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SEMIDEFINITE CHARACTERISATION OF INVARIANT
MEASURES FOR ONE-DIMENSIONAL DISCRETE
DYNAMICAL SYSTEMS

Didier Henrion

Using recent results on measure theory and algebraic geometry, we show how semidefinite
programming can be used to construct invariant measures of one-dimensional discrete dynamical
systems (iterated maps on a real interval). In particular we show that both discrete measures
(corresponding to finite cycles) and continuous measures (corresponding to chaotic behavior)
can be recovered using standard software.
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1. INTRODUCTION

Consider the discrete dynamical system

xk+1 = f(xk) (1)

where f : R 7→ R is a given polynomial map and xk ∈ R is the system state with initial
condition

x0 ∈ G = {x ∈ R : g(x) = 1− x2 ≥ 0}.

It is well-known that for simple nonlinear mappings f , a typical state trajectory x0,
x1, x2, . . . of system (1) may be erratic, or chaotic, and very sensitive to the choice of
the initial state x0. The study of such one-dimensional discrete systems can be greatly
facilitated by the use of measure theory, see [1, Chapter 6] and [6] for elementary intro-
ductions, and [10, Chapters 1–4] for a more mathematical, yet very accessible treatment.
The key idea is the following: if a system operates on a measure as an initial condition,
rather than on a single point, then successive measures are given by a linear integral
operator called a Markov operator. Fixed points of this operator are called invariant
measures, and they convey key information on the long-term behavior of the system,
such as the existence of cycles of finite length, or a probabilistic characterization of its
chaotic behavior. For example, a chaotic behavior can be chacterized compactly via the
knowledge of only a few moments of a measure associated with the dynamical system,
in contrast with lengthy computationally demanding time-domain simulations, as illus-
trated e. g. in [2]. Recently, in the context of linear and nonlinear control systems, it
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has been realized that there is an insightful duality between occupation measures and
Lyapunov functions [12, 13, 14, 15].

In this paper we show that recent results mixing measure theory and algebraic geome-
try can be used to construct invariant measures numerically, with the help of semidefinite
programming, as called optimization over linear matrix inequalities (LMIs), a versatile
generalization of linear programming to the cone of positive semidefinite matrices [3,
Section 4.6.2]. We hope that such computer-based research efforts may contribute to a
better understanding of nonlinear phenomena and may suggest directions for theoretical
analysis, along the lines sketched in [4].

2. INVARIANT MEASURES

The material of this introductory section can be found in [9].
Consider dynamical system (1) with its polynomial map f on the interval G ⊂ R. Let

B(G) be the Borel σ-algebra on G, and let µ be a measure in B(G). Let F(G) denote
the set of measurable functions on G. Given x ∈ G and B ∈ B(G), define P (x,B) as a
Markov operator such that

• for all x ∈ G, P (x, .) ∈ B(G) is a probability measure supported on G;

• for all B ∈ B(G), x 7→ P (x,B) ∈ F(G) is a measurable function on G.

Markov operator µ → µ P acts on measures as follows:

(µ P )(B) =
∫

G

P (x,B)µ(dx) (2)

and its adjoint operator φ → P φ acts on functions as follows:

(P φ)(x) =
∫

G

φ(y)P (x,dy) =
∫

G

φ(y)δf(x)(dy) = φ(f(x)) (3)

where δx is the Dirac measure at x. With respect to dynamical system (1), given x ∈ G
and B ∈ B(G), P (x,B) is the probability that xk+1 ∈ B, knowing that xk = x.

We can interpret the Markov operator as a generalization to arbitrary probability
measures (including singular measures) of the Frobenius–Perron operator [10, Section
3.2] usually restricted to density functions, i. e. to probability measures which are ab-
solutely continuous w.r.t. the Lebesgue measure. Similarly, the adjoint of the Markov
operator is a generalization of the Koopmans operator [10, Section 3.3].

For dynamical system (1) we want to characterize fixed points of Markov operator
P , that is, measures µ ∈ B(G) satisfying

µ P = µ. (4)

Measures satisfying (4) are called invariant measures.
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3. SEMIDEFINITE CHARACTERISATION OF INVARIANT MEASURES

An equivalent characterization of invariance condition (4) is that

µ P φ = µ φ

for all continuous functions φ ∈ F(G). Recalling (2) and (3), this relation becomes∫
G

φ(f(x)) dµ(x) =
∫

G

φ(x) dµ(x).

Since function φ is continuous and G is compact, the above relation can be written
equivalently ∫

G

πα(f(x)) dµ(x) =
∫

G

πα(x) dµ(x), α = 0, 1, 2, . . . (5)

where polynomials πα(x) ∈ R[x], α = 0, 1, . . . , n generate a basis for polynomials of
degree at most n in indeterminate x. Basis polynomials are gathered in a column vector
π(x) with entries πi(x), i = 0, 1, . . . , n. For example πα(x) = xα, the standard monomial
of degree α, or πα(x) = tα(x), the Chebyshev polynomial of degree α, whose definition
is recalled in the Appendix.

Let
yα =

∫
G

πα(x) dµ(x) (6)

denote the moments of measure µ w.r.t. basis π(x). Let y denote the vector with entries
yα.

Notice that πα(f(x)) is a polynomial in x, so relation (5) is a linear equality constraint
on y for each α. All the constraints can be gathered in an infinite-dimensional linear
system of equations

Ay = b (7)

also including the constraint y0 = 1 indicating that µ is a probability measure.
Since µ is a nonnegative measure supported on G, it follows that∫

G

p2
0(x) dµ(x) ≥ 0,

∫
G

g(x)p2
1(x) dµ(x) ≥ 0

for all polynomials p0(x) and p1(x). By expressing polynomials pi(x) = pT
i π(x) in basis

π(x), with pi a column vector of coefficients, these scalar inequalities can be written as

pT
0 (

∫
G

π(x)π(x)T dµ(x))p0 ≥ 0, pT
1 (

∫
G

g(x)π(x)π(x)T dµ(x))p1 ≥ 0

for all vectors p0 and p1, or, equivalently, as semidefinite constraints

M(y) =
∫

G

π(x)π(x)T dµ(x) � 0, M(gy) =
∫

G

g(x)π(x)π(x)T dµ(x) � 0.

Symmetric linear mappings M(y) and M(gy) are called moment and localising matri-
ces, respectively. Results from algebraic geometry (namely M. Putinar’s sum-of-squares
representation of polynomials positive on compact semi-algebraic sets) can be invoked
as in [11] to show that these semidefinite conditions are necessary and sufficient for the
entries of vector y to correspond to moments of a probability measure µ supported on G.
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Lemma 3.1. The moments y of an invariant measure for dynamical system (1) satisfy
the linear semidefinite constraints

Ay = b, M(y) � 0, M(gy) � 0. (8)

The set of moments y satisfying constraints (8) is called the moment set for later
reference. It is a convex set with non-smooth boundary.

4. COMPUTATIONAL ISSUES

Since system (1) is defined on the unit interval [−1, 1], an appropriate choice of poly-
nomial basis are Chebyshev polynomials. The explicit construction of moment and
localizing matrices is based on a basic property of these polynomials.

Let

Hα(y) =


y|α| y|α+1| y|α+2|

y|α+1| y|α+2| y|α+3|
y|α+2| y|α+3| y|α+4|

. . .

 , Tα(y) =


y|α| y|α+1| y|α+2|

y|α+1| y|α| y|α+1|
y|α+2| y|α+1| y|α|

. . .


denote symmetric Hankel and Toeplitz matrices, respectively, where α is a possibly
negative integer.

From Lemma 6.1 of the Appendix, entry (α, β) in matrix M(y) is equal to∫
G

tαtβ dµ =
1
2

( ∫
G

tα+β dµ +
∫

G

t|α−β| dµ
)

=
1
2
(yα+β + y|α−β|).

It follows that
M(y) =

1
2
(T0(y) + H0(y))

has a mixed Toeplitz–Hankel structure.
Since g(x) = 1−x2 = 1

2 (t0(x)−t2(x)), matrix M(gy) shares a similar mixed Toeplitz–
Hankel structure:

M(gy) =
1
8
(2T0(y) + 2H0(y)− T−2(y)− T2(y)−H−2(y)−H2(y)).

The moment set (8) is infinite-dimensional: an infinite number of moments are subject
to infinite-dimensional semidefinite constraints. The moment set must be truncated
when resorting to numerical computations. Let y = [1 y1 · · · y2d]T now denote the
vector of moments up to degree 2d, and truncate all the data in (8) accordingly, yielding
truncated conditions

Ady = bd, Md(y) � 0, Md(gy) � 0. (9)

These finite-dimensional conditions are necessary but not sufficient for the entries of y
to correspond to moments of an invariant measure. The idea is therefore to reduce the
gap between necessity and sufficiency by increasing d, considering a whole hierarchy of
semidefinite relaxations of increasing size for moment set (8).
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Finally, we may want to characterize a particular invariant measure optimal w.r.t. a
linear combination of moments. Given a polynomial h(x) =

∑
α hαπα(x), the function

h(y) =
∫

G

h(x) dµ(x) =
∑
α

hαyα

is linear in y. Its minimization over moment set (8) can be achieved via a hierarchy of
finite-dimensional convex linear semidefinite programming problems

miny h(y)
s.t. Ady = bd,

Md(y) � 0,

Md(gy) � 0

(10)

that can be solved by interior-point algorithms and off-the-shelf software. When d in-
creases, we obtain a monotonically increasing sequence of lower bounds on the minimum
of h(y) achieved over (8). Asymptotic convergence of the sequence to the minimum is
proved in [11].

As will be shown below, for some h(y), the optimal measure can be discrete (corre-
sponding to cycles of finite length) or continuous (corresponding to chaotic behavior),
and in general, different choices of objective functions h(y) yield different invariant mea-
sures. Finally, the optimal measure can be a linear combination of several measures
which are invariant for system (1).

5. EXAMPLE

Consider the logistic map x̄k+1 = 4x̄k(1−x̄k) defined on the unit interval [0, 1]. Applying
the affine change of variables x̄k = 1

2 (1−xk), we obtain a discrete dynamical system (1)
defined on the symmetric interval G = [−1, 1] with

f(x) = 2x2 − 1.

Note that f(x) = t2(x), the second Chebyshev polynomial.
Choosing a Chebyshev polynomial basis πα(x) = tα(x), and using Lemma 6.2 of

the Appendix, it follows that relation (5) satisfied by moments of an invariant measure
becomes

y2α = yα, α = 0, 1, 2, . . . (11)

Therefore only odd moments y1, y3, y5, . . . are linearly independent.
For illustration, when d = 3, the matrices defining the truncated moment set (9) are

given by

M3(y) =
1
2


2 2y1 2y1 2y3

2y1 1 + y1 y1 + y3 2y1

2y1 y1 + y3 1 + y1 y1 + y5

2y3 2y1 y1 + y5 1 + y3


and

M3(gy) =
1
8

 4− 4y1 2y1 − 2y3 −2 + 2y1

2y1 − 2y3 1− y1 y3 − y5

−2 + 2y1 y3 − y5 2− y1 − y3

 .
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5.1. Continuous measure

Now suppose we want to find a vector y in the truncated moment set (9). Using the
semidefinite programming solver SeDuMi 1.1 for Matlab without specifying an objective
function, we obtain an interior point y for which Md(y) � 0 and Md(gy) � 0. For
example, when d = 3 (truncation to 6 moments), we obtain (to five significant digits)

y1 = −0.012851, y3 = −0.057926, y5 = 0.020568.

The other moments are y0 = 1, y2 = y4 = y1, y6 = y3.
By solving a semidefinite programming problem (not described here for conciseness)

we can find a polynomial density q(x) generating these moments (up to numerical round-
off errors), i. e.

∫
G

tα(x)q(x) dx = yα, α = 0, 1, . . . , 6. We obtain q(x) =
∑6

α=0 qαtα(x)
with q0 = 0.77395, q1 = −0.084370, q2 = 0.72051, q3 = −0.10286, q4 = 0.42402,
q5 = −0.023627, q6 = 0.19274. The approximate density q(x) obtained from the 6
moments and the exact density π−1(1−x2)−

1
2 corresponding to the continuous measure

invariant for the logistic map are represented on Figure 1.

Fig. 1. Approximate density (thick) and exact density (thin) of the

continuous measure invariant for the logistic map.
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5.2. Discrete measures

Our semidefinite characterization of invariant measures also captures discrete measures
corresponding to finite cycles. Such measures can be recovered by optimizing a particular
linear combination of moments h(y) =

∑
α hαyα. In general, moment matrix Md(y) is

rank deficient, since the optimum is at the boundary of the semidefinite cone. The
corresponding measure is atomic. The discrete support of the measure can be computed
via eigenvalue decomposition (not described here for conciseness).

Here are some examples solved with SeDuMi for d = 3 (truncation to 6 moments):

• minimizing h(y) = y1 returns the moments

y1 = −0.50000, y3 = 1.0000, y5 = −0.50000

corresponding to a rank-one moment matrix M3(y) of the Dirac measure δx at
x = − 1

2 . This is a fixed point for our dynamical systems since it is a root of the
polynomial f(x)− x = 2x2 − x− 1 = (2x + 1)(x− 1);

• maximizing y1 yields
y1 = y3 = y5 = 1.0000

and the Dirac measure at x = 1, corresponding to the other root of f(x)− x;

• a cycle of length three can be found by minimizing y3. We obtain

y1 = 0.0000, y3 = −0.50000, y5 = 0.0000

and a rank-three moment matrix corresponding to an atomic measure supported
at {−0.93969, 0.17365 ,0.76604}. The cycle corresponds to the three roots of
the polynomial 8x3 − 6x + 1 dividing the degree-8 polynomial f(f(f(x))) − x =
128x8−256x6+160x4−32x2−x+1 = (2x+1)(x−1)(8x3−6x+1)(8x3+4x2−4x−1);

• by maximizing y3 we obtain

y1 = −0.095852, y3 = 1.0000, y5 = −0.095852

and a rank-two moment matrix corresponding to an atomic measure supported
at {−0.50000, 1.0000}. This measure is a linear combination of the two invariant
Dirac measures at x = − 1

2 and x = 1, already found above;

• by minimizing y5 we obtain

y1 = 0.20414, y3 = −0.025163, y5 = −1.1323

and a rank-three moment matrix. This moment matrix corresponds to an atomic
measure supported at {−1.0439, −0.25265,0.86800}, but these values do not cor-
respond to an invariant measure and a finite cycle since x = −1.0439 does not
belong to G;
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• by maximizing y5 we obtain

y1 = −0.20658, y3 = −0.018795, y5 = 1.04521

and a rank-three moment matrix. This moment matrix corresponds to an atomic
measure supported at {−0.77048, 0.29058,1.0450}, but these values do not corre-
spond to an invariant measure and a finite cycle since x = 1.0450 does not belong
to G.

The two latter cases illustrate that the moment set (8), when truncated, may contain
vectors y which do not correspond to moments of an invariant measure. However,
invariant measures and finite cycles can be recovered at the price of introducing more
moments:

• with d = 4 (truncation to 8 moments) by maximizing y5 we obtain

y1 = −0.022753, y3 = −0.022753, y5 = 1.0000, y7 = −0.022753

and a rank-three moment matrix. This moment matrix corresponds to an atomic
measure supported at {−0.80902, 0.30902,1.0000}. This measure is a linear combi-
nation of two invariant measures: the Dirac measure at the fixed point x = 1 and
the two-cycle invariant measure supported at the points { 1

4 (−1−
√

5), 1
4 (−1+

√
5)}.

These points correspond to three roots of the degree-four polynomial f(f(x))−x =
8x4 − 8x2 − x + 1 = (2x + 1)(x− 1)(4x2 + 2x− 1);

• with d = 5 (truncation to 10 moments) by minimizing y5 we obtain

y1 = 0.12500, y3 = −0.25000, y5 = −0.50000, y7 = 0.12500, y9 = −0.25000

and a rank-five moment matrix corresponding to an atomic measure supported
at {−0.97815, −0.50000, −0.10453, 0.66913, 0.91355}. This measure is a linear
combination of two invariant measures: the Dirac measure at the fixed point x =
− 1

2 and the four-cycle invariant measure supported at the roots of the polynomial
16x4 − 8x3 − 16x2 + 8x + 1 dividing the degree-16 polynomial f(f(f(f(x))))− x.

Minimizing or maximizing higher order moments can result in longer finite cycles. For
example, with d = 20 (truncation to 40 moments), minimizing y9 yields y9 = −0.50000,
y27 = 1.0000 and yi = 0.0000 for other values of i between 1 and 40. The 21-by-21
moment matrix has rank 9, and it corresponds (to machine precision) to a cycle of
length 9.

Our numerical experiments with the solver SeDuMi reveal that semidefinite problems
with a few hundreds moments can be solved routinely, to a relative accuracy of the order
of 10−8, in a few seconds on a standard computer.

On Figure 2 we represent the projections of the truncated moment set (9) on the plane
(y1, y3) of first and third order moments, when truncated to 4, 6 and 40 moments (d =
2, 3, 20) respectively. We have not represented projections for intermediate truncations,
or for a higher number of moments, because they could not be distinguished on the
figure. It seems that the shape of the moment set (8) is quickly captured by low-order
relaxations.
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Fig. 2. Projection on the plane (y1, y3) of the moment set (8)

truncated to 4, 6 and 40 moments.

6. CONCLUSION

Our objective in this paper was to illustrate that semidefinite programming could be
an interesting setup for a computer-aided study of nonlinear dynamical systems, and
especially of their long-term behavior characterized by invariant measures.

Measures are characterized by their moments with the help of linear constraints in the
cone of positive semi-definite matrices. As explained in [7], due to numerical round-off
errors, histograms of computer simulations of dynamical systems display only the invari-
ant measure that is absolutely continuous w.r.t. to the Lebesgue measure, discarding
periodic orbits of finite lengths. Examples for which computer-generated trajectories
land on periodic orbits, and for which the absolutely continuous invariant measure is
not observable, are exceptional [8]. It turns out that optimization of a linear function of
the moments subject to semidefinite constraints, as proposed in this paper, can produce
computationally both types of measures on a unifying ground. Note however that a
comparison of our semidefinite programming approach with other numerical techniques
lies out of the scope of this short contribution. See e. g. [5] or [15] for numerical ap-
proximations of invariant measures based on discretizations of the Frobenius–Perron
operator.
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On the negative side, it seems difficult to establish a correspondence between finite
cycles and objective functions h(y). For example, in Section 5 if one wants to recover a
9-cycle of the logistic map, what is a suitable choice of h(y)?

Also unclear is the numerical conditioning of the semidefinite programming problem
(10). In the logistic map example of Section 5, thanks to the interpretation of the
mapping f as a Chebyshev polynomial, the linear system of equations Ay = b became the
particularly simple relations (11) which allowed for a straightforward substitution of even
degree moments. In general, for an arbitrary mapping f , such an explicit substitution
is not possible, and it may happen that the linear system of equations Ay = b is poorly
scaled, and/or that the semidefinite problem (10) is ill-conditioned.

Finally, and maybe most importantly, the methodology allows for (almost direct)
extensions to higher dimensional dynamical systems (using e. g. multivariate Chebyshev
polynomials) and iterated functional systems (IFS). In the absence of further numerical
experiments, it is however unclear whether this approach can be effective in higher
dimension.

APPENDIX

Given a non-negative integer α, let tα(x) denote the Chebyshev polynomial of first kind
satisfying the three-term recurrence relation tα+1(x) = 2xtα(x)− tα−1(x) with t0(x) = 1
and t1(x) = x. For example t2(x) = 2x2 − 1, t3(x) = 4x3 − 3x, t4(x) = 8x4 − 8x2 + 1,
t5(x) = 16x5 − 20x3 + 5x.

Lemma 6.1. tα(x)tβ(x) = 1
2 (tα+β(x) + t|α−β|(x)).

P r o o f . By induction. �

Lemma 6.2. tα(tβ(x)) = tαβ(x).

P r o o f . Follows from the trigonometric relation tα(x) = cos(α arccos(x)). Indeed
tα(tβ(x)) = cos(α arccos(cos(β arccos(x)))) = cos(αβ arccos(x)) = tαβ(x). �
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[7] P. Góra and A. Boyarsky: Why computers like Lebesgue measure. Comput. Math. Appl.
16 (1988), 4, 321–329.
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