.0583 0.0807 0.0841 -0.0150 0.0070 0.0072 -0.0170 0.0082 0.0085

β̂c2 0.0059 0.0787 0.0788 -0.0058 0.0070 0.0070 -0.0026 0.0083 0.0083

Tab. 7. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the

bootstrap bias-corrected proposal for a Weibull regression model with

different values of the γ parameter, γ = {1.5, 0.5}, and different

censoring levels, 50%, 30 % and 15%.

errors show that the improvement when using the new proposal increases when the cen-
soring level increases, the width of the support for the censoring variable decreases, or
the σ parameter increases. In the first two cases, the effect of the censoring becomes
stronger in the right tail of the probability distribution and, therefore, we lose infor-
mation about the variable under study, resulting in a larger bias. In the last case, the
increment of the bias could be explained by the aforementioned asymmetric effect of
increasing the σ parameter on the censoring.
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(a): Estimates with censoring level 50%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.5468 0.5615 0.8605 -0.2027 0.0476 0.0887 -0.1712 0.0483 0.0776

β̂c2 0.1213 0.6269 0.6417 -0.0952 0.0591 0.0682 -0.0770 0.0589 0.0648

0.75 β̂ 0.3730 0.3533 0.4924 -0.1345 0.0324 0.0505 -0.1119 0.0307 0.0432

β̂c2 0.0709 0.3591 0.3642 -0.0557 0.0369 0.0400 -0.0442 0.0345 0.0365

0.5 β̂ 0.1884 0.1737 0.2092 -0.0659 0.0152 0.0195 -0.0551 0.0157 0.0187

β̂c2 0.0273 0.1665 0.1672 -0.0219 0.0163 0.0167 -0.0178 0.0167 0.0170

(b): Estimates with censoring level 30%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.3288 0.3993 0.5073 -0.1015 0.0268 0.0371 -0.0912 0.0312 0.0395

β̂c2 0.0358 0.4208 0.4221 -0.0332 0.0296 0.0307 -0.0320 0.0352 0.0362

0.75 β̂ 0.2043 0.2339 0.2756 -0.0604 0.0164 0.0200 -0.0546 0.0178 0.0208

β̂c2 0.0217 0.2267 0.2272 -0.0176 0.0171 0.0174 -0.0166 0.0187 0.0190

0.5 β̂ 0.0997 0.1114 0.1213 -0.0272 0.0073 0.0080 -0.0274 0.0083 0.0091

β̂c2 0.0083 0.1062 0.1063 -0.0058 0.0074 0.0074 -0.0076 0.0086 0.0087

(c): Estimates with censoring level 15% .

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.1752 0.3250 0.3557 -0.0489 0.0186 0.0210 -0.0454 0.0224 0.0245

β̂c2 0.0195 0.3278 0.3281 -0.0145 0.0195 0.0197 -0.0157 0.0236 0.0238

0.75 β̂ 0.1042 0.1826 0.1935 -0.0288 0.0109 0.0117 -0.0259 0.0122 0.0129

β̂c2 0.0121 0.1828 0.1830 -0.0085 0.0111 0.0112 -0.0084 0.0128 0.0129

0.5 β̂ 0.0509 0.0821 0.0847 -0.0132 0.0047 0.0049 -0.0130 0.0055 0.0056

β̂c2 0.0065 0.0813 0.0814 -0.0034 0.0048 0.0048 -0.0044 0.0056 0.0056

Tab. 8. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the

bootstrap bias-corrected proposal considering a normally distributed

censoring variable for different values of σ = {1, 0.75, 0.5} and

different censoring levels, 50%, 30 % and 15%.

Finally, the results reported here support the fact that our bias-correction estimator
proposal is useful because it substantially reduces the bias, also reducing the multivari-
ate mean square errors. Moreover, in situations where the non-corrected estimator is
unbiased or approximately unbiased, our proposal is also unbiased (i. e., the reduction of
bias is very small in absolute value), and the multivariate mean square errors are quite
similar.
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(a): Estimates with censoring level 50%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.2645 0.2740 0.3439 -0.2026 0.0348 0.0759 -0.0654 0.0288 0.0330

β̂c2 -0.1316 0.2808 0.2981 -0.1331 0.0412 0.0589 0.0179 0.0327 0.0330

0.75 β̂ 0.2244 0.1703 0.2207 -0.1664 0.0234 0.0511 -0.0478 0.0164 0.0186

β̂c2 -0.0726 0.1566 0.1619 -0.1132 0.0263 0.0391 0.0141 0.0177 0.0179

0.5 β̂ 0.1217 0.0851 0.1000 -0.1046 0.0129 0.0239 -0.0160 0.0079 0.0081

β̂c2 -0.0227 0.0779 0.0784 -0.0753 0.0145 0.0201 0.0151 0.0082 0.0085

(b): Estimates with censoring level 30%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.2256 0.2219 0.2729 -0.1272 0.0181 0.0343 -0.0512 0.0197 0.0223

β̂c2 -0.0837 0.2194 0.2264 -0.0771 0.0194 0.0253 0.0083 0.0212 0.0213

0.75 β̂ 0.1989 0.1316 0.1711 -0.0999 0.0105 0.0205 -0.0466 0.0115 0.0137

β̂c2 -0.0435 0.1238 0.1257 -0.0616 0.0109 0.0147 -0.0013 0.0119 0.0119

0.5 β̂ 0.1426 0.0631 0.0834 -0.0638 0.0048 0.0088 -0.0372 0.0053 0.0067

β̂c2 -0.0147 0.0580 0.0582 -0.0396 0.0047 0.0063 -0.0084 0.0053 0.0054

(c): Estimates with censoring level 15%.

β0 β1 β2
σ bias var mse bias var mse bias var mse

1 β̂ 0.1278 0.1742 0.1905 -0.0576 0.0118 0.0152 -0.0315 0.0140 0.0150

β̂c2 -0.0466 0.1829 0.1850 -0.0295 0.0124 0.0133 0.0012 0.0144 0.0144

0.75 β̂ 0.0996 0.0999 0.1099 -0.0367 0.0068 0.0081 -0.0275 0.0076 0.0083

β̂c2 -0.0250 0.1014 0.1020 -0.0165 0.0070 0.0072 -0.0037 0.0077 0.0077

0.5 β̂ 0.0635 0.0460 0.0500 -0.0183 0.0031 0.0034 -0.0196 0.0034 0.0037

β̂c2 -0.0099 0.0455 0.0456 -0.0060 0.0031 0.0032 -0.0054 0.0034 0.0034

Tab. 9. Estimated biases (bias), variances (var) and mean square

errors (mse) for the coefficients without bias correction versus the

bootstrap bias-corrected proposal considering a censoring variable

that depends on the covariates, for different values of

σ = {1, 0.75, 0.5} and different censoring levels, 50%, 30% and 15%.
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Avenida Lehendakari Aguirre 83, E-48015 Bilbao. Spain.

e-mail: jesus.orbe@ehu.es
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