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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 6 , PAGES 1 1 5 6 – 1 1 7 9

TRANSFORMATION OF OPTIMAL CONTROL PROBLEMS
OF DESCRIPTOR SYSTEMS INTO PROBLEMS WITH
STATE-SPACE SYSTEMS

Jovan D. Stefanovski

We show how we can transform the H∞ and H2 control problems of descriptor systems
with invariant zeros on the extended imaginary into problems with state-space systems without
such zeros. Then we present necessary and sufficient conditions for existence of solutions of the
original problems.

Numerical algorithm for H∞ control is given, based on the Nevanlinna–Pick theorem. Also,
we present an explicit formula for the optimal H2 controller.

Keywords: parametrization of stabilizing controllers, inner matrices, H∞ and H2 control

Classification: 93D15, 49J15

1. INTRODUCTION

Consider a continuous-time descriptor system

G = d
m1︷︸︸︷
G11

m2︷︸︸︷
G12e}p1

bG21 G22c}p2

=

 A− sE B1 B2

C1 D11 D12

C2 D21 D22

 , (1.1)

where G is an improper plant transfer matrix, with the descriptor realization with n×n-
dimensional regular matrix pencil A−sE and matrices B1, B2, C2, C2, D11, D12, D21 and
D22, let K be a controller transfer matrix (see Figure 1), and define

F (G,K) = G11 + G12K(I −G22K)−1G21 . (1.2)

We call stabilizing controller the controller that renders the closed loop system stable
and impulse-free.

The H2 and H∞ optimal control problems are to find a controller K, such that
‖F (G,K)‖, where the norm is H2 and H∞, respectively, is minimal in the class of
stabilizing controllers. Given γ > 0, the H∞ suboptimal control problem is to find a
stabilizing controller K, such that ‖F (G,K)‖∞ < γ.

The H2 and H∞ controls are ones of the most desirable controls, because of their
robustness and physical understanding. Concerning the systems with proper G, various
results and algorithms are presented on the H2 control [5, 8, 11, 14, 17, 24], and on
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Fig. 1. Standard control structure.

the H∞ control [2, 3, 4, 7, 21, 22, 24]. When there are invariant zeros on the extended
imaginary axis, the algorithms have numerical problems resulting with stability problems
of the closed loop system.

Concerning the systems with improper G, H2 control results and algorithms are
given in [9, 20], and H∞ control results and algorithms are given in [10, 12, 13, 19, 23].

For systems with improper G having invariant zeros on the extended imaginary axis,
there are few results and algorithms in the literature ([9, 13, 23]), but the numerical
algorithms are not satisfactory. For instance, it is stated in Section 13 of [9] that the
critical part of the transfer-function algorithm of [9] is the final substitution of the
optimal parameter matrix into the parametrized controller formula. This operation
generically results in common factors that must be cancelled to obtain the optimal
controller in reduced form. Another difficulty related to the previous one, is the degree
control. Although the algorithms of [13] and [23] theoretically can handle invariant zeros
on the imaginary axis, such numerical examples are not presented in the papers. Only
examples with invariant zeros at infinity are given.

Exactly the problems with invariant zeros on the extended imaginary axis of descrip-
tor systems are considered in this paper. The used approach is to ”regularize” them
firstly, i. e. to transform them into problems with state space systems without invariant
zeros on the extended imaginary axis. Then the solution of the H2 control problem
is immediate, by a new explicit controller formula (formula (4.2) in Section 4.1). The
solution of the H∞ control problem is by interpolation with points on the extended imag-
inary axis, solved by the Nevanlinna–Pick theorem (Section 4.2). Numerical examples
are presented.

The preliminary results in Sections 2 and 3, containing a parametization of marginally
stabilizing controllers and a parametization of stabilizing controllers, are also new.

Remarks on the notation. The matrix functions of s are rational, with real coef-
ficients, and will be bold-written, and if not ambiguous, without the argument. Poles
and zeros of a rational matrix are defined through its McMillan form. If a realization of
transfer matrix G is given, the notion invariant zero of G means a zero of the associated
matrix pencil to the realization of G. The multiplicities of the infinite generalized eigen-
values (IGEs) of this matrix pencil equal the orders of the infinite zeros of G increased
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by one. An invariant zero of G is simple if the corresponding Kronecker block in the
Kroneckar canonical form of the associated matrix pencil to G is diagonal. The invari-
ant zero of G is not always its zero. The notion of (marginal) stability is related to the
set (<[s] ≤ 0) <[s] < 0 in the complex plane C. Analogous is the notion of (marginal)
minimum phase. By the superscripts T and ∗, we denote respectively matrix transposi-
tion and complex conjugation. If Π is a rational matrix, by Π∼ we denote the matrix
ΠT(−s). We denote the transfer matrices D + C(sI −A)−1B and D + C(sE −A)−1B

by
[

A B

C D

]
and

[
A− sE B

C D

]
. If H is a strict proper rational matrix without poles

in <[s] ≥ 0, its H2 norm is defined by ‖H‖2
2 = 1

2πj

∫ j∞
−j∞Tr{HH∼}ds, where by Tr{·}

we denote the trace of square matrices. For given proper matrix H without poles on the
imaginary axis, we define ‖H‖∞ = supω∈R ‖H(jω)‖, where the later is spectral norm of
complex matrices.

2. MARGINALLY STABILIZING CONTROLLERS AND PARAMETRIZATION

We introduce the following assumptions:

Assumption 2.1. (For system (E,A, B2, C1, D12))

• Descriptor system (E,A, B2) is impulse controllable [6],

• matrix pencil [A− sE,B2] has full row rank in <[s] ≥ 0,

• matrix G12 is left-invertible.

Assumption 2.2. (For system (E,A, B1, C2, D21))

• Descriptor system (E,A, C2) is impulse observable [6],

• matrix pencil
[
A− sE

C2

]
has full column rank in <[s] ≥ 0,

• matrix G21 is right-invertible.

Under Assumption 2.1, by the algorithm of [15], we can find matrices K̄ and L̄ such
that matrix Φ̄ = L̄ + K̄ΘB2, where Θ = (sE − A)−1 is nonsingular and marginally
minimum phase, with possible zeros at infinity, and satisfies

G∼
12G12 = Φ̄∼Φ̄ . (2.1)

(See also Appendix.) Analogously, under Assumption 2.2, we can find matrices K and
L such that matrix Φ = L+C2ΘK is nonsingular and marginally minimum phase, with
possible zeros at infinity, and satisfies

G21G
∼
21 = ΦΦ∼ . (2.2)

Introduce the following matrices, which are well-defined:

Gi =

 A− sE B2 0
K̄ L̄ −Im2

C1 D12 0

 , Gci =

 A− sE K B1

C2 L D21

0 −Ip2 0

 . (2.3)
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Proposition 2.3. Matrices Gi and Gci are inner and co-inner respectively. Hence they
are proper stable, and Gi(∞) and Gci(∞) are respectively full column and full row rank
matrices.

P r o o f . The proof will be given only for matrix Gi. The proof for matrix Gci follows
by analogy.

We have to prove that matrix Gi is stable and satisfies G∼
i Gi = I.

It follows by Proposition 5.2 that matrix

Ω̄ =
[
A− sE B2

K̄ L̄

]−1

(2.4)

is marginally stable (possibly improper), hence matrix Gi is (at least) marginally stable.
Further on, we prove that matrix G12 can be factorized as

G12 = GiΦ̄ , (2.5)

where Φ̄ is the matrix in (2.1). For that purpose, note that

Ω̄
[
0
I

]
K̄Θ = Ω̄

[
I
0

]
+

[
I
0

]
Θ . (2.6)

We have

GiΦ̄ = [C1, D12]Ω̄
[
0
I

]
(L̄+ K̄ΘB2)

= [C1, D12]Ω̄
[
0
I

]
L̄+ [C1, D12]

(
Ω̄

[
I
0

]
+

[
I
0

]
Θ

)
B2

= [C1, D12]Ω̄
[
B2

L̄

]
+ C1ΘB2 = [C1, D12]

[
0
I

]
+ C1ΘB2 = G12 .

A consequence of identity (2.5) is G∼
i Gi = Φ̄−∼G∼

12G12Φ̄
−1 = Φ̄−∼Φ̄∼Φ̄Φ̄−1 = I.

Now the stability of Gi follows by its marginal stability and the fact that it has no poles
on the imaginary axis. �

The inverse of Φ̄ is the following marginally stable matrix:

Q̄ = Φ̄−1 = [0, I]Ω̄
[
0
I

]
=

 A− sE B2 0
K̄ L̄ −I
0 I 0

 , (2.7)

and the inverse of Φ is the following marginally stable matrix:

Q = Φ−1 = [0, I]Ω
[
0
I

]
=

 A− sE K 0
C2 L −I
0 I 0

 , (2.8)
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where the introduced matrix

Ω =
[
A− sE K

C2 L

]−1

(2.9)

is marginally stable. Analogously with (2.5), it holds G21 = ΦGci.
Starting with these Q̄ and Q, we define the following marginally stable and marginally

minumum phase matrices

[
X Y
−P Q

]
=


A− sE K B2 0

C2 L D22 −I

K̄ 0 L̄ 0
0 I 0 0

 , (2.10)

[
Q̄ −Ȳ
P̄ X̄

]
=


A− sE B2 0 K
K̄ L̄ −I 0
0 I 0 0
C2 D22 0 L

 . (2.11)

It is easy to check the following identities:[
Q̄ −Ȳ
P̄ X̄

] [
X Y
−P Q

]
=

[
X Y
−P Q

] [
Q̄ −Ȳ
P̄ X̄

]
= I , (2.12)

G22 = P̄ Q̄
−1 = Q−1P . (2.13)

Define matrices
Ĝ11 = G11 −G12Q̄Y G21 , (2.14)

Ĝ12 = G12Q̄ = Gi , Ĝ21 = QG21 = Gci .

Using (2.10), (2.11), (2.14) and (2.3), we obtain the following descriptor realization

Ĝ =

[
Ĝ11 Ĝ12

Ĝ21 0

]
=


A− sE B2 0 0 B1 0
K̄ L̄ K̄ 0 0 −Im2

0 0 A− sE K −B1 0
0 0 C2 L −D21 0
C1 D12 0 0 D11 0
0 0 0 Ip2 0 0

 . (2.15)

Proposition 2.4. Matrix Ĝ is proper and stable.

P r o o f . It suffices to prove that matrix Ĝ11 is proper and stable. By the descriptor
realizations of Gi and Gci, both in (2.3), it follows that matrices

[C1, D12]Ω̄ and Ω
[

B1

D21

]
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where matrices Ω̄ and Ω, given in (2.4) and (2.9), are proper and stable, because matrices
Gi and Gci are proper and stable, and matrix pencils[

A− sE B2 0
K̄ L̄ −I

]
and

A− sE K
C2 L
0 −I


have full row and column rank on the imaginary axis, respectively. By

Ĝ11 = D11 − [C1, D12]Ω̄
[
B1

0

]
− [C1, D12]Ω̄

[
0
I

]
K̄[I, 0]Ω

[
B1

D21

]
, (2.16)

we see that matrix Ĝ11 is proper and stable. �

A controller is marginally stabilizing if the closed loop system on Figure 1 is marginally
stable. Impulsive modes are allowed.

Every realization of marginally stabilizing controller K can be presented as a real-
ization without hidden modes in <[s] > 0 of the following transfer matrix:

K = (−Ȳ + Q̄S)(X̄ + P̄ S)−1 (2.17)

= (X + SP )−1(−Y + SQ) , (2.18)

where S is a marginally stable parameter matrix satisfying det(X̄ + P̄ S) 6≡ 0.
The following two theorems are instrumental in reducing the optimal control problems

of descriptor systems into ones with state-space systems.

Theorem 2.5.
F (G,K) = F (Ĝ,S) = Ĝ11 + Ĝ12SĜ21 . (2.19)

P r o o f . By direct checking, using (1.2) and (2.17) or (2.18). �

The following theorem gives a necessary condition for existence of a stabilizing solu-
tion to the H2 and H∞ control problems.

Theorem 2.6. Let Assumptions 2.1 and 2.2 hold. If there is a stabilizing K such that
the H2 or H∞ norm of F (G,K) is finite, then matrix S is proper and stable, where
matrix S is defined by the inverse dependence of (2.17) or (2.18).

P r o o f . If K is stabilizing, then it is marginally stabilizing. We apply the parametriza-
tion of marginally stabilizing controllers defined by (2.17) or (2.18). Remind that the
parameter matrix S is marginally stable and possibly improper. Let

‖F (G,K)‖ =
∥∥F (Ĝ,S)

∥∥ =
∥∥Ĝ11 + GiSGci

∥∥ < ∞ , (2.20)

where ‖·‖ is ‖·‖2 or ‖·‖∞ By Proposition 2.4, matrix Ĝ11 is proper and stable. By the
inner and co-inner properties of matrices Gi and Gci, they have no zeros on the extended
imaginary axis. Therefore, matrix S must be proper and stable, because the condition
(2.20) cannot be satisfied if S have poles on the extended imaginary axis. �
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3. STABILIZING CONTROLLERS AND PARAMETRIZATION

We call K a stabilizing controller for the plant (1.1) if the closed loop system on Figure 1
is stable and impulse-free.

Under Assumptions 2.1 and 2.2, there are matrices K̄s and Ks such that matrix
pencils A − B2K̄s − sE and A − KsC2 − sE are stable and impulse-free, i. e. matrices
Θ̄s = (sE − A + B2K̄s)−1 and Θs = (sE − A + KsC2)−1 are proper and stable, and
define matrices

[
Xs Y s

−P s Qs

]
=

 A−KsC2 − sE B2 −KsD22 Ks

K̄s I 0
−C2 −D22 I

 , (3.1)

[
Q̄s −Ȳ s

P̄ s X̄s

]
=

 A−B2K̄s − sE B2 Ks

−K̄s I 0
C2 −D22K̄s D22 I

 , (3.2)

then matrices Xs, Y s, P s, Qs, X̄s, Ȳ s, P̄ s and Q̄s, are proper and stable, and the
following identities analogous to (2.12) and (2.13) hold[

Q̄s −Ȳ s

P̄ s X̄s

] [
Xs Y s

−P s Qs

]
=

[
Xs Y s

−P s Qs

] [
Q̄s −Ȳ s

P̄ s X̄s

]
= I , (3.3)

G22 = P̄ sQ̄
−1
s = Q−1

s P s . (3.4)

A criterion for stabilizing controller is that the transfer matrix[
I G22

K I

]−1

(3.5)

is proper and stable [9]. The unstable modes (including the impulsive modes) of the
closed loop system are the unstable poles of matrix (3.5) (including the poles at infinity).

Proposition 3.1. Under Assumptions 2.1 and 2.2, the unstable modes of the closed
loop system with given controller K are the unstable poles of the matrix

(Q̄s −KP̄ s)−1[−K, I] , (3.6)

or equivalently, the unstable poles of the matrix[
I

−K

]
(Qs − P sK)−1 . (3.7)

P r o o f . The following identities are consequences of identities (3.3) and (3.4):[
I G22

K I

]−1

=
[

P̄ s X̄s

−Q̄s Ȳ s

] [
Y s + (Q̄s −KP̄ s)−1K −(Q̄s −KP̄ s)−1

Qs 0

]
(3.8)
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[
Y s −Xs

Qs P s

] [
I G22

K I

]−1

=
[
Y s + (Q̄s −KP̄ s)−1K −(Q̄s −KP̄ s)−1

Qs 0

]
. (3.9)

By identity (3.8) follows that unstable modes of the closed loop system are at most the
unstable poles of matrix (3.6). By identity (3.9) follows that unstable poles of matrix
(3.6) are at most the unstable modes of the closed loop system. Therefore, the unstable
modes of the closed loop system are the unstable poles of matrix (3.6).

The proof concerning matrix (3.7) follows by the following two analogous identities:[
I G22

K I

]−1

=
[

0 (Qs − P sK)−1

Q̄s −Ȳ s −K(Qs − P sK)−1

] [
Y s Xs

Qs −P s

]
,

[
I G22

K I

]−1 [
P̄ s X̄s

Q̄s −Ȳ s

]
=

[
0 (Qs − P sK)−1

Q̄s −Ȳ s −K(Qs − P sK)−1

]
.

�

Since our aim is to obtain a stable and impulse-free closed loop system, we have
to find conditions under which a given marginally stabilizing controller satisfies these
properties of the closed loop system.

Proposition 3.2. Under Assumptions 2.1 and 2.2, the unstable modes of the closed
loop system with applied marginally stabilizing controller (2.17) or (2.18) are the unsta-
ble poles of the matrix

Z̄
−1[−S, I]

[
Q −P
Y X

]
, (3.10)

or equivalently, the unstable poles of the following matrix[
X̄ P̄
Ȳ −Q̄

] [
I
S

]
Z−1 , (3.11)

where Z̄ and Z are the following proper stable matrices

Z̄ = L̄+ (K̄ − L̄K̄s)Θ̄sB2 , (3.12)

Z = L+ C2Θs(K −KsL) , (3.13)

with the following inverses

Z̄
−1 = [K̄s, I]Ω̄

[
0
I

]
, (3.14)

Z−1 = [0, I]Ω
[
Ks

I

]
. (3.15)

The unstable zeros of matrix Z̄ are the unstable poles of matrix Ω̄, and the unstable
zeros of matrix Z are the unstable poles of matrix Ω.
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P r o o f . A direct consequence of Proposition 3.1 is that the unstable modes of the
closed loop system with applied marginally stabilizing controller (2.17) or (2.18) are the
unstable poles of the matrix(

[−S, I]
[
Q −P
Y X

] [
P̄ s

Q̄s

])−1

[−S, I]
[
Q −P
Y X

]
, (3.16)

or equivalently, the unstable poles of the following matrix[
X̄ P̄
Ȳ −Q̄

] [
I
S

](
[Qs,P s]

[
X̄ P̄
Ȳ −Q̄

] [
I
S

])−1

. (3.17)

Using identities (2.12), (2.13) and (3.4), we obtain

[−S, I]
[
Q −P
Y X

] [
P̄ s

Q̄s

]
= Z̄ = Q̄

−1
Q̄s ,

and

[Qs,P s]
[
X̄ P̄
Ȳ −Q̄

] [
I
S

]
= Z = QsQ

−1 .

By these identities, the claims with the matrices (3.10) and (3.11) are obvious, and,
using the transfer matrices algebra, we obtain the identities (3.14) and (3.15).

To prove the last part of the proposition, we prove that the realizations (3.14) and
(3.15) are without hidden modes in <[s] ≥ 0. This follows by the fact that matrix pencils[

A− sE B2 0
K̄ L̄ I

]
and

[
A− sE K Ks

C2 L I

]
∼

[
A−KsC2 − sE K −KsL Ks

0 0 I

]
have full row ranks in <[s] ≥ 0, the later by the definition of matrix Ks, and matrix
pencils A− sE B2

K̄ L̄
K̄s I

 ∼

A−B2K̄s − sE 0
K̄ − L̄K̄s 0

K̄s I

 and

A− sE K
C2 L
0 I


have full column ranks in <[s] ≥ 0, the first by the definition of matrix K̄s. �

We introduce the following assumption.

Assumption 3.3. Let matrix G21 be without invariant zeros at infinity, and the in-
variant zeros at infinity of G12 be of simple multiplicity. Let jωk, k = 1, . . . , L be the
invariant imaginary axis zeros of matrix G12 and jω̄i, i = 1, . . . , L̄ be the invariant
imaginary axis zeros of matrix G21. Assume that all of them are of simple multiplicity.
Assume that jωk are pairwise distinct of jω̄i.

By (3.12), the invariant zeros on the imaginary axis of matrices G12 and Z̄ coincide.
Analogously, by (3.13), the invariant zeros on the imaginary axis of matrices G21 and
Z concide.



Transformation of optimal control of descriptor systems 1165

Define matrices
XT

0 = null Z̄(∞)T , (3.18)

Y0 = −X0(K̄ − L̄K̄s)Θ̄s(∞)K , (3.19)

X∗
k = null Z̄(jωk)∗ , (3.20)

Yk = −Xk(K̄ − L̄K̄s)Θ̄s(jωk)K , k = 1, . . . , L , (3.21)

X̄i = nullZ(jω̄i) , (3.22)

Ȳi = K̄Θs(jω̄i)(K −KsL)X̄i , i = 1, . . . , L̄ , (3.23)

where by null (H) we denote a matrix whose columns span a unitary basis of the right
kernel of the matrix H.

Theorem 3.4. Let Assumptions 2.1, 2.2 and 3.3 hold and the norm (H2 or H∞) of
F (G,K) be finite. The controller (2.17) or (2.18) is stabilizing if and only if matrix S
satisfies the following left and right interpolation conditions

Y0 = −X0S(∞) , (3.24)

Yk = −XkS(jωk) , k = 1, . . . , L , (3.25)

Ȳi = S(jω̄i)X̄i , i = 1, . . . , L̄ . (3.26)

P r o o f . Note that by the theorem’s assumptions, matrix S is without poles on the
extended imaginary axis. By Proposition 3.2, matrices Z and Z̄ are independent of S
and their zeros are independent of K̄s and Ks. The closed loop system with controller
(2.17) or (2.18) is stable if and only if jωk, k = 1, . . . , L, which are the unstable poles of
Z̄
−1, are not poles of matrix (3.10), and jω̄i, i = 1, . . . , L̄, which are the unstable poles

of Z−1, are not poles of matrix (3.11).

Necessity. This happens only if for every jωk (which can be infinity):

Xk[−S, I]
[
Q −P
Y X

]
= 0 , Xk[−S, I]

[
Q −P
Y X

] [
P̄ s

Q̄s

]
= XkZ̄ = 0 , (3.27)

and for every jω̄i:[
X̄ P̄
Ȳ −Q̄

] [
I
S

]
X̄i = 0 , [Qs,P s]

[
X̄ P̄
Ȳ −Q̄

] [
I
S

]
X̄i = ZX̄i = 0 . (3.28)

The conditions (3.24), (3.25) and (3.26) we derive using the realizations (2.10) and
(2.11).

Sufficiency. By noting that the second identities in (3.27) and (3.28) are consequences
of the first, and that jωk are pairwise distinct of jω̄i, by assumption. �
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Remark 1. If matrix pencil [
A− sE B2

C1 D12

]
has no zeros on the extended imaginary axis, i. e. its finite generalized eigenvalues
(FGEs) are not on the imaginary axis and its IGEs are of multiplicity ≤ 1, and if matrix
pencil [

A− sE B1

C2 D21

]
has no zeros on the extended imaginary axis,1 then all stabilizing controllers K such
that the norm of F (G,K) is finite are given by (2.17) or (2.18), where S is a proper
stable parameter matrix satisfying det(X̄ + P̄ S) 6≡ 0. Indeed, matrices Ω̄ and Ω are
proper and stable. This claim is a consequence of Proposition 3.2.

4. OPTIMAL CONTROL OF DESCRIPTOR SYSTEMS

4.1. H2-optimal control

Theorem 4.1. Under Assumptions 2.1 and 2.2, there exists a solution of the H2 control
problem if and only if there is a solution S∞ of the matrix equation:

Ĝ11(∞) + Gi(∞)S∞Gci(∞) = 0 , (4.1)

and the controller

K =


A− sE B2 K 0
K̄ L̄ −S∞ 0
C2 D22 L −I
0 I 0 0

 (4.2)

exists and satisfies det(I −G22K) 6≡ 0 and is stabilizing. In that case controller (4.2) is
H2 optimal and unique.

P r o o f. Necessity. We apply the parametrization of marginally stabilizing controllers
(2.17) or (2.18). The necessity of (4.1) follows by the finiteness of the norm ‖F (G,K)‖2,
and by Theorems 2.5 and 2.6.

Introduce matrix M = G∼
i Ĝ11G

∼
ci . By Proposition 2.4, it is proper and its poles are

not on the imaginary axis.

Lemma 4.2. We have

M = G∼
i D11G

∼
ci + K̄[XT

1 , XT
2 ]Ω∼

[
0
I

]
+ [0, I]Ω̄∼

[
X̄T

1

X̄T
2

]
B1[BT

1 , DT
21]Ω

∼
[
0
I

]
, (4.3)

for some matrices X1, X2, X̄1, and X̄2.
1These conditions, together with Assumptions 2.1 and 2.2 we call regularity conditions for the H2

and H∞ control problems of descriptor systems. They generalize the regularity conditions for the
corresponding state-space problems (conditions i), ii), iii) iv) in Section 14.5 and conditions A1, A2, A3
and A4 in Section 17.1 of [24].)



Transformation of optimal control of descriptor systems 1167

P r o o f . We start with the realizations of Gi in (2.3) and Ĝ11 in (2.16), and the following
identity, proved in Proposition 5.3

Ω̄∼
[
CT

1

DT
12

]
[C1, D12]Ω̄ =

[
0 0
0 I

]
−

[
X̄1 X̄2

0 0

]
Ω̄− Ω̄∼

[
X̄T

1 0
X̄T

2 0

]
, (4.4)

for some matrices X̄1 and X̄2. We obtain

G∼
i Ĝ11 = G∼

i D11 − K̄[I, 0]Ω
[

B1

D21

]
+ [I, 0]Ω̄∼

[
X̄T

1

X̄T
2

]
B1 , (4.5)

We use the following identity, analogous to (4.4):

Ω
[

B1

D21

]
[BT

1 , DT
21]Ω

∼ =
[
0 0
0 I

]
−

[
XT

1 XT
2

0 0

]
Ω∼ −Ω

[
X1 0
X2 0

]
, (4.6)

for some matrices X1 and X2. Using also the realization of Gci in (2.3), we find the
realization (4.3) of M . �

By this lemma and Proposition 2.4, matrix M is proper and its poles are in <[s] > 0.
Introduce the stable and strict proper matrix:

G1 = Ĝ11 − Ĝ11(∞) , (4.7)

the matrix with all its poles in <[s] > 0:

M1 = G∼
i G1G

∼
ci + G∼

i Ĝ11(∞)G∼
ci + S∞ , (4.8)

which is strict proper by (4.1), and the new unknown matrix S1 = S−S∞. By Theorem
2.5 we obtain

‖F (G,K)‖2
2

=
1

2πj

∫ j∞

−j∞
(Tr{G1G

∼
1 } − Tr{M1M

∼
1 }+ Tr{(S1 + M1)(S1 + M1)∼}) ds .

By the finiteness of both sides of this identity and the strict properness of M1 follows
that S1 must be strict proper and stable. Since

∫ j∞
−j∞ S1M

∼
1 ds = 0 (both S1 and M∼

1

are strict proper and stable), we obtain

‖F (G,K)‖2
2 =

1
2πj

∫ j∞

−j∞
Tr{G1G

∼
1 }ds +

1
2πj

∫ j∞

−j∞
Tr{S1S

∼
1 }ds . (4.9)

By this identity, the minimum is achieved for S1 = 0 i. e. for S = S∞. By

K = (−Ȳ + Q̄S∞)(X̄ + P̄S∞)−1 (4.10)

and by (2.11), optimal controller K is given with (4.2).
Sufficiency. Obvious by the formulation of Theorem 4.1. �

A drawback of Theorem 4.1 is that the necessary and sufficient condition is given by
the stability of a rational matrix. In the following theorem the necessary and sufficient
conditions are identities with constant matrices.
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Theorem 4.3. Under Assumptions 2.1, 2.2 and 3.3 there exists a solution of the H2

control problem if and only if equation (4.1) is solvable and conditions (3.24), (3.25) and
(3.26) with S = S∞ hold.

P r o o f . We combine the necessary condition S = S∞ of Theorem 4.1 with Theo-
rem 3.4. �

Remark 2. Not only the property being stabilizing controller, but also the properness
of the controller can be checked by formula (4.2).

Example 1. Let be given the following matrices

A =



1 −1 0 3 0 0 0 0
1 0 0 −2 0 0 0 0
0 0 2 3 1 3 0 0
0 0 1 −1 1 0 0 0
0 0 1 1 −3 3 0 0
0 0 2 2 5 3 0 0
1 −2 3 0 −2 −2 3 0
1 −2 0 1 0 −1 0 −2


, E =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


,

B1 =



−4 −2 4 0
1 −1 −2 1
1 −3 −1 −1
−1 2 1 2
1 0 4 2
−2 5 −2 4
−1 −2 1 2
2 0 0 1


, B2 =



0.5 4 3
0.5 2 −2
0 0 3
0 0 −1
0 2 1
0 6 2
−2 0 −1
−3 −2 −1


,

C1 =

0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 3 1 −1 4 0 0

 , C2 =
[
−3 4 −1 3 3 −2 2 1
0 −2 3 −1 1 3 −1 −3

]
,

D12 =

1 0 0
0 1 0
0 0 1

 , D21 =
[
1 0 0 0
0 1 0 0

]
,

and D11 = 0, D22 = 0. Matrix pencil A − sE has an IGE of multiplicity two, hence
transfer matrix G is improper. The system (E,A, B2, C1, D12) has four invariant zeros
on the extended imaginary axis: ∞, 0 and ±j, of single multiplicity (equal to one).

We obtain

K̄ =

−0.2662 1.9459 −1.2857 −0.7321 0.2934 −1.7361 0 0.5324
−0.3153 −0.7660 −0.8870 −0.6539 0.1404 −1.1984 0 0.6306
−0.2823 0.7918 2.5467 0.5352 −0.9626 3.4356 0 0.5646

 ,
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L̄ =

1.5053 0 −0.1997
0.2476 0 −0.0233
0.9605 0 1.0998

 ,

K =



24.5960 2.8776
12.6357 5.8103
32.0949 −4.2224
11.5744 0.3992
2.6290 2.6601
2.6323 5.9269
22.4456 −10.0850
−1.2867 1.8288


, L =

[
3.7348 −1.7467
−1.2867 1.8288

]
.

A stable state space realization of matrix Ĝ is given by the following A,B, C and D
matrices,

−0.255 −0.6364 −0.4787 −0.4283 −0.1995 0.5224 −0.1684 0.1155
0.5704 −0.393 −1.881 −1.35 −0.4869 1.345 −0.4889 0.1345
0.2683 1.535 −1.463 −6.912 −2.113 4.003 −1.47 0.04061
−0.1864 −0.1608 5.835 −6.823 −1.487 11.4 −4.726 0.2229
0.08937 −0.4478 1.805 −5.294 −2.619 6.722 −2.435 1.1
−0.1541 −0.08031 −1.493 1.317 0.2431 −12.87 13.3 −1.737
−0.264 0.1368 0.4602 −1.92 −0.513 −8.855 −9.737 1.853
−0.05425 −0.08103 0.8516 −0.6323 −0.2249 1.055 −0.5682 −4.816




1.655 2.942 1.691 2.951 −0.00797 −0.009156 −0.006704
−3.146 −1.55 1.099 −1.609 −0.03064 −0.0352 −0.02577
1.384 −0.5284 −5.476 0.5997 −0.02468 −0.02836 −0.02076
−4.099 6.266 3.307 −2.234 −0.1247 −0.1433 −0.1049
−3.184 2.073 0.9913 −1.956 0.3888 0.4467 0.3271
−1.456 −3.486 −0.6751 6.627 0.0001315 0.000151 0.0001106
−1.259 1.888 0.5497 2.572 0.00137 0.001573 0.001152
0.3408 −0.2769 1.829 −0.1502 −0.007225 −0.0083 −0.006077


26664
−4.468 −2.641 −2.103 −1.369 −0.8468 2.547 −0.6262 1.3
−0.07305 0.163 −0.1957 0.5162 3.171 −0.8142 0.001223 −1.109
−1.729 −3.009 −5.298 −8.208 −2.947 6.815 −2.798 −0.3143
−0.009756 −0.04692 0.1029 −1.584 −0.4871 2.157 −1.573 0.7276
−0.0815 0.1896 −0.07571 0.1507 0.05845 0.6255 −1.171 −0.1211

37775
26664

0 0 0 0 0.7067 −0.6983 0.1136
1 0 0 0.5 −0.5324 −0.6306 −0.5646
0 0 0 0 −0.4659 −0.3386 0.8175

−0.4349 0.7981 0 −0.417 0 0 0
0.7877 0.5616 0 0.2534 0 0 0

37775
We find

S∞ =

−0.3425 0.4868
−0.4057 0.5766
−0.3633 0.5163

 .

The infimal value of the H2 norm of the closed-loop system is 47.6043. It is achieved
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by the following state-space realization of H2 controller K266666666666664

−14.48 38.58 −32.54 −14.87 −8.448 134.3 104.9 1025 2092
−0.7943 −3.58 −5.085 −4.494 −4.213 6.946 13.55 88.1 143.4
4.744 17.8 −14.02 −10.8 −13.11 62.38 39.65 458.3 904.4
−8.443 −9.237 13.5 10.56 14.46 −52.61 −34.43 −376.4 −760.3
4.172 7.301 −3.692 −7.407 −9.089 22.73 12.97 195.4 322.5
11.24 21.63 −13 −19.75 −19.08 71.95 43.71 555.8 1057
−7.529 −3.061 10.5 10.58 8.085 −41.1 −34.35 −313.5 −666.6
−0.009692 0.01139 −0.0125 −0.005731 0.002471 −0.007388 −0.008867 0 0
−0.002822 −0.0002391 0.002482 −0.001076 −0.002065 0.002953 −0.00383 0 0
−0.01718 −0.01966 −0.01043 0.008739 −0.01208 −0.01247 0.03778 0 0

377777777777775
This controller is not stabilizing, it is only marginally stabilizing. Another criterion to
check the existence of a stabilizing H2 controller is given in Theorem 4.3. Assumptions
2.1, 2.2 and 3.3 of that theorem are satisfied, but the conditions (3.25) do not hold.
Indeed,

X1S∞ + Y1

= [−0.6201 + 0.0122j, 0.8813− 0.0174j] + [−2.8406 + 2.5078j, −2.0570 + 0.0565j] 6= 0

X2S∞ + Y2

= [−0.6201− 0.0122j, 0.8813 + 0.0174j] + [−2.8406− 2.5078j, −2.0570− 0.0565j] 6= 0

X3S∞ + Y3 = [−0.6107, 0.8680] + [19.9826, −3.1029] 6= 0 .

4.2. H∞ control

Motivated by Theorem 2.6 (the part with H∞ norm), we define γis, the infimum over
stabilizing controllers, and γims, the infimum over marginally stabilizing controllers. In
general, γis ≥ γims. γims can be found by iterative solving in S the regular state-space
problem

∥∥F (Ĝ,S)
∥∥
∞ < γ for decreasing γ’s.

Let there exist a solution of that regular problem, and let by

S = (Ψ22 −UΨ12)−1(−Ψ21 + UΨ11) (4.11)

= (Ψ̄21 + Ψ̄22U)(Ψ̄11 + Ψ̄12U)−1 (4.12)

be given all its solutions, where U is a proper stable matrix satisfying ‖U‖∞ < 1, and

Ψ =
[
Ψ11 Ψ12

Ψ21 Ψ22

]
= Ψ̄−1 =

[
Ψ̄11 Ψ̄12

Ψ̄21 Ψ̄22

]−1

(4.13)

is a biproper minimum phase and stable matrix (Theorem 4.6 in [3]).
Introduce the marginally minimum phase and marginally stable matrix:

Γ = Ψ
[
−P Q
X Y

]
. (4.14)

Denote Γ−1 = Γ̄, and introduce the corresponding partitions of matrices Γ and Γ̄. By
composing the mappings (2.17) and (2.18) with the mappings (4.11) and (4.12), we
obtain a parametrization on U of the controllers

K = (Γ21 −UΓ11)−1(−Γ22 + UΓ12) (4.15)
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= (Γ̄11 + Γ̄12U)(Γ̄21 + Γ̄22U)−1 .

Proposition 4.4. There is a proper stable matrix S satisfying (3.24), (3.25) and (3.26)
if and only if there is a proper stable matrix U such that

U0 = −V0U(∞) , (4.16)

Uk = −VkU(jωk) , k = 1, . . . , L (4.17)

V̄i = U(jω̄i)Ūi , i = 1, . . . , L̄ (4.18)

where
U0 = Y0Ψ̄11(∞) + X0Ψ̄21(∞) (4.19)

V0 = Y0Ψ̄12(∞) + X0Ψ̄22(∞) (4.20)

Uk = YkΨ̄11(jωk) + XkΨ̄21(jωk) (4.21)

Vk = YkΨ̄12(jωk) + XkΨ̄22(jωk) , k = 1, . . . , L (4.22)

Ūi = Ψ11(jω̄i)X̄i + Ψ12(jω̄i)Ȳi (4.23)

V̄i = Ψ21(jω̄i)X̄i + Ψ22(jω̄i)Ȳi , i = 1, . . . , L̄ (4.24)

P r o o f . Follows by identities (3.24), (3.25) and (3.26) and identities (4.11) and (4.12).
�

By Proposition 4.4, the H∞ suboptimal control problem of descriptor systems be-
comes a left and right boundary interpolation problem, where the interpolant matrix is
U , and the left and right conditions are (4.16), (4.17) and (4.18). The following theorem
gives necessary and sufficient conditions.

Theorem 4.5. Let Assumptions 2.1, 2.2 and 3.3 hold. The H∞ control problem
‖F (G,K)‖∞ < γ has a stabilizing solution K if and only if the regular state-space
problem

∥∥F (Ĝ,S)
∥∥
∞ < γ has a stabilizing solution S, and

VkV ∗k − UkU∗k > 0 , k = 0, 1, . . . , L , (4.25)

Ū∗i Ūi − V̄ ∗i V̄i > 0 , i = 1, . . . , L̄ . (4.26)

If these conditions are satisfied, a parametrization of controllers K is given by

K = (H21 + H22V )(H11 + H12V )−1 (4.27)

= (H̄22 − V H̄12)−1(−H̄21 + V H̄11) (4.28)

for some matrices [
H11 H12

H21 H22

]
=

[
H̄11 H̄12

H̄21 H̄22

]−1

and V , given in the proof.
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P r o o f. The proof is based on the following lemma.

Lemma 4.6. Under Assumption 2.1, 2.2 and 3.3, there exists proper stable matrix U
satisfying ‖U‖∞ < 1, (4.16), (4.17) and (4.18) if and only if conditions (4.25) and (4.26)
hold. If these conditions are satisfied, there is a parametrization of U .

P r o o f . The necessity of (4.25) and (4.26) is obvious by (4.16), (4.17) and (4.18), and
by ‖U‖∞ < 1.

Now we prove the sufficiency. The problem given by (4.16), (4.17) and (4.18) is a
left and right interpolation problem. If the interpolation points are finite and are in
<[s] > 0, the Nevanlinna–Pick theorem can be applied, in the form of Theorem 18.5.3
in [1]. In our case the interpolation points are on the extended imaginary axis. Consider
temporarily that there are no interpolation points at infinity, i. e. that condition (4.16)
is absent. For some α > 0 we can introduce the change of variables:

U(s) = Uα(s + α) , (4.29)

for some new unknown matrix Uα. By the introduced transformation, the points jωk

map into the points zk = α + jωk, and the points jω̄i map into the points z̄i = α + jω̄i.
The points z1, . . . , zL, z̄1, . . . , z̄L̄ are finite and are in <[s] > 0, hence Theorem 18.5.3 of
[1] can be applied. Define the matrices

C+ = [V̄1, . . . , V̄L̄] , C− = [Ū1, . . . , ŪL̄] , Aπ = diag{z̄1I, . . . , z̄L̄I} ,

Aζ =

z1I · · · 0
...

. . .
...

0 · · · zLI

 , B+ =

V1

...
VL

 , B− =

U1

...
UL

 .

It is easy to prove the properties that matrix pair (Aζ , B+) is controllable and matrix
pair (Aπ, C−) is observable, properties required in Theorem 18.5.3 of [1].

The Pick matrix for this new problem (matrix (18.5.3) in [1]):

Λ =

{
Ū∗

mŪi−V̄ ∗
mV̄i

z̄∗m+z̄i

} {
Ū∗

mU∗
` +V̄ ∗

mV ∗
`

z∗`−z̄∗m

}{
UkŪi+VkV̄i

zk−z̄i

} {
VkV ∗

` −UkU∗
`

zk+z∗`

}  ,
m, i = 1, . . . , L̄
k, ` = 1, . . . , L

has block-diagonal matrices

1
2α

(Ū∗i Ūi − V̄ ∗i V̄i) > 0 , i = 1, . . . , L̄ ,

1
2α

(VkV ∗k − UkU∗k ) > 0 , k = 1, . . . , L .

Under Assumption 3.3, all other blocks of the Pick matrix Λ remain finite as α → 0.
Therefore, there is a sufficiently small α such that the Pick matrix is positive definite,
and there is proper stable matrix Uα(z) satisfying the conditions (4.17) and (4.18) in
the points z1, . . . , zL, z̄1, . . . , z̄L̄. It is given in terms of matrix

Θα(z) = I +
[
C+ −B∗+
C− B∗−

] [
(zI −Aπ)−1 0

0 (zI + A∗ζ)
−1

]
Λ−1

[
−C∗+ C∗−
B+ B−

]
,
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as:

Uα(z) = (Θα11V α + Θα12)(Θα21V α + Θα22)−1 , Θα =
[
Θα11 Θα12

Θα21 Θα22

]
, (4.30)

where V α(z) ranges in the set of all proper matrices, without poles in <[z] ≥ 0, and
satisfies ‖V α‖∞ < 1.

Then we find real rational U(s) by (4.29):

U(s) = (Θ11V + Θ12)(Θ21V + Θ22)−1 , (4.31)

where Θij and V are the corresponding matrices to Θαij and V α. Matrix U(s) has
no poles in <[s] ≥ −α, and ‖U(−α + jω)‖ < 1 (∀ω ∈ R). The parameter matrix V is
proper and stable in <[s] ≥ −α and satisfies ‖V (−α + jω)‖ < 1, for all ω ∈ R.

If there is an infinite interpolation point, instead of (4.29), for some β > 0, we can
apply the following transformation

s → z =
s + β

1 + βs
.

By this transformation, the imaginary axis maps into the circle with center on the real
axis, which intersects the real axis at the points β and 1

β . Therefore, the interpolation
points on the imaginary axis map into some points on that circle (the infinity point into
the point 1

β ), and the right half-plane into the interior of the circle. Under the conditions
(4.25) and (4.26), we can choose β sufficiently small positive number, such that the Pick
matrix for the transformed problem is positive definite. �

By composition of mappings (4.31), (4.12) and (2.17) we obtain controller (4.27) with[
H11 H12

H21 H22

]
=

[
X̄ P̄
−Ȳ Q̄

]
Ψ̄

[
Θ22 Θ21

Θ12 Θ11

]
. (4.32)

�

Remark 3. The realization of K in (4.15) has hidden modes on the extended imagi-
nary axis, which by (4.16), (4.17) and (4.18), can and must be cancelled, for the stability
and impulse-free closed loop system.

Example 2. Let be given the descriptor system of Example 1.
By solving the regular H∞ state-space problem

∥∥F (Ĝ,S)
∥∥
∞ < γ, we obtain the

infimum over marginally stabilizing controllers γims = 35.8272. Take γ = 36.5.
We find matrices U0, U1, U2, U3 and V0, V1, V2, V3 - in this example vector-rows, cor-

responding to the invariant zeros ∞, j, −j and 0:
U0

U1

U2

U3

 = 102


−0.0036 0.0061

0.0774− 0.2014j 0.2898− 0.6422j
0.0774 + 0.2014j 0.2898 + 0.6422j

−1.1218 −3.4629





1174 J. STEFANOVSKI


V0

V1

V2

V3

 = 102


−0.0320 −0.2170 −0.2918

−0.1498 + 0.1178j 0.3211 + 0.0720j 0.2932− 0.6673j
−0.1498− 0.1178j 0.3211− 0.0720j 0.2932 + 0.6673j

0.7076 0.7105 −3.5181


They satisfy conditions (4.25). The Pick matrix for the transformed problem is positive
definite, hence we can find a stable state-space realization of matrix U , given by

U =


−0.6673 0.8372 −1.531 8.528 32.56
−1.126 −0.2777 −0.8221 4.484 11.41
−9.933 −2.714 −37.5 224.4 720.7

0.004507 −0.001736 0.009661 −0.000865 0.001468
−0.008415 0.008227 0.00781 −0.005869 0.009964
−0.01316 −0.004124 −0.04838 −0.007894 0.0134

 , ‖U‖∞ = 0.9953 .

The central (i. e. for V = 0) H∞ controller is given by

K =

2666666666664

−6.202 −5.793 11.29 11.23 −6.018 −3.295 24.25 33.4
−13.86 −13.56 −2.415 15.87 −17.09 −30.41 17.25 62.46
−0.5101 29.16 −28.55 −21.88 −3.998 −4.685 −74.62 −147
4.677 −9.491 14.17 1.309 5.146 14.82 29.23 41.27
2.621 −1.057 −0.7126 −2.926 0.7362 2.533 1.449 1.709
−1.886 −0.7898 2.911 3.106 1.34 −0.2246 2.94 5.477
0.0453 0.009607 0.03394 −0.01091 −0.03785 0.1442 0.1315 0.2631
−0.03668 −0.1871 0.2123 0.1518 0.0659 0.04718 0.4347 0.8699
−0.2276 0.0981 −0.1022 0.1539 −0.3574 −0.4972 −0.1608 −0.3205

3777777777775
The norm of the closed loop transfer matrix with this controller is 36.4305 < 36.5,

and the closed loop system is stable and impulse-free. Its modes are

−75.6893
−10.6966± 9.9305j

−9.2478
−4.4070± 5.4469j

−5.7810
−4.8434

−0.2201± 0.9973j
−1.1228± 0.0752j

−0.1243


CONCLUSIONS

In this paper the problems of H2 and H∞ control of descriptor systems with invariant
zeros on the extended imaginary axis are transformed into problems with state space
systems, without such zeros. Concerning the H∞ case, the transformed problem is not
equivalent, unless we add interpolation conditions on the invariant zeros of the plant on
the extended imaginary axis. Then the H∞ control is found by the Nevanlinna–Pick
theorem.

Using the general results in the appendix, the assumption of left-invertiblity of G12

and right-invertiblity of G21 can be omitted.



Transformation of optimal control of descriptor systems 1175

5. APPENDIX

Let us be given descriptor system (E,A, B, C,D) satisfying the following assumption.

Assumption 5.1.

• Matrix pencil A− sE is regular,

• Descriptor system (E,A, B) is impulse controllable,

• Matrix G = D + C(sE − A)−1B is left-invertible and matrix pencil [A − sE,B]
has full row rank in <[s] ≥ 0, or matrix G isn’t left invertible but matrix pencil
[A− sE,B] has full row rank for all s ∈ C.

Consider the following linear matrix inequality (LMI) ([12, 13]):[
ATX1 + XT

1 A + CTC ATX2 + XT
1 B + CTD

XT
2 A + BTX1 + DTC BTX2 + XT

2 B + DTD

]
≥ 0 , (5.1)

in the unknown matrices X1 and X2 satisfying

ETX1 = XT
1 E ≥ 0 , ETX2 = 0 . (5.2)

We are interested to find a rank minimizing solution, i. e. to find matrices K and L such
that the row rank of [K, L] is full and minimal, equal to the normal rank of G, and[

ATX1 + XT
1 A + CTC ATX2 + XT

1 B + CTD
XT

2 A + BTX1 + DTC BTX2 + XT
2 B + DTD

]
=

[
KT

LT

]
[K, L] . (5.3)

We shall prove that, under Assumption 5.1, a solution exists and present a method
to solve the LMI (5.1).

Under the introduced assumptions, there is a matrix F such that matrix pencil A−
BF − sE is stable and impulse-free, i. e. its inverse is proper stable.

Define matrices Â = A − BF , Ĉ = C − DF , K̂ = K − LF and X̂1 = X1 − X2F .
Then identity (5.3) becomes[

ÂTX̂1 + X̂T
1 Â + ĈTĈ ÂTX2 + X̂T

1 B + ĈTD

XT
2 Â + BTX̂1 + DTĈ BTX2 + XT

2 B + DTD

]
=

[
K̂T

LT

]
[K̂, L] , (5.4)

while the first condition in (5.2) becomes

ETX̂1 = X̂T
1 E ≥ 0 . (5.5)

Let P and Q be nonsingular matrices such that

PEQ =
[
I 0
0 0

]
, (5.6)

and define [
A11 A12

A21 A22

]
= PÂQ ,
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and introduce the partitioned matrices

[C1, C2] = ĈQ ,

[
B1

B2

]
= PB .

By the choice of F , matrix A22 is nonsingular ([6], Theorem 6).
Introduce matrices

Ā = A11 −A12A
−1
22 A21 , B̄ = B1 −A12A

−1
22 B2 , (5.7)

C̄ = C1 − C2A
−1
22 A21 , D̄ = D − C2A

−1
22 B2 . (5.8)

From the relation

[A− sE,B] ∼ [Â− sE,B] ∼
[
A11 − sI A12 B1

A21 A22 B2

]

∼
[
Ā− sI 0 B̄

A21 A22 B2

]
, (5.9)

where by ∼ the strict equivalence of matrix pencils is denoted, we see that (Ā, B̄) is a
stabilizable pair, if [A − sE,B] has a full row rank in <[s] ≥ 0, and that (Ā, B̄) is a
controllable pair, if [A− sE,B] has a full row rank for all s ∈ C.

From the relation[
A− sE B

C D

]
∼

[
Â− sE B

Ĉ D

]
∼

A11 − sI A12 B1

A21 A22 B2

C1 C2 D



∼

Ā− sI 0 B̄
0 A22 0
C̄ 0 D̄

 , (5.10)

we see that system (Ā, B̄, C̄, D̄) is left-invertible if descriptor system (E,A, B, C,D) is
left-invertible.

The stabilizability of (Ā, B̄) and left-invertibility of system (Ā, B̄, C̄, D̄), or the con-
trollability of the pair (Ā, B̄) ([14], Section 4, or [18], Lemma 1) guarrant the existence
of matrix Y11 ≥ 0, and matrices K̄ and L such that the row rank of [K̄, L] is full and
minimal, equal to the normal rank of matrix Ḡ = D̄ + C̄(sI − Ā)−1B̄, and[

ĀTY11 + Y11Ā + C̄TC̄ Y11B̄ + C̄TD̄
B̄TY11 + D̄TC̄ D̄TD̄

]
=

[
K̄T

LT

]
[K̄, L] . (5.11)

Moreover, matrix pencil
[
Ā− sI B̄

K̄ L

]
is of full row normal rank and its zeros are in

<[s] ≤ 0.
Define matrices

Y21 = −A−T
22 AT

12Y11 +
1
2
A−T

22 CT
2 C2A

−1
22 A21 −A−T

22 CT
2 C1 , (5.12)
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Y22 =
1
2
A−T

22 CT
2 C2 , (5.13)

Z =
1
2
A−T

22 CT
2 C2A

−1
22 B2 −A−T

22 CT
2 D . (5.14)

Now the solution of (5.3) is given by matrix L in (5.11) and by the matrices:

X1 = PT

[
Y11 0
Y21 Y22

]
Q−1 + PT

[
0
Z

]
F , (5.15)

X2 = PT

[
0
Z

]
, (5.16)

K = [K̄, 0]Q−1 + LF . (5.17)

The conditions (5.2) are also satisfied, because

ETX1 = XT
1 E = Q−T

[
Y11 0
0 0

]
Q−1 ≥ 0 , ETX2 = Q−T

[
I 0
0 0

] [
0
Z

]
= 0 . (5.18)

Remark 3. Matrices K and L coincides with the same matrices in [15].

Proposition 5.2. Matrix pencil
[
A− sE B

K L

]
has full row normal rank and its zeros

are in <[s] ≤ 0.

P r o o f . Obvious by the following strict equivalence relations:[
A− sE B

K L

]
∼

[
Â− sE B

K̂ L

]
∼

[
PÂQ− sPEQ PB

K̂Q L

]

∼

A11 − sI A12 B1

A21 A22 B2

K̄ 0 L

 ∼

A11 −A12A
−1
22 A21 − sI 0 B1 −A12A

−1
22 B2

A21 A22 B2

K̄ 0 L


∼

Ā− sI 0 B̄
0 A22 0
K̄ 0 L

 .

�

Now let matrix G be left-invertible, and introduce the following marginally stable
rational matrix

Ω =
[
A− sE B

K L

]−1

.

Proposition 5.3. We have

Ω∼
[
CT

DT

]
[C,D]Ω =

[
0 0
0 I

]
−

[
X1 X2

0 0

]
Ω−Ω∼

[
XT

1 0
XT

2 0

]
. (5.19)
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P r o o f . Rewrite identity (5.3) as[
AT + sET KT

BT LT

] [
X1 X2

0 0

]
+

[
XT

1 0
XT

2 0

] [
A− sE B

K L

]

+
[
CT

DT

]
[C,D] =

[
KT

LT

]
[K, L] .

Left and right-multiplying this identity by Ω∼ and Ω, having in mind that [K, L]Ω =
[0, I], we obtain identity (5.19). �

(Received March 22, 2012)
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