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YAMABE OPERATOR VIA BGG SEQUENCES

Vít Tuček

Abstract. We show that the conformally invariant Yamabe operator on a
complex conformal manifold can be constructed as a first BGG operator by
inducing from certain infinite-dimensional representation.

1. Introduction

The general problem is to find all natural differential operators between sections of
natural vector bundles on some geometric category (e.g. on conformal or projective
manifolds). The naturality implies that on an open subset of a homogeneous
space (which is the canonical model for the ‘geometry’ under consideration) the
natural vector bundles are the homogeneous vector bundles and natural differential
operators are invariant differential operators. However not all invariant differential
operators are natural. The counterexample is a power of the Laplace operator (see
[9] and [8]).

It was proven in [4] that there is a large class of invariant operators which are
natural. Among these so-called BGG operators are various interesting ‘geometric’
operators whose kernels give e.g. conformal Killing tensor fields. Consequently,
the BGG operators were much studied – see e.g. [2] for recent applications. The
construction of these operators was much simplified by Calderbank and Diemer in
[1].

The construction of BGG operators starts with a general parabolic geometry
(G, ω) over a manifoldM modeled on a parabolic pair (G,P ) and a finite-dimensional
(g, P )-representation V and its output is a sequence of differential operators bet-
ween associated bundles associated to representations whose weight is given by
the Kostant formula [11]. In the flat case this actually yields a complex, which
computes the sheaf cohomology of the sheaf of constant sections of the bundle
V = G ×P V. The Cartan connection of the geometry induces an affine connection
on V and one of the crucial features of BGG operators is that the kernel of the first
operator in the sequence contains the so called normal solutions, which arise in an
explicit way from parallel sections of this affine connection. In particular, in the
flat case all solutions are normal and hence we can realize all solutions of first BGG
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operator as parallel sections of V with respect to the affine connection induced by
ω. In this article we show that the BGG construction by Calderbank and Diemmer
basically works for a certain infinite-dimensional representation in which case it
yields the conformally invariant Yamabe operator. The Yamabe operator is just
the Laplace – Beltrami operator with a scalar curvature term

Y = ∆LP −
n− 2

4(n− 1)R .

Let us denote the Levi part of P by L and the Lie algebra of the nilradical
by p+. The original construction of Calderbank and Diemer shows actually much
more than the existence of BGG operators. In fact, they modify Hodge theory
for a finite-dimensional representation V developed in [11] in order to get a ho-
motopy transfer between twisted deRham sequence on V and bundles induced
from Lie algebra homology of p+ with values in V. This homotopy transfer is
basically P -equivariant modification of the homotopy transfer data coming from
the L-equivariant Hodge decomposition of V. This modification is not possible
without introducing differential terms to the algebraic Hodge Laplacian of [11] and
hence the resulting BGG operators can have order higher than one. To be a little
bit more concrete, one has from [11] that for a certain algebraic operator � there
is a Hodge decomposition V = ker�⊕ im� which is L-equivariant and one would
like to extend this to a Hodge decomposition of the sections of V . To this end, one
introduces in a straightforward way a differential operator �g and tries to show
that Γ(M,V) = im�g⊕ ker�g. In particular, the operator �g must be invertible
on its own image.

In order to get the Yamabe operator as a resulting BGG: operator, it is necessary
to consider an infinite-dimensional representation, since it is known that the kernel
of the Yamabe operator is inifite-dimensional on Rp,q and the kernel of the first
BGG operator has, in the flat case, the same dimension as V. The representation
we will consider is a formal globalization of a unitarizable highest weight module.
Unitarizable highest weight module is a module which is both a (g,K)-module and
a highest weight module for g. The unitarizability of the module ensures that the
Hodge decomposition of V is still valid, while the formal globalization enables us
to proceed with the proof of invertibility of �g. The original unitarizable highest
weight representation is basically a certain subspace of polynomials, whereas its
formal globalization is a subspace of formal power series.

2. Modules, homology & formal globalization

The unitarizable highest weight modules occur only for noncompact Hermitian
symmetric pairs and hence we have to restrict the signature. Throughout this
article we will use symbol G to denote the group SO0(2, p). The maximal compact
subgroup of this group is SO(2)× SO(p) and we will denote it by K. Let g0 and
k0 be the corresponding Lie algebras and let g and k denote their complexifications.
The homogeneous manifold G/K is a noncompact Hermitian space. The Cartan
decomposition gives us g0 = k0 ⊕ r and upon complexification we get a splitting
of rC = p− ⊕ p+ into eigenspaces of the complex structure that is defined on
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the tangent space TeKG/K ' r. Both algebras p = k ⊕ p+ and p = k ⊕ p− are
parabolic subalgebras of g. Moreover their nilradicals p− and p+ are not only
nilpotent but even abelian. By P and P we denote the corresponding parabolic
subgroups of GC = SO(p+2,C). The homogoneous space GC/P is diffeomorphic to
compact Hermitian symmetric space and p− is naturally mapped via composition
of exponential map and projection to an open and dense subset of this compact
manifold. The so called Harish-Chandra embedding gives us a realization of the
noncompact dual G/K as an orbit in this embedded p−. This realizes G/K as a
bounded Hermitian symmetric domain in p− and shows where does the Hermitian
structure on G/K comes from. We will denote by KC the complexification of K.

We will use notation εi, i = 1, . . . , 2p for the elements of the basis of the nilradical
p+ and by ei we will denote the dual basis defined by the Killing form. The elements
ei then span the nilradical of the opposite parabolic subalgebra.

There is a choice of a Cartan subalgebra h such that h ≤ k. Let ∆ be the set of
roots of (g, h) and let ∆c denote the set of roots of (k, h). We call elements of ∆c

the compact roots and the remaining roots in ∆n = ∆ \∆c are called noncompact.
We define the positive roots ∆+ in such a way that elements of ∆+

n = ∆+ ∩∆n

span p−
1. We denote the positive compact roots by ∆+

c = ∆c ∩ ∆+. By ωi we
denote the i-th fundamental weight in the standard ordering.

Let λ be a ∆+
c dominant and integral weight and denote by F (λ) the finite

dimensional irreducible k-module. We extend any irreducible representation of KC
to P and to P by letting p+ and p− act trivially. The generalized Verma module
M(λ) is defined as M(λ) = U(g) ⊗U(p) F (λ). It is well known and easy to prove
that M(λ) contains a maximal nontrivial submodule and we denote by L(λ) the
corresponding irreducible quotient of M(λ). Since the nilradical p− of p is abelian,
we have that M(λ) ' S(p+) ⊗ F (λ) as KC representations, where S(p+) is the
symmetric algebra over the Lie algebra p+.

There is a distinguish element in the center of k called grading element which
acts by zero on k, by 1 on p+ and by −1 on p−. This elements acts by a scalar
on any irreducible representation of K. We call this scalar the geometric weight.
In the case of M(λ), the geometric weight corresponds to the polynomial degree
shifted by the weight of F (λ).

The chain space of Lie algebra homology Ck(p+,V) of the algebra p+ with
values in V is defined as Λkp+ ⊗ V. The Lie algebra homology differential ∂∗ :
Ck+1(p+,V)→ Ck(p+,V) is defined for a general nilpotent subalgebra p+ by

∂∗(Z0 ∧ · · ·Zk ⊗ v) =
k∑
i=0

(−1)i+1Z0 ∧ · · · ∧ Ẑi ∧ · · · ∧ Zk ⊗ Zi · v+

+
∑
i<j

(−1)i+j [Zi, Zj ] ∧ Z0 ∧ · · · ∧ Ẑi ∧ · · · ∧ Ẑj ∧ · · · ∧ Zk ⊗ v ,

1One would expect that the positive roots would span p+. However, we choose this condition
in order to be consistent with cohomological formulas in [7]. Alternatively, one could work with
lowest weight modules instead.



414 V. TUČEK

where Zi ∈ p+ for i = 0, . . . , k. Since our algebra p+ is abelian, the second term in
the sum is zero. The Lie algebra homology differential is P -equivariant.

The kth chain space Ck(p−,V) of the Lie algebra cohomology H•(p−,V) of p−
with coefficients in V is the space of antisymmetric linear mappings from the kth

tensor power of p− to V. The Lie algebra cohomology differential is defined by the
following general formula

(∂ ψ)(X0, . . . , Xk) =
k∑
i=0

(−1)iXi · ψ(X0, . . . , X̂i, . . . , Xl)+

+
∑
i<j

(−1)i+jψ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) ,

where ψ ∈ Hom(Λkp−,V) and Xi ∈ p− for i = 0, . . . , k. Again, we can forget
the second term in our case. We can identify Ck(p−,V) = Hom(Λkp−,V) with
Λkp−∗ ⊗ V. Since the Killing form induces an isomorphism p−

∗ ' p+, we can
consider the Lie algebra cohomology differential ∂ as an operator on the chain
spaces of Lie algebra homology ∂ : Λkp−∗ ⊗ V → Λk+1p−

∗ ⊗ V . After these
identifications we get the formula

∂(Z1 ∧ · · · ∧ Zk ⊗ v) =
2p∑
i=1

εi ∧ Z1 ∧ · · · ∧ Zk ⊗ ei · v .

The Lie algebra cohomology differential is P -equivariant. In particular, both ∂ and
∂∗ are KC-equivariant and consequently they preserve the geometric weight.

The Kostant Laplacian is defined on each Ck(p+,V) as � = ∂∗ ∂+ ∂ ∂∗. It was
proven in [11] that for a finite-dimensional g-representation V there is a positive
definite scalar product on C•(p+,V) with respect to which are ∂ and ∂∗ adjoint. It
follows that there is a direct sum Hodge decomposition of KC-modules C•(p+,V) =
im ∂⊕ ker�⊕ im ∂∗ and moreover ker ∂∗ = ker�⊕ im ∂∗ and ker ∂ = ker�⊕ im ∂.
It follows that H•(p+,V) ' ker� ' H•(p−,V).

The authors of [10] proved that if the representation V is a unitarizable
(g,K)-module, then the Hodge decomposition of C•(p+,V) is still valid.

Inspecting the classification of unitarizable highest weight modules in [6], we
see that we can take for V the module L(λ) with λ = (2 − n)ω1 in the case
p = 2n− 2 and λ = (3/2− n)ω1 in the case p = 2n− 1. From now on, when we
write L(λ) we will mean either L((2 − n)ω1) or L(( 3

2 − n)ω1) depending on the
value of p = dimG− 2.

The cohomology groups Hi(p−, L(λ)) can be computed from the formula given
in [7]. We get in the even case

H0(p−, L((2− n)ω1)) = F ((2− n)ω1)
H1(p−, L((2− n)ω1)) = F (−nω1)
Hi(p−, L((2− n)ω1)) = 0 for i ≥ 2
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and in the odd case

H0(p−, L((3
2 − n)ω1)) = F ((3

2 − n)ω1)

H1(p−, L((3
2 − n)ω1)) = F ((−1

2 − n)ω1)

Hi(p−, L((3
2 − n)ω1)) = 0 for i ≥ 2.

The problem is that L(λ) is not a P -representation. This is not surprising
because the generalized Verma module M(λ) was induced from a P -representation.
Let L(λ) =

⊕
µ∈K̂C

Lµ be the decomposition of L(λ) into KC-types. Each Lµ is
contained in some Sk(p+, F (λ)) modulo the maximal submodule of M(λ) and
the algebra p+ acts as a multiplication by a variable, while p− acts basically as a
differentiation. To formalize this write L(λ) =

⊕
µ∈K̂C,k∈N Lµ,k where Lµ,k is the

KC-type contained in Sk(p+, F (λ)) and note that p+(Lµ,k) ⊂ Lµ,k+1.
The formal globalization ([13]) of L(λ) is defined as L(λ) =

∏
µ∈K̂C

Lµ (product
of topological vector spaces). Since each KC-type is finite-dimensional and each
Sk(p+, F (λ)) contains only finitely many irreducible KC-representations, we can
write it as

L(λ) =
∏
k∈N

Lk ,

where Lk =
⊕

µ∈K̂c
Lµ,k is a finite sum. The action of p+ works as a right shift:

p+(Lk) ⊂ Lk+1.
Now it is easy to see that the formal globalization is a representation of P ,

because the action of p+ on L(λ) integrates without any problems. The component
of degree k of exp(X)v, X ∈ p+ is given by a sum of k + 1 elements involving
components of v of degree ≤ k. The P -invariant filtration is given by

L(λ)
l

=
∞∏
k=l

Lk .

Theorem 2.1. There is a Hodge decomposition for C•(p,L(λ)) and

H•(p−, L(λ)) = H•(p−, L(λ)) .

Proof. The article [11] proves that for a Hodge decomposition to exist it is sufficient
to have ∂∗ and ∂ disjoint, meaning that ker ∂∗ ∩ im ∂ = 0 and ker ∂ ∩ im ∂∗ = 0.
We claim that the operators ∂∗ and ∂ are disjoint even on the level of formal
globalization and thus the Hodge decomposition is still valid. The proof is simple —
since both ∂∗ and ∂ are KC-equivariant, they act element-wise on

∏
µ∈KC Lµ.

Explicitly, suppose for contradiction that there exists u ∈ ker ∂∗ ∩ im ∂ such that
the µ-component uµ of u is not zero. Then since ∂∗ and ∂ act component-wise,
we get that ∂∗ uµ = 0 and there must be vµ ∈ Lµ such that ∂ vµ = uµ. But that
means that the nonzero element uµ ∈ L(λ) is contained in ker ∂∗ ∩ im ∂ = 0.

Similarly, since H•(p−, L(λ)) = ker ∂∗ ∩ ker ∂ is finite-dimensional graded vector
space, we get that the cohomology remains the same. �
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3. Construction

First we need to recall some fundamental notions of parabolic geometries. The
canonical reference is the book by Čap and Slovák [3]. For reader’s convenience
we repeat the Calderbank – Diemer construction for V finite-dimensional, however
in order to get the Yamabe operator we treat also the case when V = L(λ)
and the parabolic pair (G,P ) is the pair of complex conformal geometry — i.e.
G = SO(p+ 2,C) and P parabolic subgroup with Levi part KC.

Let G be a Lie group and let P be its parabolic subgroup. A Cartan geometry
modeled on the pair (G,P ) is a P -principal bundle π : G →M with a P -equivariant
one-form ω : TG → g such that for each u ∈ G, ωu : TuG → g is an isomorphism
restricting to the canonical isomorphism between Tu(Gπ(u)) and p (the so called
Cartan connection). The curvature function κ : G → Λ2g∗⊗g of a Cartan geometry
is defined by

κ(u)(ξ, χ) = [ξ, χ]− ω([ω−1(ξ), ω−1(χ)])(u) ,
where the first bracket is the bracket of g while the second bracket is just the
bracket of vector fields on G.

For any (possibly infinite dimensional) continuous representation V of P we
can form an associated topological vector bundle V := G ×P V→M . The bundle
associated to p+ is the cotangent bundle T ∗M and the bundle associated to g/p is
the tangent bundle TM . It what follows we identify the P -representation g/p with
p− via the Killing form of g. The bundle associated to the adjoint representation
on g is called adjoint tractor bundle and is denoted by AM .

It can be checked that κ is in fact horizontal and P -equivariant and hence it
induces a section of Ω2M ⊗AM which we will denote by the same symbol.

Sections of associated bundles are in bijective correspondence with P -equivariant
functions on the total space G. For an infinite-dimensional representation V we
define smooth sections as smooth P -equivariant functions on the total space with
values in V. It directly follows that a smooth section can have values only in the
subspace of smooth vectors of V.

The invariant derivative on V is defined by

∇ω : C∞(G,V)→ C∞(G, g∗ ⊗ V)
∇ωξ f = df(ω−1(ξ))

for all ξ ∈ g. It is P -equivariant and so maps C∞(G,V)P into C∞(G, g∗ ⊗ V)P and
thus we get a linear map ∇ω : Γ(M,V) → Γ(M,AM ⊗ V). Note that from the
definition of the fundamental derivative it follows that ∇ωeis has the same geometric
weight as s.

We define the tractor connection by

∇g : C∞(G,V)→ C∞(G, g∗ ⊗ V)
∇g
ξf = ∇ωξ f + ξ · f .

It is easily checked that for P -equivariant f and for any ξ ∈ p we get ∇g
ξf = 0 and

hence ∇g induces a covariant derivative on V.
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We define the associated twisted deRham differential

dg : Γ(M,ΩkV)→ Γ(M,Ωk+1V)

by the usual formula. We will need the expression for dg in local coordinates. Let εi
be elements of the basis of p+, let ei be the elements of the dual basis and denote
the corresponding sections on M by the same symbols. Then

(dg s)(u) =
∑
i

εi ∧ (∇ωeis)(u) + ∂ s(u)−
∑
i<j

εi ∧ εj ∧ κ(ei, ej)y s(u) ,

where only the first term depends on the one-jet of s ∈ Γ(M,V) and the remaining
two terms act algebraically on the values of s. Note that only the p−-component of
κ(ei, ej) (the torsion component) contributes to the contraction.

The Lie algebra homology differential ∂∗ : Λip+⊗V→ Λi−1p+⊗V is P -equivariant
and hence it induces operator (denoted by the same symbol) on the bundles asso-
ciated to the chain spaces. These bundles are of course exterior forms with values
in V and we will denote them by ΩiV. Let BiV denote the image of ∂∗ on i-forms
with values in V, let ZiV denote its kernel and let HiV denote the corresponding
quotients ZiV/BiV. Again, from P -equivariance it follows that there are natural
identifications

Z•V = G ×P ker ∂∗ B•V = G ×P im ∂∗ HiV = G ×P Hi(p+,V) .

The BGG operators were constructed in [1] by using a family of differential
operators Πg

k : Γ(M,ΩkV) → Γ(M,Ωk+1V) which vanish on im ∂∗ and map into
ker ∂∗. The BGG operator Dk : Γ(Hk(p+,V))→ Γ(Hi+1(p+,V)) is then defined as

Dks := proj ◦Πg
k+1 ◦ dg ◦Πg

k ◦ rep,

where proj is the algebraic projection on homology and rep is a choice of represen-
tative in the homology class.

The idea for constructing Πg
k comes from the expression for the algebraic

projection onto ker� which is given by Id−�−1�. Because ∂∗ commutes with
�−1 this equals to Id−�−1 ∂∗ d − d�−1 ∂∗. We need a P -equivariant operator
and since the Lie algebra cohomology differential is the only thing that is not
P -equivariant in this formula, we can try to restore the P -equivariance by adding
a differential term. This reasoning leads to the following definitions

�g = ∂∗ dg + dg ∂∗, Q = �g
−1 ∂∗

Πg
k = Id−Qdg−dgQ.

Now the problem arises how to compute the inverse of �g at least on the image of
∂∗. Once this inverse is provided, the desired properties of Πg

k follow immediately
as algebraic consequences.

There always exists a reduction of our P -bundles to its Levi subgroup L, which
means that we can construct the sought inverse by using L-equivariant operators.
Since the inverse must be unique it follows that it doesn’t depend on the choice of
reduction from P to L and hence it is P -equivariant.
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Lemma 3.1. Let V be either a finite-dimensional (g, P )-module or the represen-
tation L(λ). Then the operator �g is invertible on BiV and the inverse is given
by

�g
−1 =

( ∞∑
k=0

Nk
)
�−1 ,

where N = −�−1(�g−�).

Proof. We need to prove that the infinite sum makes sense for any section s ∈
Γ(M,BiV). Let us compute the local expression for N(s), where we consider s to
have values in some irreducible L-type.

−�N(s)(u) = (�g−�)s(u)
= ∂∗(dg−d)s(u) because s ∈ Γ(M,BiV)

= ∂∗
(∑

i

εi ∧∇ωeis−
∑
i<j

εi ∧ εj ∧ κ(ei, ej)y s
)

(u) .

The first term increases the geometric weight, because fundamental derivative
doesn’t change w, wedging with an element from p+ increases it by one and ∂∗

preserves the geometric weight.
The second term also increases the weight, because the contraction with κ(ei, ej)

lowers it by one and wedging with two elements from p+ increases it by two.
For a finite-dimensional representation V it follows that the operator N is

nilpotent and in the infinite sum there is only finitely many terms nonzero. Thus
the operator Πg

k is a differential operator of finite order.
If we start with V = L(λ), then it is sufficient to consider only the case i = 0,

because all higher homologies are zero. For a section with values in the representation
L(λ) =

∏∞
k=0 Lk we get that N works as a component-wise derivation composed

with right shift. It follows that the sum is well defined and the components of Πg
k

are differential operators of increasing order — the component corresponding to
Lk of the sum

∑∞
k=0 N(s)(u) has at most k + 1 nonzero terms. �

The following proposition is one of the main results of [1]. Since the (easy)
proof was left to the reader there and since the original statement contained some
irrelevant sign errors, we write down all the details here.

Proposition 3.2 ([1], Proposition 5.5). The operator Πg
k : Γ(M,ΩkV)→ Γ(M,ΩkV)

has the following properties.
(1) The operator Πg

k vanishes on im ∂∗and maps into ker ∂∗:
Πg
k ◦ ∂

∗ = 0 & ∂∗ ◦Πg
k = 0 .

(2) The operator Πg
k induces identity on the homology Hk(p+,V):

Πg
k = Id mod im ∂∗ .

(3) The commutator of dg and Πg equals to the commutator of Q and R
dg ◦Πg

k −Πg
k+1 ◦ dg = Q ◦R−R ◦Q ,

where R is the curvature operator defined by R(s) = (dg ◦ dg)(s).
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(4) For k = 0 and in the flat case, the operator is actually a projection:(
Πg
k

)2 = Πg
k +Q ◦R ◦Q .

(5)

Πg
k ◦�g = −Q ◦R ◦ ∂∗ & �g ◦Πg

k = − ∂∗ ◦R ◦Q .

Thus in the flat case we have a projection Πg onto a subspace of ker ∂∗ comple-
mentary to im ∂∗ and moreover, this projection is actually a chain map between
twisted deRham complexes dg : Ω•V → Ω•+1V which is homotopic to the identity,
the chain-homotopy being the operator Q : Ω•V → Ω•−1V.

Proof. We will prove these point one by one by easy algebraic manipulations.
The first point is proven by the following two calculations:

Πg ∂∗ =
(
Id−�g

−1 ∂∗ dg− dg�g
−1 ∂∗

)
∂∗

= ∂∗−�g
−1 ∂∗ dg ∂∗

= ∂∗−�g
−1�g ∂

∗ because ∂∗ dg ∂∗ = �g ∂
∗

proves the first half and

∂∗Πg = ∂∗− ∂∗�g
−1 ∂∗ dg− ∂∗ dg�g

−1 ∂∗

= ∂∗− ∂∗ dg�g
−1 ∂∗ because [∂∗,�g

−1] = 0 on im ∂∗

= ∂∗−�g�g
−1 ∂∗ since �g = ∂∗ dg on im ∂∗

proves the second half of the first point.
The second point is a direct consequence of definitions, because for a section s

with values in ZkV we get Πg
k(s) = s−�g

−1 ∂∗ dg s and �g
−1 maps BkV to BkV.

Proof of the next point of the proposition is also just unwinding the definitions
and trivial algebra:

[dg,Πg] = [dg,−Qdg−dgQ] = −dgQdg−dg dgQ+Qdg dg + dgQdg .

To prove the fourth point, it is good to note first that from the already proven
fact Πg ∂∗ = 0 it follows that also ΠgQ = 0. Moreover even Q2 equals zero. Now
we have

(Πg)2 = Πg(Id−Qdg−dgQ)
= Πg −ΠgQdg−Πg dgQ

= Πg − dg ΠgQ+ [dg,Πg]Q
= Πg + [Q,R]Q by the third point of the proposition
= Πg +QRQ+RQQ.
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The last point requires two calculations:

�g Πg = ∂∗ dg Πg + dg ∂∗Πg the second term here is zero by the first point
= ∂∗Πg dg + ∂∗[dg,Πg] here the first term is zero by the first point
= ∂∗[Q,R] by point three
= ∂∗QR− ∂∗RQ
= − ∂∗RQ because ∂∗Q = ∂∗�g

−1 ∂∗ = 0

and a similar one

Πg�g = Πg(∂∗ dg + dg ∂∗) = Πg ∂∗ dg +Πg dg ∂∗

= dg Πg ∂∗+[Πg,dg] ∂∗ = −[Q,R] ∂∗

= −QR∂∗+RQ∂∗ = −QR∂∗ .

Finally, we deal with im ∂∗ ∩ im Πg. By the fourth point of the proposition we
get

∂∗ u = Πgv = ΠgΠgv −QRQv = Πg ∂∗ u−QRQv

which by the first point of the proposition implies that im ∂∗ ∩ im Πg = imQRQ.
Thus in the flat case we see that im ∂∗ and im Πg are complementary. Finally, in
the flat case, the statement that the projection operator Πg is chain-homotopic to
the identity via Q is a direct consequence of definitions. �

Because Πg maps into ker ∂∗ we have that �g Πg = ∂∗ dg Πg. Combining this
equality with the fifth point of the previous proposition gives us ∂∗ dg Πg = �g Πg =
− ∂∗RQ. Since Q = 0 on ker ∂∗, we see see that dg Πg maps ker ∂∗ to ker ∂∗. This
allows us to write the BGG operator as Dk = proj ◦ dg ◦Πg

k ◦ rep.
The operator Πg ◦ rep: H•V → Ω•V gives us the unique representatives of the

homology classes in ker�g. Indeed ker�g ∩ im ∂∗ = 0, because for u = ∂∗ v ∈
ker�g we get 0 = �g u = �g ∂

∗ v and we know that �g is invertible on im ∂∗.

Proposition 3.3. The operator proj ◦Πg
0 maps injectively parallel sections of V

into the kernel of D0. In the flat case, the operator is even surjective with inverse
being Πg

0 ◦ rep.

Proof. The restriction of Πg
0 to ker dg equals identity and it is easily computed

that the operator proj◦Πg
0 maps parallel sections into the solution space of D0. For

a parallel section s ∈ ker dg ∩ im ∂∗ we have s = Πg
0(s) and thus s ∈ im ∂∗ ∩ im Πg

0.
Since this space equals to the image of QRQ, which is a zero mapping on 0-forms,
we see that the map proj ◦Πg

0 is indeed injective on parallel section of V.
On the other hand, for u ∈ kerD0 we get

(
dg Πg

0 ◦ rep
)

(u) ∈ im ∂∗ and in the
flat case we can commute dg and Πg according to the third point of the proposition.
It follows that

(
dg Πg

0 ◦ rep
)

(u) =
(
Πg

1 dg ◦ rep
)

(u) and because im ∂∗ ∩ im Πg
1 = 0

we get that in the flat case the operator Πg
0 ◦ rep maps kerD0 to parallel sections

of dg. �
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4. Conclusion

We have constructed a nontrivial differential operator of finite order over a
complex parabolic geometry of conformal type. This operator acts between sections
of bundles associated to one-dimensional representations, whose geometric weights
are precisely those for the conformal Yamabe operator. It is well known that there
is essentially unique differential operator acting between such bundles, i.e. the
Yamabe operator.

Of course, it would be desirable to investigate this construction in real cases, i.e.
for classical (pseudo)conformal structures. However, as the example in [12] shows,
one must be extremely careful to draw any conclusions. The article [10] shows that
the Hodge decomposition is valid for all unitarizable highest weight representations,
which were classified e.g. in [6], and the same trick with formal globalization goes
through. Moreover, the results cover not only the cohomology of p+ but also of its
appropriate subalgebras. The resulting operators are to be identified not as easily
as the Yamabe operator, however there is a close connection of unitarizable highest
weight modules and k-invariant differential operators presented in [5]. Consulting
the weights of appropriate zeroth and first homology modules, there doesn’t appear
to be a case which would yield higher GJMS operators as first BGG operators.

All of these matters are currently investigated by the author of this note and
are to be part of his dissertation thesis.
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