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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 6 , PAGES 1 0 6 5 – 1 0 8 8

WEAK REGULARIZABILITY AND POLE ASSIGNMENT
FOR NON-SQUARE LINEAR SYSTEMS

Tetiana Korotka, Jean Jacques Loiseau and Petr Zagalak

The problem of pole assignment by state feedback in the class of non-square linear systems
is considered in the paper. It is shown that the problem is solvable under the assumption of
weak regularizability, a newly introduced concept that can be viewed as a generalization of the
regularizability of square systems. Necessary conditions of solvability for the problem of pole
assignment are established. It is also shown that sufficient conditions can be derived in some
special cases. Some conclusions and prospects for further studies are drawn in the last section.
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Classification: 93C05, 93B52, 93B55

1. INTRODUCTION

We consider a linear, time-invariant, continuous system of the form

Eẋ(t) = Ax(t) +Bu(t), t ≥ 0, (1)

where E,A ∈ Rq×n, B ∈ Rq×m with R, x(t), and u(t) denoting the field of real numbers,
state, and input of the system, respectively. It is called non-square since q, in general,
does not equal n. The system (1) will frequently be referred to as the triple (E,A,B).

Applying the (linear and proportional) state feedback

u(t) = Fx(t) + v(t), (2)

where F ∈ Rm×n and v is a new control input, to the system (1) gives the closed-loop
system

Eẋ(t) = [A+BF ]x(t) +Bv(t). (3)

The system (3) differs from (1) just by the term BF added to A, which means that the
differences between these two systems are mainly given by the changes in the (finite and
infinite) zero structure of sE − A−BF when varying F . Finite zeros of sE − A−BF
correspond to exponential free-response modes of the system, while zeros at infinity
represent impulsive modes. By choosing different state feedback gains we alter the zero
structure of sE − A − BF , and consequently the response of the closed-loop system.
Such a problem is called the pole structure assignment, here by state feedback (2).
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It constitutes one of the fundamental problems of control as it aims at shaping the desired
system response by assigning a closed-loop pole structure. Thus, the pole structure
assignment techniques belong to the basic tools for the controller design. One can meet,
see [4, 10, 12] and the references therein, many modifications of this problem. Among
them, in the case of square systems, the so-called eigenstructure assignment comprises,
in addition to the eigenvalues, an deliberate assignment of eigenvectors [8], too. The
case when just a finite pole structure is assigned to the system (1), which results in
the elimination of the system impulsive behavior, is likely of main practical interest [6].
But the assignment of the infinite eigenvalue to the closed-loop system is important,
too. Consider for example the design of perfect observers [3]. A special case of the pole
structure assignment problem is known as the pole assignment where just a modification
of the (finite and infinite) eigenvalues of sE −A−BF is of concern.

The pole and pole structure assignment problems have been widely studied by many
authors in the case of square systems. The seminal work in this direction belongs to
Rosenbrock. In [12], he gives necessary and sufficient conditions of solvability for the
case of the explicit (E is invertible) and controllable systems. This result has then been
generalized to the explicit and uncontrollable systems, see [14]. In the case of implicit
and square systems the problem is solved in [6] for controllable systems, while in [10]
the problem is considered in the case of uncontrollable systems where necessary and
sufficient conditions of solvability to the pole assignment and necessary conditions to
the pole structure assignment can be found.

The situation is different as far as the non-square systems are concerned. The lit-
erature on this topic is not very extensive [2, 5], especially that devoted to the pole
assignment. This is of course caused by the fact that the field of possible applications
is not very large yet. Nevertheless, some applications exist, see [1] and the references
therein. For example, the non-square difference systems arise quite naturally in the
graph theory (Petri nets) when writing down balance equations for each node and where
(oriented) edges are characterized by delays [1, 13]. Such systems can be applied to
some problems of supervisory control.

The paper is an attempt to solve the pole assignment problem when the system under
consideration is implicit and non-square and is organized as follows. In the section 2,
the basic concepts and definitions are given. In particular, the feedback canonical form
and normal external description of the system (1) are introduced. Some mathematical
tricks used for solving the problem, such as the extension of (E,A,B) and the conformal
mapping, are considered therein, too. A solution to the problem of pole assignment to
square systems is also presented here. In the section 3, conditions of solvability to the full
rank assignment in non-square systems, see Theorem 3.1, are presented and a concept
of weak regularizability is defined. This concept can be viewed as a generalization of the
regularizability known in the theory of square systems. The problem of pole assignment
to weakly regularizable systems is restated in terms of the greatest common divisor of all
minors of the maximal order (min(q, n)) in the section 4. Then, under the assumption
of weak regularizability, necessary conditions of solvability are derived, see Theorems
4.2 and 4.6. Just sufficient conditions of solvability in some special cases are given by
Theorems 4.4 and 4.7. Moreover, Theorem 4.8 gives a complete solution to the problem
in which the maximal number of poles is assigned. An example illustrating the methods
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developed in the paper is provided in that section, too. The last section is devoted to
concluding remarks on the achieved results.

2. BACKGROUND

As far as the notation is concerned, standard symbols, see [4] for instance, are basically
used. The divisibility of the polynomials α(s), β(s) ∈ R[s] is denoted by the symbol
C, i.e α(s) C β(s) (β(s) B α(s)) means α(s) divides β(s). The degree of a polynomial
vector x(s) ∈ Rk[s], deg x(s), stands for the greatest degree of all its entries xi(s).
Accordingly, the degree of the ith column of a polynomial matrix M(s) ∈ Rp×m[s] is
denoted by degciM(s). Such a matrix is called column reduced if it can be written
in the form M(s) = Mlc diag

{
sci

}m

i=1
+ M̄(s), where Mlc ∈ Rp×m is of full column

rank and M̄(s) ∈ Rp×m[s] is such that degci M̄(s) < ci := degciM(s). Matrices A(s)
and B(s) are said to be equivalent (A(s) ∼= B(s)) if there exist unimodular matrices
M(s) and N(s) over R[s] such that A(s) = M(s)B(s)N(s). A polynomial matrix of
degree 1 is called a matrix pencil. Pencils A(s) and B(s) are said to be strictly (pencil)
equivalent (A(s) ∼ B(s)) if there exist invertible matrices M and N over R such that
A(s) = MB(s)N . Let Sk

t denote the set of all k-tuples {j1, j2, . . . , jk}, j1 < j2 < · · · < jk,
ji ≤ t, ji, t ∈ N, the set of natural numbers, i = 1, 2, . . . , k, k ≤ t. Let further P [ααα] and
P[βββ], ααα ∈ Sj

m, βββ ∈ Sk
n, denote submatrices of an m × n matrix P consisting of rows

i1, i2, . . . , ij and columns j1, j2, . . . , jk of P , respectively. For example, P [/ααα]
[βββ] , ααα ∈ Sj

m,
βββ ∈ Sk

n, where /ααα := {1, 2, . . . ,m}−ααα, denotes a submatrix of P obtained by eliminating
rows i1, i2, . . . , ij of P and having columns j1, j2, . . . , jk of P .

The pencil sE−A, and analogously the system (1), is called regular if the matrices
E and A are square and det[sE−A] is not identically equal to zero. The regularity of
(1) guarantees the existence of its transfer function. Closely related to this concept is
the notion of regularizability. The system (1) is called regularizable (by state feedback)
if it is square and there exists an F such that the pencil sE − A − BF is regular. In
the case of non-square systems an analogous concept, weak regularizability, is defined
in the section 3. It should be noted that the assumption of weak regularizability plays
a central role in the problems of pole (structure) assignment.

The pole structure of the system (E,A,B) is defined [10] by the zero structure of
the pencil sE − A. More particularly, the finite zero structure of sE − A is given [12]
by the invariant polynomials of sE −A, say ψi(s) B ψi+1(s), i = 1, . . . , r − 1, while the
infinite zero structure is defined [13] by the terms s−di , di > 0, i = 1, . . . , kd, occurring
in the Smith–McMillan form at infinity of sE−A (or by the infinite elementary divisors
of sE −A of the orders µi := di + 1, di > 0).

The problem of pole structure assignment by state feedback (2) to a square system
(1), see [10] and the references therein, consists of finding conditions (necessary and
sufficient, if possible) under which there exists an F in (2) such that prescribed monic
polynomials ψ1(s) B ψ2(s)B . . .Bψr(s) and positive integers d1 ≥ d2 ≥ · · · ≥ dkd

will
define the invariant polynomials and infinite zero orders of sE−A−BF . It can be easily
seen that the formulation remains valid even in the case of the non-square systems (1).

The problem of pole assignment mentioned in Introduction can be stated in a similar
way: Find conditions (necessary and sufficient, if possible) under which there exists an F
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in (2) such that the roots of a prescribed monic polynomial, say ψ(s), and a positive
integer, say d, will define finite and infinite eigenvalues (with multiplicities included) of
sE −A−BF .

2.1. Feedback Canonical Form

Under the action of the feedback group, which consists of quadruples (P,Q,G, F ), where
P, Q, G are invertible matrices and F is an m×n matrix over R, each system (E,A,B)
can be brought into the feedback canonical form (FCF)[9],

(P,Q,G, F ) ◦ (E,A,B) = (PEQ,P [A+BF ]Q,PBG) =: (EC , AC , BC)

with (EC , AC , BC) denoting the feedback canonical form. The pencil sEC − AC is a
block diagonal matrix,

sEC −AC := block diag {sEt −At} , t ∈ {ε, σ, q, p, l, η},

where sEt−At is again a block diagonal matrix consisting of the blocks, non-increasingly
ordered by size, of type (bt), t ∈ {ε, σ, q, p, l, η},

(bε)

εi+1︷ ︸︸ ︷ s −1
. . . . . .

s −1


 εi

(bσ)

σi︷ ︸︸ ︷
s −1

. . . . . .
. . . −1

s


 σi

(bq)

qi︷ ︸︸ ︷
−1

s
. . .
. . . −1

s


 qi+1

(bp)

pi+1︷ ︸︸ ︷
−1 s

. . . . . .
. . . s

−1


 pi+1

(bl)

li︷ ︸︸ ︷
s −1

. . . . . .
. . . −1

−ai0 −ai1 · · · s−aili


 li

(bη)

ηi︷ ︸︸ ︷
s

−1
. . .
. . . s

−1


 ηi+1,

i = 1, . . . , kt, with kt denoting the number of the corresponding blocks. The values
describing these blocks are called:

• the nonproper controllability indices, ε1 ≥ · · · ≥ εkε ≥ 0;
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• the proper controllability indices, σ1 ≥ · · · ≥ σkσ > 0;

• the almost proper controllability indices, q1 ≥ · · · ≥ qkq ≥ 0;

• the almost nonproper controllability indices, p1 ≥ · · · ≥ pkp ≥ 0;

• the fixed invariant polynomials of [sEC−AC , −BC ] represented by the polynomials
αi(s) = sli + ailis

li−1 + · · ·+ ai1s+ ai0, li > 0, α1(s) . α2(s) . · · · . αkl
(s);

• the row minimal indices of [sEC −AC , −BC ], η1 ≥ · · · ≥ ηkη ≥ 0.

The matrix BC is of the form

BC :=


0 0
Bσ 0
0 Bq

0 0
0 0
0 0

 , where


Bσ := block diag

{
[0 . . . 0 1]T ∈ Rσi

}kσ

i=1
,

Bq := block diag
{

[0 . . . 0 1]T ∈ Rqi+1
}kq

i=1
.

2.2. Normal External Description

Definition 2.1. Polynomial matrices N(s), D(s) are said to form a normal external
description (NED) of the system (E,A,B) if they satisfy the following conditions:

•
[ N(s)

D(s)

]
forms a minimal polynomial basis for Ker[sE−A, −B],

[sE−A, −B]
[
N(s)
D(s)

]
= 0,

• N(s) forms a minimal polynomial basis for KerΠ[sE−A], where Π is a maximal
left annihilator of B,

Π[sE−A]N(s) = 0.

It should be noted that a normal external description always exists and is not unique.
However, when the above polynomial bases are brought into their canonical forms [4],
then such a normal external description is unique.

Let F define a state feedback (2). Then the formulas

[sE −A, −B]
[
In 0
F Im

] [
In 0
−F Im

] [
N(s)
D(s)

]
= 0,

[sE −A−BF, −B]

 N(s)

D(s)− FN(s)

 = 0

show how the state feedback acts upon the NED of (E,A,B) and hint a relationship
between the pencils [sE−A−BF, −B] and their NEDs. To enlighten this relationship
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a bit more, consider a system (EC , AC , BC) and its canonical NED. It can be seen that
the NED is given just by the εi- and σi-blocks of (EC , AC , BC) and does not depend
on the quantities qi, pi, ηi and polynomials αi(s), which means that the relationships
between these two groups of quantities would not be reflected by the NED. So, if we want
to use the NED for studying the effect of state feedback upon the system, we should
find a way to bring the lost information back into the play. To that end the matrix BC

is extended by the matrix BC (see [10] for detail) in such a way that the lost quantities
of the system will appear in its NED. Such a system (EC , AC , [BC BC ]) obtained from
(EC , AC , BC) by this trick is said to be an extended system of (EC , AC , BC). Its NED
is of the form

[
NE(s)
DE(s)

]
, where NE(s) := block diag {Nt(s)} , t ∈ {ε, σ, q, p, l, η}, with

Nε(s):= block diag
{
[1 s . . . sεi ]T

}kε

i=1
, Nσ(s):= block diag

{[
1 s . . . sσi−1

]T
}kσ

i=1
,

Nq(s):= block diag
{[

1 s . . . sqi−1
]T

}kq

i=1
, Np(s):= block diag

{
[spi . . . s 1]T

}kp

i=1
,

Nl(s):= block diag
{[

1 s . . . sli−1
]T

}kl

i=1
, Nη(s):= block diag

{[
sηi−1 . . . s 1

]T
}kη

i=1
,

and

DE(s) :=

 DE1(s)
−−−
DE2(s)

 :=



0 Sσ 0 0 0 0
0 0 Sq 0 0 0
−−−−−−−−−−
0 0 −Ikq

0 0 0
0 0 0 −Ikp 0 0
0 0 0 0 Sα 0
0 0 0 0 0 Sη


with

Sσ := diag {sσi}kσ

i=1 , Sq := diag {sqi}kq

i=1 ,

Sα := diag {αi(s)}kl

i=1 , Sη := block diag
{[

sηi

−1

]}kη

i=1

.

The “feedback” matrix describing the effect of state feedback upon the system,

DEF (s) :=

DEF1(s)
−−−
DEF2(s)

 =

DE1(s)
−−−
DE2(s)

−

 F
−−
0

NE(s), (4)

or explicitely

DEF (s) =



D1ε(s) Sσ+D1σ(s) D1q(s) D1p(s) D1l(s) D1η(s)

D2ε(s) D2σ(s) Sq+D2q(s) D2p(s) D2l(s) D2η(s)
−−−−−−−−−−−−−−−−−−−−−−−

0 0 −Ikq 0 0 0
0 0 0 −Ikp 0 0
0 0 0 0 Sα 0
0 0 0 0 0 Sη

[


, (5)
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where Dij(s) are arbitrary matrices satisfying the conditions

degci

[
D1j(s)
D2j(s)

]
≤ degciNj(s), i = 1, 2, . . . , j ∈ {ε, σ, q, p, l, η}. (6)

The matrices Dij(s) represent the change to the system, that can be done using a state
feedback. In particular, using the concept of the NED, the problem of finding an F such
that the prescribed pole structure will be assigned to the system (1) lies in the finding of
the appropriate matrices Dij(s). Let DNF (s) := [Dij(s)]. Then, matrix DNF (s) being
at the disposal, the feedback gain F can be calculated using (4), i. e.

DNF (s) = −FNE(s). (7)

2.3. Conformal Mapping

To handle with the finite and infinite zeros in a unified way, we use the conformal
mapping

s =
1 + aw

w
, (8)

where a ∈ R, and is not a pole of (E,A,B). This is done as follows.

• Perform first the substitution given by (8) to the equation

[
sE −A, −B

] [
N(s)
D(s)

]
= 0. (9)

• Then premultiply (9) by the matrix diag {wνi}, νi := degri

[
sE −A, −B

]
. At the

end a w-analogue,
[
wẼ − Ã, −B̃(w)

]
, of the pencil

[
sE − A, −B

]
is obtained.

Let (Ẽ, Ã, B̃) denote the associated system.

• Postmultiply further (9) by diag {wµi}, µi := degci

[ N(s)
D(s)

]
, to get (9) in the form

[
wẼ − Ã, −B̃(w)

][ Ñ(w)
D̃(w)

]
= 0,

where both
[
wẼ − Ã, −B̃(w)

]
and

[ Ñ(w)

D̃(w)

]
are polynomial matrices over R[w].

The conformal mapping (8) transforms the s-plane into itself moving the points s = ∞
to w = 0 and s = a to w = ∞, while keeping all the finite zeros at finite positions.
Consequently, the infinite pole structure of the system (E,A,B) is determined as the
finite pole substructure of the system (Ẽ, Ã, B̃) at w = 0.

Based on the above formulas, a w-analogue, D̃EF (w), of the matrix DEF (s) (defined
in (5)) is of the form
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D̃EF (w) :=



D̃1ε S̃σ + D̃1σ D̃1q D̃1p D̃1l D̃1η

D̃2ε D̃2σ S̃q + D̃2q D̃2p D̃2l D̃2η

−−−−−−−−−−−−−−−−−−−
0 0 diag{−wqi} 0 0 0
0 0 0 diag{−wpi} 0 0
0 0 0 0 S̃α 0
0 0 0 0 0 S̃η


, (10)

where

S̃σ := diag {(1 + aw)σi}kσ

i=1 , S̃q := diag {(1 + aw)qi}kq

i=1 ,

S̃α := diag {α̃i(w)}kl

i=1 , S̃η := blockdiag
{[

(1 + aw)ηi

−wηi

]}kη

i=1

,

D̃ij are polynomial matrices satisfying the condition, similar to (6), that is

degci

[
D̃1j

D̃2j

]
≤ degci Ñj , i = 1, 2, . . . , j ∈ {ε, σ, q, p, l, η}. (11)

It should be checked whether state feedback (2) does not assign a zero to the resulting
matrix at the point s = a . If not, then such a state feedback is termed admissible. In
terms of the matrices D̃ij , the condition of admissibility of a state feedback is satisfied if

the matrix
[

D̃1ε S̃σ+D̃1σ

D̃2ε D̃2σ

]
or at least one of its submatrices

[
D̃1ε[kqkqkq ] S̃σ+D̃1σ

D̃2ε[kqkqkq ] D̃2σ

]
, kqkqkq ∈ Skq

kε
, if

kε > kq, is column reduced with the column degrees εi, i ∈ Skq

kε
, and σi, i = 1, 2, . . . , kσ.

It appears that the NED of the extended system of (1) is a very useful tool when
treating the problems like changing the pole structure by state feedback. The proposition
below summarizes some properties of the system (1) that will be used in the sequel.

Proposition 2.2. (Loiseau and Zagalak [10]) The following holds:

(a) The system (E,A,B) is regularizable if and only if kε = kq and kη = 0.

(b) The non unit invariant factors of both wẼ− Ã− B̃(w)F and D̃EF (w) coincide for
any admissible F .

(c) The infinite zero structure of sE −A−BF and finite substructure of D̃EF (w) at
w = 0 coincide for any admissible F .

As the main problem considered in the paper is the problem of pole assignment to
the system (E,A,B), we recall the known result in the case of regularizable systems.

Proposition 2.3. (Loiseau and Zagalak [10]) Given a regularizable system (1) (kε = kq

and kη = 0), a monic polynomial ψ(s), and an integer d ≥ 0, then there exists a matrix
F in (2) such that det[sE − A− BF ] = ψ(s) and the sum of the infinite zero orders of
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sE − A − BF equals d if and only if the conditions (12) – (14) (and (15) if kε = 0) are
satisfied:

degψ(s) + d =
kε∑

i=1

εi +
kσ∑
i=1

σi +
kq∑

i=1

qi +
kp∑
i=1

pi +
kl∑

i=1

li, (12)

ψ(s) B α1(s)α2(s) . . . αkl
(s), (13)

d ≥
kq∑

i=1

qi +
kp∑
i=1

pi, (14)

degψ(s) =
kσ∑
i=1

σi +
kl∑

i=1

li. (15)

Remark 2.4. The matrix DEF (s) or its w-analogue D̃EF (w) shows that the quanti-
ties αi(s), pi, qi can not be changed by state feedback (2) while the sum of the indices
εi, σi is the number of the poles that can freely be assigned either to finite or infinite
locations [10].

3. POLE ASSIGNMENT IN NON-SQUARE SYSTEMS

When dealing with the non-square systems (1), a natural question arising here is under
what conditions there exists a state feedback (2) yielding a full rank pencil sE−A−BF .
The following theorem gives an answer to this question.

Theorem 3.1. (Korotka, Loiseau and Zagalak [5]) There exists a matrix F ∈ Rm×n

such that pencil sE −A−BF is of

(a) full row rank if and only if

kε ≥ kq and kη = 0, (16)

(b) full column rank if and only if
kq ≥ kε. (17)

P r o o f . For pencils having more columns than rows it easily follows, from the form of
DEF (s), that sE−A−BF is of full row rank if and only if (16) holds. In the case there
are more rows than columns and rank sE −A−BF is full, say n,

rank [sE −A−BF ] ≤ rank Π[sE −A] + rank B

where Π is a maximal annihilator of B. This condition is equivalent to

n− rank [sE −A−BF ] ≥ n− rank Π[sE −A]− rank B. (18)

Then, as n − rank Π[sE − A] is equal to the number of the column minimal indices of
[sE − A − B], that is to say kε + kσ, and rank B = kσ + kq, it follows from (18) that
0 ≥ kε + kσ − kσ − kq and consequently follows (17).

Conversely, if (16), or (17), holds for a pencil [sE−A, −B], then it is always possible
to find an F such that sE −A−BF will be of full row or column rank. �
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Example 3.2. Let the system with kε = 2, kq = 1 (ε1 = ε2 = q1 = 1) be given,

[sE−A, −B] :=


s −1 0 0 0 | 0
0 0 s −1 0 | 0
0 0 0 0 −1 | 0
0 0 0 0 s |−1

 .
Evidently, the pencil sE − A is not of full rank but, since the system satisfies (16), a
state feedback can always be found such that sE−A−BF will be of full row rank. For
example, F := [1 0 0 0] yields

sE −A−BF =


s −1 0 0 0
0 0 s −1 0
0 0 0 0 −1

−1 0 0 0 s


that is of full row rank.

If the conditions (16) and (17) are satisfied simultaneously then the system is square
and regularizable.

The systems satisfying either (16) or (17) might be called weakly (row or column)
regularizable since we cannot speak of the characteristic polynomial assignment but just
of the full rank assignment, which means that (at least) one of the minors of largest
possible order min{q, n} of sE − A− BF is not zero. The minors of P (s) ∈ Rq×n[s] of
order min{q, n} will be called dominant and denoted as dm P (s). The greatest common
divisor of all dominant minors of sE−A−BF (hereafter denoted by gcddm[sE−A−BF ])
plays a similar role as the determinant of the regular pencils, which means that the zeros
of sE −A−BF are given by the zeros of gcddm[sE −A−BF ]. Clearly, if the system
is not weakly regularizable, it would be difficult to speak about the pole assignment in
terms of gcddm[sE −A−BF ].

Example 3.3. Let ε1 = η1 = 1 and σ1 = 3. Then the matrix DEF (s) is of the form

DEF (s) =

 α0 + α1s s3 + β2s
2 + β1s+ β0 γ

0 0 s
0 0 −1

 ,
which shows that there is no F resulting in DEF (s) (and hence sE−A−BF ) nonsingular
(or at least a dominant minor is nonzero).

It is of course convenient to use the conformal mapping (8) and work on the pencil
wẼ − Ã − B̃(w)F . Then the roots of ψ̃(w)wd := gcddm

[
wẼ − Ã − B̃(w)F

]
are the

transformed zeros (finite and infinite) of sE −A−BF .

4. POLE ASSIGNMENT IN WEAKLY REGULARIZABLE SYSTEMS

When using the above introduced w-notation, it follows, from the previous section,
that for the systems satisfying the conditions of Theorem 3.1, the pole assignment is a
well defined problem in terms of gcddm

[
wẼ − Ã − B̃(w)F

]
. The problem formulation

introduced below is just a rephrased version of that given in Background.
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Given a weakly regularizable system (1), a monic polynomial ψ(s), and integer
d > 0, find conditions under which there exists a matrix F ∈ Rm×n such that,
using the w-notation, ψ̃(w)wd will be a gcddm

[
wẼ − Ã− B̃(w)F

]
.

By Proposition 2.2, it follows that ψ̃(w)wd is also gcddm D̃EF (w). Thus, gcddm
[
wẼ −

Ã− B̃(w)F
]

can be replaced by gcddm D̃EF (w) in the above formulation.

4.1. Row regularizable Systems

The following lemma will be useful in the sequel.

Lemma 4.1. Let P (s) =
[

X Y
0 Z

]
be an (m+ p)× (n+ p) polynomial matrix of full

row rank with Z nonsingular. Then

gcddmP (s) = gcddmX detZ. (19)

P r o o f o f L e m m a 4.1. It is clear that any (m+ p)× (m+ p) nonsingular submatrix,

say Pm(s), of P (s) is of the form
[

Xm Y
0 Z

]
, where Xm denotes any m×m nonsingular

submatrix of X. Clearly, detPm(s) = detXm(s) detZ(s), which implies (19). �

The necessary conditions of solvability to the problem of pole assignment to the row
regularizable systems are given in the next theorem.

Theorem 4.2. Let a row regularizable system (1) (kε ≥ kq and kη = 0), a monic
polynomial ψ(s), and an integer d ≥ 0 be given. If there exists a matrix F ∈ Rm×n such
that a ψ̃(w)wd = gcddm

[
wẼ − Ã− B̃(w)F

]
, then the conditions (20) – (22) (and (23) if

kq = 0) are satisfied:

degψ(s) + d ≤
kq∑

i=1

εi +
kσ∑
i=1

σi +
kq∑

i=1

qi +
kp∑
i=1

pi +
kl∑

i=1

li, (20)

ψ(s) B α1(s)α2(s) · · ·αkl
(s), (21)

d ≥
kq∑

i=1

qi +
kp∑
i=1

pi, (22)

d =
kp∑
i=1

pi (23)

with equality in (20) if kε = kq.

P r o o f . Let F be a matrix such that sE − A − BF is of full row rank and consider
the matrix D̃EF (w) in (10) (without the rows and columns corresponding to S̃η since
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kη = 0). It can be seen that this matrix is of the form of the matrix P (s) in Lemma 4.1,

X :=
[

D̃1ε S̃σ+D̃1σ

D̃2ε D̃2σ

]
, which implies that

gcddm D̃EF (w) = ψ̃
′
(w)w

Pkq
i=1 qi+

Pkp
i=1 pi α̃1(w) · · · α̃kl

(w), (24)

where ψ̃
′
(w) := gcddmX. The relationship (24) then implies the conditions (21) and

(22) and, since

deg ψ̃
′
(w) ≤

kq∑
i=1

εi +
kσ∑
i=1

σi, for kε > kq,

deg ψ̃
′
(w) =

kq∑
i=1

εi +
kσ∑
i=1

σi, for kε = kq,

(25)

in view of (11) and the assumption on the admissibility of F , the condition (20) is
obtained from (24) and (25).

If kq = 0 then ψ̃
′
(w) is always coprime with w. This fact and the w-coprimeness of

polynomials α̃i(w), i = 1, . . . , kl, (by assumption on the conformal mapping) imply, in
view of (24), the condition (23). �

The following example shows that the conditions of Theorem 4.2 are not sufficient in
general.

Example 4.3. Let ε1 = 0 and σ1 = 3. Then the matrix DEF (s) is of the form

DEF (s) =
[
α0 s3 + β2s

2 + β1s+ β0

]
and the degrees of the gcddmDEF (s) are either 0 or 3, but never 1 or 2 although they
satisfy (20). �

When just one nonzero dominant minor of sE − A − BF is to be assigned, a more
complete answer to the problem of pole assignment to a row regularizable system can
be given.

Theorem 4.4. Let a row regularizable system (1) (kε ≥ kq and kη = 0), a monic
polynomial ψ(s), and an integer d ≥ 0 be given. Let further {ε′i}

kq

i=1 be a subset of
{εi}kε

i=1. Then there exists a matrix F ∈ Rm×n such that a ψ̃(w)wd = gcddm
[
wẼ− Ã−

B̃(w)F
]
, if the conditions (26) – (28) (and (29) if kq = 0) are satisfied:

degψ(s) + d =
kq∑

i=1

ε′i +
kσ∑
i=1

σi +
kq∑

i=1

qi +
kp∑
i=1

pi +
kl∑

i=1

li, (26)

ψ(s) B α1(s)α2(s) . . . αkl
(s), (27)

d ≥
kq∑

i=1

qi +
kp∑
i=1

pi, (28)

degψ(s) =
kσ∑
i=1

σi +
kl∑

i=1

li. (29)
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P r o o f . The conditions (26) – (28) imply that F can be chosen such that D̃EF (w) is of
form (10) (without the rows and columns corresponding to S̃η) with

gcddm D̃EF (w) = ψ̃
′
(w)w

Pkq
i=1 qi+

Pkp
i=1 pi α̃1(w) . . . α̃kl

(w), (30)

where ψ̃
′
(w) := gcddm

[
D̃1ε S̃σ + D̃1σ

D̃2ε D̃2σ

]
, and

deg ψ̃
′
(w) =

kq∑
i=1

ε′i +
kσ∑
i=1

σi.

Such matrices D̃ij always exist because of (11). For instance, choose
[

D̃1ε

D̃2ε

]
:=

[
D̃1ε[k?

qk?
qk?
q ] 0

D̃2ε[k?
qk?
qk?
q ] 0

]
,

k?
qk
?
qk
?
q ∈ Skq

kε
, such that

[
D̃1ε[k?

qk?
qk?
q ] S̃σ+D̃1σ

D̃2ε[k?
qk?
qk?
q ] D̃2σ

]
is column reduced with column degrees ε′i, i =

1, 2, . . . , kq, and σi, i = 1, 2, . . . , kσ.
If kq = 0 then ψ̃

′
(w) is always coprime with w, and (29) should be added. �

4.2. Column Regularizable Systems

Let us consider a column regularizable system (1).

Lemma 4.5. Let P (s) =
[
X Y
0 Z

]
be an (m + p) × (n + p), m − n ≤ p, polynomial

matrix of full column rank where Z is p× p, nonsingular, and diagonal. Then

gcddmP (s) C gcd
{

gcddmX detZ; det[X Y[/kkk]] detZ [kkk]
[kkk] , kkk ∈ Sp−m+n

p

}
. (31)

P r o o f . Clearly, the dominant minors dm P (s) are determinants of (n + p) × (n + p)
submatrices of P (s), i. e.

dm P (s) = detP [jjj](s), jjj ∈ Sn+p
m+p.

More particularly,

dm P (s) = det
[
X [jjj] Y [jjj]

0 Z [kkk]

]
, jjj ∈ Sn+i

m , kkk ∈ Sp−i
p , i = 0, 1, . . . ,m− n.

Then, as a consequence of the diagonal form of Z,

dm P (s) = det[X Y[/kkk]][j
jj] detZ [kkk]

[kkk] , kkk ∈ Sp−i
p , jjj ∈ Sn+i

m . (32)

Consider now the relationship (32) for i = 0 and i = m − n. In the former case,
the relationship (32) describes the dominant minors of P (s) obtained when eliminating
m− n rows of [X Y ], i. e.

dm P (s) = detX [jjj] detZ, jjj ∈ Sn
m.
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Now, since gcddmX = gcd{detX [jjj], jjj ∈ Sn
m}, it follows that

gcddmX detZ = gcd{detX [jjj] detZ, jjj ∈ Sn
m}. (33)

The case i = m− n corresponds to eliminating m− n rows of [0 Z], which means that
the corresponding minors are

dm P (s) = det[X Y[/kkk]] detZ [kkk]
[kkk] , kkk ∈ Sp−m+n

p . (34)

The gcddmP (s) divides the terms (33), (34) by definition, which implies (31). �

In the following theorem necessary conditions of solvability to the pole assignment
problem in a column regularizable system are given.

Theorem 4.6. Let a column regularizable system (1) (kq ≥ kε), a monic polynomial
ψ(s), and an integer d ≥ 0 be given. If there exists a matrix F ∈ Rm×n such that
ψ̃(w)wd = gcddm

[
wẼ− Ã− B̃(w)F

]
, then the conditions (35) – (39) (and (40) if kε = 0)

are satisfied:

degψ(s) + d ≤
kε∑

i=1

εi +
kσ∑
i=1

σi +
kε∑

i=1

qi +
kp∑
i=1

pi +
kl∑

i=1

li, (35)

ψ(s) B
kl∏

i=kq−kε+1

αi(s), (36)

d ≥
kε+kp∑

i=1

zi, (37)

degψ(s) ≤
kε∑

i=1

εi +
kσ∑
i=1

σi +
kl∑

i=1

li, (38)

d ≤
kε∑

i=1

εi +
kσ∑
i=1

σi +
kε∑

i=1

qi +
kp∑
i=1

pi, (39)

d ≤
kp∑
i=1

pi, (40)

where equality holds in (35) for kε = kq, {zi}
kε+kp

i=1 denotes the set of the first kε + kp

indices of the non-decreasingly ordered set {qi}
kq

i=1 ∪ {pi}
kp

i=1, and αi(s) := 1 for kl ≤
kq − kε.

P r o o f . Let sE−A−BF be of full column rank, which implies that the matrix D̃EF (w)
(see (10)) also has full column rank. Bringing, by elementary operations, the matrix S̃η

to the form, Sη̃
∼=

[
Ikη

0

]
, the matrix D̃EF (w) can further be simplified. Particularly,

the matrices D̃1η, D̃2η can be zeroed, which means that we can study just a submatrix
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of D̃EF (w), hereafter denoted by P (w), that does not contain the rows and columns
corresponding to the η-blocks. It is evident that gcddm D̃EF (w) = gcddmP (w) as the
only nonzero dominant minors of D̃EF (w) are those of P (w).

Further, it can be seen that the matrix P (w) assumes the form of the matrix P (s) in
Lemma 4.5. Let m := kσ + kq, n := kε + kσ, and p := kq + kp + kl,

P (w) =


D̃1ε S̃σ + D̃1σ | D̃1q D̃1p D̃1l

D̃2ε D̃2σ | S̃q + D̃2q D̃2p D̃2l

−−−−−−−−−−−−−−−−−−
0 0 |diag{−wqi} 0 0
0 0 | 0 diag{−wpi} 0
0 0 | 0 0 S̃α

 :=

 X Y
−−−
0 Z



with Z := diag {Zq, Zp, S̃α}, where Zq := diag {−wqi} and Zp := diag {−wpi}.
Then, similarly as in Lemma 4.5, the dominant minors of P (w) are formed by eliminating
m− n = kσ + kq − (kε + kσ) = kq − kε rows of P (w), i. e.

dm P (w) = det[X Y[/kkk]][j
jj] detZ [kkk]

[kkk] , jjj ∈ Sn+i
m , kkk ∈ Sp−i

p , i = 0, 1, . . . , kq − kε.

Begin with considering the dominant minors for i = kq − kε, i. e.

det[X Y[/kkk]] detZ [kkk]
[kkk] , kkk ∈ Skε+kp+kl

p .

Let further k′q, k
′
p, k

′
l be nonnegative numbers satisfying

kε ≤ k′q ≤ kq, (41)
kp − (kq − kε) ≤ k′p ≤ kp, (42)
kl − (kq − kε) ≤ k′l ≤ kl, (43)

k′q + k′p + k′l = kε + kp + kl. (44)

Then, the detZ [kkk]
[kkk] can be written in the form

detZ [kkk]
[kkk] = detZ

[k′
qk′
qk′
q ]

q[k′
qk′
qk′
q ]

detZ
[k′

pk′
pk′
p]

p[k′
pk′
pk′
p]

det S̃ [k′
lk′
lk′
l]

α[k′
lk′
lk′
l]
,

where det S̃ [k′
lk′
lk′
l]

α[k′
lk′
lk′
l]

:= 1 for k′l = 0, and detZ
[k′

pk′
pk′
p]

p[k′
pk′
pk′
p]

:= 1 for k′p = 0.

The polynomial det S̃ [k′
lk′
lk′
l]

α[k′
lk′
lk′
l]

of the smallest degree, which is defined for the smallest k′l,
is

det S̃ [k′
lk′
lk′
l]

α[k′
lk′
lk′
l]

=
kl∏

i=kq−kε+1

α̃i(w),

and the condition (36) follows.

Consider now the polynomial of the smallest degree of the

detZ
[k′

qk′
qk′
q ]

q[k′
qk′
qk′
q ]

detZ
[k′

pk′
pk′
p]

p[k′
pk′
pk′
p]

= wks ,
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where ks := k′q +k′p. Since det S̃ [k′
lk′
lk′
l]

α[k′
lk′
lk′
l]

is always coprime with w (α̃i(w) are coprime with w
by assumption on the conformal mapping), the smallest ks is defined by (44) for kl

′ = kl,

ks = kε + kp.

Let {zi}ks
i=1 be the set of the ks smallest indices of the set {qi}

kq

i=1 ∪ {pi}
kp

i=1. In view of
(11) there exist matrices D̃ij such that

det[X Y[/ksksks]] = det

[ [
D̃1ε S̃σ + D̃1σ

D̃2ε D̃2σ

][ [
D̃1q

S̃q + D̃2q

]
[/kq′kq′kq′ ]

[
D̃1p

D̃2p

]
[/kp′kp′kp′ ]

] ]

and w are coprime. This implies the condition (37).

By lemma 4.5, the gcddmP (w) satisfies

gcddmP (w) C gcd
{

gcddmX detZ; det[X Y[/kkk]] detZ [kkk]
[kkk] , kkk ∈ Skε+kp+kl

p

}
. (45)

But at first it should be noted that from the full column rank hypothesis of P (w) it
follows that at least one minor from the below set is nonzero,

det

[
X

[
D̃1q

S̃q + D̃2q

]
[/kεkεkε]

]
detZ [kεkεkε]

q[kεkεkε]
detZp det S̃α, kεkεkε ∈ Skε

kq
. (46)

Hence, (46) limits the largest degree of detZ [kkk]
[kkk] , i. e.

deg gcd{detZ [kkk]
[kkk] , kkk ∈ Sp−i

p , i = 0, 1, . . . , kq − kε} ≤
kε∑

i=1

qi +
kp∑
i=1

pi +
kl∑

i=1

li. (47)

Finally, as the matrix S̃q + D̃2q (i. e. all the entries of the matrix) is not divisible by w,
then

deg gcd

gcddmX
detZq

detZ [kεkεkε]
q[kεkεkε]

; det

[
X

[
D̃1q

S̃q + D̃2q

]
[/kεkεkε]

]
, kεkεkε ∈ Skε

kq


≤

kε∑
i=1

εi +
kσ∑
i=1

σi.

(48)

The condition (35) then follows from (45), (47) and (48). It should be noted that if
kε = kq then (45) comes to

gcddmP (w) = detP (w) = detX detZ

and the equality in (35) holds.
Since detZ [kεkεkε]

q[kεkεkε]
detZp in (46) is of the form wj , j ≥ 0, which means that the q, p-

blocks can’t contribute to ψ̃(w), then (38) should satisfy. The w-coprimeness of det S̃α
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implies analogously (39). If kε = 0 then the largest degree of detZ [kkk]
[kkk] in (47) is limited by∑kp

i=1 pi +
kl∑

i=1

li. In addition the gcd of the bracketed expression in (48) is not divisible

by w. These facts imply (40). �

The conditions of Theorem 4.6 are believed to be also sufficient, but the proof should
be completed. Below, sufficient conditions are given for some special cases. More
particularly, in the column regularizable systems, it is always possible to assign the
gcddm D̃EF (w) of the form

gcddm D̃EF (w) = gcddmX detZ [k?
εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]

detZp det S̃α, (49)

where k?
εk
?
εk
?
ε is a specific element from Skε

kq
.

In order to satisfy (49), let the corresponding minor be a nonzero one from the set
(46),

dm D̃EF (w) = det

[
X

[
D̃1q

S̃q + D̃2q

]
[/k?

εk?
εk?
ε ]

]
detZ [k?

εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]

detZp det S̃α, i. e.

det

[
X

[
D̃1q

S̃q + D̃2q

]
[/k?

εk?
εk?
ε ]

]
6= 0. (50)

This minor belongs to the set

det[X Y[/kkk]] detZ [kkk]
[kkk] , kkk ∈ Skε+kp+kl

p ,

and is the only nonzero minor from this set if the following conditions are satisfied:

det

[
X

[
D̃1q

S̃q + D̃2q

]
[/k′

qk′
qk′
q ]

[
D̃1p

D̃2p

]
[/k′

pk′
pk′
p]

[
D̃1l

D̃2l

]
[/k′

lk′
lk′
l]

]
= 0 (51)

for all k′qk
′
qk
′
q 6= k?

εk
?
εk
?
ε , k

′
p 6= kp, k

′
l 6= kl, where k′q, k

′
p, k

′
l are the same as in (41) – (44).

This condition holds for all k′p 6= kp, k′l 6= kl, if
[

D̃1p D̃1l

D̃2p D̃2l

]
= 0. Then

gcd(det[X Y[/kkk]] detZ [kkk]
[kkk] , kkk ∈ Skε+kp+kl

p ) = gcddm D̃xq detZp det S̃α,

where

D̃xq :=


D̃1ε S̃σ + D̃1σ |
D̃2ε D̃2σ |
− − −−−−−
0 0 |

D̃1q

S̃q + D̃2q

−−−−
Zq

 .
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Now, if the matrix D̃xq is partitioned such that

D̃xq =



D̃1ε S̃σ + D̃1σ | D̃1q[k?
εk?
εk?
ε ] D̃1q[/k?

εk?
εk?
ε ]

D̃
[k?

εk?
εk?
ε ]

2ε D̃
[k?

εk?
εk?
ε ]

2σ |
[
S̃q + D̃2q

][k?
εk?
εk?
ε ]

[k?
εk?
εk?
ε ]

D̃
[ k?

εk?
εk?
ε ]

2q[/k?
εk?
εk?
ε ]

D̃
[/k?

εk?
εk?
ε ]

2ε D̃
[/k?

εk?
εk?
ε ]

2σ | D̃
[/k?

εk?
εk?
ε ]

2q[ k?
εk?
εk?
ε ]

[
S̃q + D̃2q

][/k?
εk?
εk?
ε ]

[/k?
εk?
εk?
ε ]

−−−−−−−−−−−−−−−−−−−−−
0 0 | Z

[k?
εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]

0

0 0 | 0 Z
[/k?

ε/k?
ε/k?
ε ]

q[/k?
εk?
εk?
ε ]


,

then (50) can be written in the form

det


D̃1ε S̃σ + D̃1σ D̃1q[/k?

εk?
εk?
ε ]

D̃
[k?

εk?
εk?
ε ]

2ε D̃
[k?

εk?
εk?
ε ]

2σ D̃
[ k?

εk?
εk?
ε ]

2q[/k?
εk?
εk?
ε ]

D̃
[/k?

εk?
εk?
ε ]

2ε D̃
[/k?

εk?
εk?
ε ]

2σ

[
S̃q + D̃2q

][/k?
εk?
εk?
ε ]

[/k?
εk?
εk?
ε ]

 6= 0.

The matrices S̃σ + D̃1σ,
[
S̃q + D̃2q

][/k?
εk?
εk?
ε ]

[/k?
εk?
εk?
ε ]

are always nonsingular, therefore the condition

det D̃ [k?
εk?
εk?
ε ]

2ε 6= 0 guaranties (50). Similarly, if the matrices D̃ [/k?
εk?
εk?
ε ]

2ε , D̃
[/k?

εk?
εk?
ε ]

2σ , D̃
[/k?

εk?
εk?
ε ]

2q[ k?
εk?
εk?
ε ]

are
zero matrices, then (51) holds for all k′qk

′
qk
′
q 6= k?

εk
?
εk
?
ε . Indeed, using row and column elementary

operations, the matrix D̃xq is brought to the form

D̃xq '



D̃1ε S̃σ + D̃1σ | D̃1q[k?
εk?
εk?
ε ] 0

D̃
[k?

εk?
εk?
ε ]

2ε D̃
[k?

εk?
εk?
ε ]

2σ |
[
S̃q + D̃2q

][k?
εk?
εk?
ε ]

[k?
εk?
εk?
ε ]

0

0 0 | 0 Ikq−kε

−−−−−−−−−−−−−−−−−
0 0 | Z

[k?
εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]

0

0 0 | 0 0kq−kε


,

which shows that the only nonzero dominant minor of the matrix D̃xq is the minor
corresponding to (50). Since

gcddm D̃xq = det

[
D̃1ε S̃σ + D̃1σ

D̃
[k?

εk?
εk?
ε ]

2ε D̃
[k?

εk?
εk?
ε ]

2σ

]
detZ [k?

εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]

= gcddmX detZ [k?
εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]
,

the relationship (49) follows.

The above described procedure is not unique but seems to be the simplest one for
the construction of the matrices D̃ij . It will also be used in the following theorem.
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Theorem 4.7. Let a column regularizable system (1) (kq ≥ kε), a monic polynomial
ψ(s), and an integer d ≥ 0 be given. Let further {q′i}

kε
i=1 be a subset of {qi}

kq

i=1. Then
there exists a matrix F ∈ Rm×n such that a ψ̃(w)wd = gcddm

[
wẼ− Ã− B̃(w)F

]
if the

conditions (52) – (54) (and (55) if kε = 0) are satisfied:

degψ(s) + d =
kε∑

i=1

εi +
kσ∑
i=1

σi +
kε∑

i=1

q′i +
kp∑
i=1

pi +
kl∑

i=1

li, (52)

ψ(s) B α1(s)α2(s) . . . αkl
(s), (53)

d ≥
kε∑

i=1

q′i +
kp∑
i=1

pi, (54)

degψ(s) =
kσ∑
i=1

σi +
kl∑

i=1

li. (55)

P r o o f . Suppose (52) – (54) hold. This implies that

kl∑
i=1

li ≤ deg ψ̃(w) ≤
kε∑

i=1

εi +
kσ∑
i=1

σi +
kl∑

i=1

li,

kε∑
i=1

q′i +
kp∑
i=1

pi ≤ d ≤
kε∑

i=1

εi +
kσ∑
i=1

σi +
kε∑

i=1

q′i +
kp∑
i=1

pi,

which means that an F can be chosen such that

gcddm D̃EF (w) = gcddm
[
D̃1ε S̃σ + D̃1σ

D̃2ε D̃2σ

]
detZ [k?

εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]
w

Pkp
i=1 pi α1(s) . . . αkl

(s),

where

deg gcddm
[
D̃1ε S̃σ + D̃1σ

D̃2ε D̃2σ

]
=

kε∑
i=1

εi +
kσ∑
i=1

σi,

detZ [k?
εk?
εk?
ε ]

q[k?
εk?
εk?
ε ]

denotes w

kεP
i=1

q′
i

, and k?
εk
?
εk
?
ε corresponds to the positions of terms wq′

i in (10).

If kε = 0 then gcddm
[

S̃σ+D̃1σ

D̃2σ

]
is always coprime with w, which is reflected by (55).

Such a matrix F , and consequently matrices D̃ij , always exists because of (11). For
instance,

D̃2ε :=
[
D̃

[k?
εk?
εk?
ε ]

2ε

0

]
, D̃2σ :=

[
D̃

[k?
εk?
εk?
ε ]

2σ

0

]
, (56)

such that

deg det

[
D̃1ε S̃σ + D̃1σ

D̃
[k?

εk?
εk?
ε ]

2ε D̃
[k?

εk?
εk?
ε ]

2σ

]
=

kε∑
i=1

εi +
kσ∑
i=1

σi,
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and

D̃2q :=

 D̃
[k?

εk?
εk?
ε ]

2q[k?
εk?
εk?
ε ]

D̃
[ k?

εk?
εk?
ε ]

2q[/k?
εk?
εk?
ε ]

0 D̃
[/k?

εk?
εk?
ε ]

2q[/k?
εk?
εk?
ε ]

 , [
D̃1p D̃1l

D̃2p D̃2l

]
:= 0. (57)

�

It should be noted that degψ(s) + d is the number of poles (multiplicities included)
of system (1) (i. e. degψ(s) is the number of finite poles, multiplicities included, and d is
the multiplicity of the pole at infinity). In the case of regularizable system this value is
constant (see (12)). The situation is different as far as weakly regularizable systems (see
(20) and (35)) are concerned. In the following theorem the problem of pole assignment
there is considered in the case when the maximal number of poles is to be assigned.

Theorem 4.8. [5] Given a weakly (row or column) regularizable system (1) (i. e. kε ≥
kq and kη = 0 or kq ≥ kε), a monic polynomial ψ(s), and an integer d ≥ 0. If

degψ(s) + d =
kr∑

i=1

εi +
kσ∑
i=1

σi +
kr∑

i=1

qi +
kp∑
i=1

pi +
kl∑

i=1

li, (58)

then there exists a state feedback (2) such that gcddm
[
wẼ − Ã− B̃(w)F

]
= ψ̃(w)wd if

and only if the conditions (59), (60) (and (61) if kr = 0) are satisfied:

ψ(s) B α1(s)α2(s) . . . αkl
(s), (59)

d ≥
kr∑

i=1

qi +
kp∑
i=1

pi, (60)

degψ(s) =
kσ∑
i=1

σi +
kl∑

i=1

li, (61)

where kr := min{kε, kq}.

P r o o f . The necessity of (58) – (61) follows directly from Theorem 4.2 and Theorem
4.6 for the row and column regularizable systems, respectively. These conditions are
also sufficient by Theorem 4.4 and Theorem 4.7. �

Example 4.9. Consider a system (E,A,B) given by

[sE−A, −B] :=


0 −1 0 0 | 0 0
0 s −1 0 | 0 0
0 0 s 0 |−1 0
0 0 0 −1 | 0 0
0 0 0 s | 0 −1

 ,
i. e. with ε1 = 0, q1 = 2, q2 = 1. The system is column regularizable and, as follows
from Theorem 4.8, the maximal number of the poles that can be assigned is d = 2. We
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are going to show how to construct a matrix F such that gcddm D̃EF (w) = w2. To that
end, the extended system of (E,A,B) and its NED are constructed first.

[sE−A, −[B B̄] ] :=


0 −1 0 0 | 0 0 −1 0
0 s −1 0 | 0 0 0 0
0 0 s 0 |−1 0 0 0
0 0 0 −1 | 0 0 0 −1
0 0 0 s | 0 −1 0 0

 .

 NE(s)
−−−
DE(s)

 =



1 0 0
0 1 0
0 s 0
0 0 1
−−−−−
0 s2 0
0 0 s
0 −1 0
0 0 −1


,

 ÑE(w)
−−−
D̃E(w)

 =



1 0 0
0 w2 0
0 (1 + aw)w 0
0 0 w
−−−−−−−−−

0 (1 + aw)2 0
0 0 1 + aw
0 −w2 0
0 0 −w


.

Now, the matrix D̃EF (w) will be constructed such that gcddm D̃EF (w) = w2, which
means that the matrices D̃ij should be appropriately chosen. By (11), we have

D̃2ε :=
[
α11

α21

]
, D̃2q :=

[
α12w

2 + α13w α14w
α22w

2 + α23w α24w

]
, (62)

where coefficients αij can freely be chosen. Next, taking into account the relationships
(56) – (57) and the fact that q1 = 2, we put k?

εk
?
εk
?
ε = {1}, which gives deg det D̃[1]

2ε =
deg detα11 = 0, i. e. α11 6= 0 , D̃[/1]

2ε = α21 = 0, D̃ [/1]
2q[ 1] = α22w

2 + α23w = 0. Then, the

matrix D̃EF (w) is found to be of the form

D̃EF (w) =


α11 (1 + aw)2 + α12w

2 + α13w α14w
0 0 1 + aw + α24w
0 −w2 0
0 0 −w

 ,
where α11 6= 0 and the values of all other coefficients αij are irrelevant.

Let D̃NF (w) denote a w-analogue of the matrix DNF (s) in (7). This matrix is of the
form

D̃NF =
[
α11 α12w

2 + α13w α14w
0 0 α24w

]
, α11 6= 0,

which gives the state feedback gain F =
[

α11 α12−aα13 α13 α14
0 0 0 α24

]
with α11 6= 0 (the values

of other αij are irrelevant).
It can be easily verified that for such an F the pencil sE − A− BF has the pole at

infinity of order 2,

[sE−A−BF ] =


0 −1 0 0
0 s −1 0

−α11 −α12+aα13 s−α13 −α14

0 0 0 −1
0 0 0 s−α24

 ∼


−1 s 0 0

0 −1 s 0
0 0 −1 0
0 0 0 −1
0 0 0 s

 .
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Remark 4.10. For the systems of low dimensions, like the above one, a state feedback
gain F can be calculated directly from the forms of dm D̃EF (w). For example, consider
D̃EF (w) with the matrices D̃ij defined by (62), i. e.

D̃EF (w) =


α11 (1+aw)2+α12w

2+α13w α14w
α21 α22w

2+α23w 1+aw+α24w
0 −w2 0
0 0 −w

∼=

α11 1+(2a+α13)w 0
α21 0 1
0 −w2 0
0 0 −w

.
There are four dominant minors of the above matrix, namely

det D̃EF (w)[/1] = w3α21,

det D̃EF (w)[/2] = w3α11,

det D̃EF (w)[/3] = wα21[1 + (2a+ α13)w],
det D̃EF (w)[/4] = w2α11,

which implies that the maximal number of assignable poles is d = 2 (the full column
rank hypothesis implies that at least one coefficient αi1, i = 1, 2 is nonzero). The result
follows on putting α11 6= 0, α21 = 0.

5. CONCLUSIONS

The problem of pole assignment by state feedback to the non-square implicit systems (1)
is considered in the paper. If the condition (a) or (b) of Theorem 3.1 is satisfied, then the
problem is well-defined and such systems are called weakly (row or column) regularizable
- the weak regularizability can be viewed as an analog of the regularizability known [11]
in the case of square systems (1). The main result of the paper is stated in Theorem 4.2
and Theorem 4.6 that give necessary conditions of solvability. The conditions are stated
in terms of the greatest common divisor of the dominant minors of

[
wẼ − Ã− B̃(w)F

]
,

which is an analog of the determinant of the square pencils. Just sufficient conditions
for particular cases are also given in Theorem 4.4 and Theorem 4.7. In a special case,
when the maximal number of zeros (both finite and infinite) is to be assigned to the
pencil sE −A−BF , Theorem 4.8 gives necessary and sufficient conditions.

By investigating the results of the section 4, the concluding remarks are given below.
We begin with the row regularizable systems (kε ≥ kq and kη = 0). In the case when
kε = kq (regularizable system), the conditions of Theorem 4.2 coincide with those of
Theorem 4.4 (a set {ε′i}

kq

i=1 is the whole set {εi}kε
i=1 now). In other words, the conditions

of these theorems are necessary and sufficient. And in fact, these theorems reduce to
Proposition 2.3. The same holds in the case of column regularizable systems.

The blocks causing the non-regularizability of the system, but not breaking the weak
regularizability, deserve a special attention. Particularly, the extension of the regulariz-
ability to its weak analogue is due to these blocks, which will hereafter be called as NS
blocks. In the case of row regularizable systems they generate kε−kq nonproper indices,
while the column regularizable systems may possess kq − kε NS q-blocks. In addition,
all the η-blocks belong to the NS blocks, too. Their influence upon the dynamics of the
system (1) is described below.

First, it should be noted that the maximal number of assignable poles (with multi-
plicities included) of a weakly regularizable system cannot be increased by its NS blocks.
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Second, the number of poles that can freely be assigned to weakly regularizable
systems can be different from the similar number in regularizable systems, see Remark
2.4. In the row regularizable systems this number is described by the term ψ̃′(w) in
(25). Since deg ψ̃′(w) ≤

∑kq

i=1 εi +
∑kσ

i=1 σi, it follows that NS ε-blocks may lead to the
cancellation of all such poles (in the case when deg ψ̃′(w) = 0). The same inequality,
inspired by (48), holds in the column regularizable systems, caused by NS q-blocks.

The last remark concerns the quantities αi(s), qi, pi in the column regularizable sys-
tems. Particularly, the conditions (36), (37) imply that only kl − kq + kε smallest αi(s)
and kε + kp smallest indices of {qi}

kq

i=1 ∪ {pi}
kp

i=1 are not changed by state feedback (2),
which is different from the analogue conclusions for regularizable systems (see Remark
2.4) and row regularizable systems (see Theorem 4.2).
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