
Kybernetika

Paolo Mercorelli
Invariant subspaces for grasping internal forces and non-interacting force-motion
control in robotic manipulation

Kybernetika, Vol. 48 (2012), No. 6, 1229--1249

Persistent URL: http://dml.cz/dmlcz/143128

Terms of use:
© Institute of Information Theory and Automation AS CR, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/143128
http://project.dml.cz


KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 6 , PAGES 1 2 2 9 – 1 2 4 9

INVARIANT SUBSPACES FOR GRASPING INTERNAL
FORCES AND NON-INTERACTING FORCE-MOTION
CONTROL IN ROBOTIC MANIPULATION

Paolo Mercorelli

This paper presents a parametrization of a feed-forward control based on structures of sub-
spaces for a non-interacting regulation. With advances in technological development, robotics is
increasingly being used in many industrial sectors, including medical applications (e. g., micro-
manipulation of internal tissues or laparoscopy). Typical problems in robotics and general
mechanisms may be mathematically formalized and analyzed, resulting in outcomes so general
that it is possible to speak of structural properties in robotic manipulation and mechanisms.
This work shows an explicit formula for the reachable internal contact forces of a general ma-
nipulation system. The main contribution of the paper consists of investigating the design of a
feed-forward force-motion control which, together with a feedback structure, realizes a decou-
pling force-motion control. A generalized linear model is used to perform a careful analysis,
resulting in the proposed general geometric structure for the study of mechanisms. In partic-
ular, a lemma and a theorem are presented which offer a parametrization of a feed-forward
control for a task-oriented choice of input subspaces. The existence of these input subspaces
is a necessary condition for the structural non-interaction property. A simulation example in
which the subspaces and the control structure are explicitly calculated is shown and widely
explicated.

Keywords: subspaces, matrices, manipulators, internal forces

Classification: 93D09, 19L64, 70Q05, 14L24

1. INTRODUCTION

There are many unconventional uses of manipulation mechanisms, such as the coor-
dinated use of a robot’s multiple fingers or arms in a cooperative task, the use of the
inner links of a robot arm or finger to hold an object, and the exploitation of parallel me-
chanical structures. These devices can be referred to as “general manipulation systems”.
A rigorous definition of a “general manipulation system” is provided below. Prattichizzo
and Bicchi [17] characterized the structural property of the linearized model of the gen-
eral manipulation system as being reachable and observable. For a broad overview of
the manipulation control problem, refer to [14] and its references. Recent contributions
to the topic of manipulation have furthered progress in the geometric approach through
the use of linear algebra. Works such as in [10] mark progress in the analysis and syn-
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thesis of geometric controller for mechanical systems. Mercorelli and Prattichizzo [12]
present a geometric approach which includes procedures that guarantee the robustness
of the system against parametric uncertainties in the model. In general, the application
of subspace structures to mechanical systems has many advantages [15]. In particular,
the geometric approach can be focused on the disturbance decoupling problem [15]; this
has attracted many scientists. Furthermore, in [8] and [7] a systematic new analysis is
presented based on the computation of condensed forms under orthogonal equivalent
transformations. This has both theoretical and practical advantages, including easy and
elegant interpretation of the results, and straightforward computer implementation. The
earliest use of a matrix oriented to the control of systems was by Basile and Marro ([2]
and [1]) and by Wonham and Morse ([21] and [13]). These authors proposed a geometric
approach to solve problems such as non-interacting control, observer, and disturbance
rejection. In this paper, a linearized model of the general mechanisms of manipulation
is used. The linearized analysis is considered to be a fundamental preparatory step
towards a full non-linear analysis, which is currently too complex to provide full gener-
ality. Finally, it should be noted that there exists a subclass of Cartesian manipulators
with which the linearized model provides an exact representation of the complete system
dynamics.

The work in [11] investigates the geometric and structural characteristics involved in
the control of general mechanisms and manipulation systems. These systems consist of
multiple cooperating linkages that interact with a reference member of the mechanism
(the “object”) by means of contacts on any available part of their links. Grasp and
manipulation of an object by the human hand are taken as a paradigmatic example for
this class of manipulators.

The main result consists of a general matrix parametrization of a feed-forward con-
trol proposed for a task-oriented choice of input subspaces. The existence of these input
subspaces is a necessary condition for the structural non-interaction property. The re-
mainder of this paper is organized as follows. Section 2 introduces some notation and
provides the linearized dynamics of manipulation systems. In Section 3, the system out-
puts are specified in terms of object motions and contact forces. Section 4 is aimed at the
design of a decoupling controller for a general grasping mechanism. It uses rigid-body
object motions and the reachable contact forces together with possible mechanism re-
dundancy. Finally, Section 5 presents the linear structures concerning a parametrization
of a feed-forward control.

2. DYNAMIC MODEL

This section derives the linearized model of the dynamics of a general manipulation
system. A detailed discussion of this model is presented in [16]. The vector of ma-
nipulator joint positions is denoted by q ∈ <q, τ ∈ <q is the vector of joint actuator
torques, u ∈ <d is the vector locally describing the position and the orientation of a
frame attached to the object, and w ∈ <d is the vector of forces and torques resulting
from external forces acting directly on the object. In the literature, w is usually referred
to as the disturbance vector. The force/torque interaction ti (see Figure 1) at the ith
contact is accounted for by using a lumped parameter (Ki, Bi) model of visco-elastic
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Fig. 1. Vector notation for general manipulation system analysis.

phenomena. According to this model, the contact force vector ti is

ti = Ki(hci −o ci) + Bi(hċi −o ċi), (1)

where vectors hci and oci describe the positions of two contact frames, the first on
the manipulator and the second on the object. The ith contact spring and damper
are anchored. Matrices Ki and Bi are symmetric and positive definite (p.d.), and the
dimensions of the vectors in (1) depend on the particular model used to describe the
contact interaction [19]. The computation and control of the stiffness matrix have been
considered in depth by Cutkosky and Kao [9]. To simplify the notation, the contact
forces ti’s, and the contact points hci’s and oci’s are grouped into vectors t, hc, and oc.
Similarly, the Ki’s and Bi’s are grouped to build the block diagonal grasp stiffness and
damping symmetric and p.d. matrices K and B. The Jacobian J and grasp matrix G
of the manipulation system (see [17]) are defined by linear maps relating the velocities
of vectors hc and oc with the joint and object velocities q̇ and u̇, respectively:

hċ = Jq̇, oċ = GT u̇. (2)

Note that both JT t and Gt represent the effects of the contact forces t on the manipu-
lation and object dynamics, whose full non-linear models are:

Mhq̈ + Qh = −JT t + τ ; Moü + Qo = Gt + w. (3)

Here, Mh and Mo are inertia symmetric and p.d. matrices, while Qh and Qo are
terms representing the velocity-dependent and gravity forces of the manipulator and the
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object, respectively. Proceeding with the analysis of the linearized model of the full
manipulation system, a reference equilibrium configuration is considered:

q = qo, u = uo, q̇ = u̇ = 0, τ = τo, w = wo t = to, such that
τo = JT to and wo = −Gto.

The linear approximation of the manipulation system in the neighborhood of this equi-
librium is given by

ẋ = Ax + Bτδτ + Bwδw, (4)

where the state and input vectors are defined as a departure from the reference equilib-
rium configuration:

x =
[
δqT , δuT , δq̇T , δu̇T

]T =
[
(q− qo)T (u− uo)T q̇T u̇T

]T
,

δτ = τ − JT to,
δw = w + Gto,

(5)

and the dynamic, input, and disturbance matrices are

A =
[

0 I
Lk Lb

]
; Bτ =


0
0

M−1
h

0

 ; Bw =


0
0
0

M−1
o

 . (6)

To simplify the notation, the symbol δ henceforth will be omitted. According to
[16], neglecting gravity, assuming a locally isotropic model of visco-elastic phenomena
(stiffness matrix K is proportional to damping matrix B), and assuming that the local
variations of the Jacobian and grasp matrices are small, will all ensure that the blocks
Lk and Lb in A can be simply obtained as

Lk = −M−1Pk Lb = −M−1Pb, (7)

where

M = diag(Mh,Mo), Pk =
[

JT

−G

]
K

[
J −GT

]
,

Pb =
[

JT

−G

]
B

[
J −GT

]
.

To be more precise

A =


0 0 Iq 0
0 0 0 Iu

−M−1
h JT KJ M−1

h JT KGT −M−1
h JT BJ M−1

h JT BGT

M−1
o GKJ −M−1

o GKGT M−1
o GBJ −M−1

o GBGT

 . (8)
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2.1. A grasp and its geometric property

The following grasp properties, based on the existence of null spaces in the grasp matrices
G and their transposes, influence the dynamic behaviour of the manipulation system
([17] and [16]).

Definition 1. A grasp (or manipulation system) is said “defective” if ker(JT ) 6= 0.

From (3), notice that JT ∈ <(q×t), where t is the number of components of contact
force t. Thus, whenever the manipulation system has fewer than t degrees of freedom
(DoF’s) q, it exhibits a defective grasp. When the system is defective, directions for
t exist which have no influence on the manipulator dynamics (3). This scenario may
be considered to be a common factor in all defective manipulation systems due to their
intrinsically low number of DoF’s, q. A more detailed discussion of defectivity is provided
in [17].

Definition 2. A grasp is said to be “indeterminate” if ker(GT ) 6= 0.

If the grasp is indeterminate, there exist motions for the objects under which no
variations of contact force occur (2). In other words, indeterminacy implies that the
object is not firmly grasped.

Definition 3. A manipulation system is said to be “graspable” if ker(G) 6= 0.

If the system is graspable, it is possible to exert contact forces with zero resultant
forces on the object. The forces belonging to the null space of G are usually referred to
in the literature as “internal forces”, and they play a fundamental role in controlling the
manipulation task. In the absence of internal forces squeezing the object, a manipulator
is only accommodating the object, but not grasping it. Should a disturbance to the
object occur that is tangential to the manipulator contact, the system cannot reject
the disturbance by simply opposing the contact force. It must generate an additional
internal force to keep the total contact force in the friction cone, thereby maintaining
the contact. The following proposition, reported in [17], concerns the stabilizability
of the linear dynamics. Finally, the well-known concept of manipulator redundancy is
formalized as follows.

Definition 4. A grasp is said “redundant” if ker(J) 6= 0.

Proposition 1. If the system is not indeterminate, i. e. ker(GT ) = 0, then the minimal
A–invariant subspace containing im(Bτ ), minI(A,Bτ ), is externally stable.

From here on, non-indeterminacy is assumed, ker(GT ) = 0. This assumption is a
necessary condition for the linearized manipulation system (4) to be stabilizable.

3. INTERNAL FORCES

The main goal of a manipulation task is to control the motion of a manipulated object.
An interesting aspect of this work is that the manipulated object is not anchored to the
robotic device, but is acted upon through passive (not directly actuated) “joints” with
mechanical unilateral contact. Unilateral contacts occur between different parts of the
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system, and are usually modeled as inequality constraints on the direction of forces and
kinematic constraints on rolling and sliding motions. Since contact constraints ensure
both object grasp and motion control, it is of a paramount importance to prevent their
violation. Assume that a general task is specified in terms of the object motion. Then,
the remaining degrees of freedom for controlling the contact phenomena correspond to
the “internal forces”, which belong to the null space of the grasp matrix G. As previously
mentioned, they are considered “internal” since their resultant action on the object
dynamics is zero. In the robotic community the importance of such a mathematical
characterization of the graspability of an object emerged in the last years. In particular,
the importance of a formal mathematical concept of graspability is in the fact that we
can define such a measure of the possibility to grasp, hold and manipulate an object.
Since the resulting action on the object dynamics is zero, this yields that the object can
be squeezed and/or held.

The outputs of the dynamic system (4) must be defined to further investigate
force/motion control, by considering the “rigid-body coordinate object motions”, the
“reachable internal contact forces”, and the “manipulator dynamic redundancy” (fol-
lowing [17]).

3.1. Rigid–body coordinate object motions

Rigid-body kinematics are of particular interest in the control of manipulation systems.
Rigid-body kinematics have been studied in a quasi-static setting [5], and in terms of
unobservable subspaces [16]. In both cases, they were described by a matrix Γ whose
columns form a basis for

ker
[
J −GT

]
= im(Γ), where Γ =

[
Γr Γqc 0
0 Γuc Γi

]
and JΓqc = GT Γuc,

(9)

Γr is a basis matrix (b.m.)1 of the subspace of redundant manipulator motions ker(J),
Γi is a b.m. of the subspace of indeterminate object motions ker(GT ), and Γqc and
Γuc are conformal partitions of a complementary basis matrix (c.b.m.).2 Coordinated
rigid-body motions of the mechanisms are defined in [5] as motions of the manipulator
δq and of the object δu, such that

im

[
δq
δu

]
∈ im

[
Γqc

Γuc

]
Physically, rigid-body displacements are those that do not involve a variation of contact
forces, thus the name “rigid”. The object-motion regulated output euc is chosen as the
projection of object motions u onto the subspace of rigid-body object motions im(Γuc):

euc = Eucx; with Euc = ΓP
uc

[
0 I 0 0

]
(10)

where ΓP
uc is the projection matrix

ΓP
uc = Γuc(ΓT

ucΓuc)−1ΓT
uc. (11)

1V is called a basis matrix of a subspace V, if it is full column rank (f.c.r.) and im(V) = V.
2W is called a complementary basis matrix of V to X , if it is f.c.r. and im(W)⊕ V = X .



Invariant subspaces for non-interacting force-motion control in robotic manipulation 1235

Notice that matrix M0 does not play a role due to the considered subspace of the
displacements, as they do not involve any variation of contact forces.

3.2. Reachable internal contact forces

Contact forces t are exerted by the manipulating system on the object in order to
maintain a grasp, to reject disturbance wrenches w, and to control the object motion.
The control of contact forces is fundamental to manipulation control, and improved
control leads to finer manipulation. In [16], the reachable subspace of contact forces
as outputs of the dynamic system (4) was studied, with results reported in the next
proposition. Define δt as the departure of contact force vector t from the reference
equilibrium to (5). Its first order approximation can be easily evaluated by substituting
differential kinematics (2) in t, the grouped vector of ti’s (1). Hence

t = Ctx, where Ct =
[

KJ −KGT BJ −BGT
]
. (12)

The regulated force output eti is defined as the projection of the contact force vector t
onto the null space of G. Then, the output matrix is defined as

eti = Etix, with Eti = (I−KGT (GKGT )−1G)Ct =
[

Qk 0 Qβ 0
]
, (13)

where Qk = (I−KGT (GKGT )−1G)KJ and Qβ = (I−BGT (GBGT )−1G)BJ.

Notice that im(Qk) = im(Qβ), under the hypothesis im(K) = im(B). The third output
eqr is now introduced, taking into account the possible redundancy of the mechanism.
Whenever the analysis is not static, the inertia matrix Mh must be considered in
characterizing the redundancy. Therefore, the redundancy output matrix Eqr is defined
as

eqr = Eqrx, with Eqr =
[

ΓP
qrMh 0 0 0

]
, (14)

where ΓP
qr is the projection matrix onto ker(J) whose b.m. is Γqr

ΓP
qr = Γqr(ΓT

qrΓqr)−1ΓT
qr. (15)

Proposition 1. According to Definition 3, the reachable subspace of contact forces t,
under the hypothesis K is proportional to B,is

Rt,τ = CtminI(A,Bτ ) = minI(KGT M−1
o G,KJ).

Control of the contact forces belonging to the null space of the grasp matrix G is normally
an area of great interest of the research in this field. Obviously, in general, the null space
of G is not completely reachable. The importance of the reachability of internal forces
in grasping was clarified in [6], where the principle of virtual work was used to describe
the subspace of active internal forces, and in [17] where the asymptotically reachable
internal forces were studied as a steady state behaviour of a suitable transfer function.
In this work the reachable internal forces subspace as an intersection of subspaces is
characterized.
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Definition 5. The reachable internal forces subspace Rti,τ is

Rti,τ = Rt,τ ∩ ker(G).

The following theorem provides an explicit formula for the reachable internal forces
subspace:

Theorem 1. Under the hypothesis K is proportional to B then

Rti,τ = im((I−KGT (GKGT )−1G) Ct) = im((I−KGT (GKGT )−1G) KJ).

P r o o f . The theorem statement is equivalent to

Rti,τ ⊇ im((I−KGT (GKGT )−1G)KJ) (16)
Rti,τ ⊆ im((I−KGT (GKGT )−1G)KJ). (17)

From Definition 5 and Proposition 1, the inclusion (16) turns into(
minI(KGT M−1

o G,KJ) ∩ ker(G)
)
⊇ im((I−KGT (GKGT )−1G)KJ). (18)

It is known that
ker(G) ⊇ im((I−KGT (GKGT )−1G)KJ), (19)

because the matrix (I − KGT (GKGT )−1G)KJ is a projection onto the null space of
G. Moreover,

minI(KGT M−1
o G,KJ) ⊇ im

[
KJ KGT M−1

o GKJ
]

⊇ im((I−KGT (GKGT )−1G)KJ), (20)

because M−1
o and (GKGT )−1 are nonsingular matrices. Hence, (18) follows from (19)

and (20). Now, instead of proving the inclusion (17), its orthogonal complement is
considered

R⊥
ti,τ ⊇ (im((I−KGT (GKGT )−1G)KJ))⊥. (21)

Again from Definition 5, the previous relationship is equivalent to

R⊥
ti,τ = im(GT ) +R⊥

t,τ ⊇ ker(JT K(I−GT (GKGT )−1GK))

and being im(GT ) the null space of the projection matrix (I−GT (GKGT )−1GK) the
following relationship is obtained

im(GT ) +R⊥
t,τ ⊇ im(GT ) + im(I−GT (GKGT )−1GK) ∩ ker(JT K).

Now, to prove (21) and end the theorem’s proof, it will suffice to show that

R⊥
t,τ ⊇ im(I−GT (GKGT )−1GK) ∩ ker(JT K)

and this is trivial by considering the orthogonal

Rt,τ = minI(KGT M−1
o G,KJ) ⊆ ker(KGT (GKGT )−1G− I) + im(KJ). �
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According to this result, the subspace of reachable internal forces is obtained by pro-
jector I−KGT (GKGT )−1G acting on the column space of Ct. Notice that Theorem 1
states the equality of Rti,τ with the active internal forces in [6] and with the asymptoti-
cally reachable internal forces in [17]. In order to specify consistent control outputs, the
suggestion of Theorem 1 is followed. In fact, it is possible to choose as regulated force
output eti the projection of the contact force vector t on the null space of G. Then the
output matrix is defined as follows

eti = Etix; with Eti = (I−KGT (GKGT )−1G)Ct =
[

Qk 0 Qβ 0
]
, (22)

where
Qk = (I−KGT (GKGT )−1G)KJ (23)

and
Qβ = (I−BGT (GBGT )−1G)BJ. (24)

It should be noted that im(Qk) = im(Qβ) under the hypothesis im(K) = im(B).

4. DESIGN OF A NON-INTERACTING CONTROLLER

This section describes the design of a decoupling controller for a general grasping
mechanism with respect to the rigid-body object motions and the reachable contact
forces, together with the possible mechanism redundancy. A geometric approach is used
in this analysis. The earliest geometric approaches to non-interacting control were due
to Basile and Marro ([1, 2]) and to Wonham and Morse ([13, 21], and [20]).

Definition 6. A control law for the dynamic system (4) is non-interacting with respect
to the regulated outputs euc, eti, and eqr, if there exists partitions τuc, τti, and τqr of
the input vector τ such that for zero initial conditions, each input τ(·) (with all other
inputs, identically zero) only affects the corresponding output e(·).

In [18] and [4], it was shown that for the aforementioned outputs ti and uc, there
exists a decoupling and stabilizing state feedback matrix F, along with three input
partition matrices Uti, Uuc, and Uqr such that, for the dynamic triples

(Eti, A + BτF, BτUti) ,
(Euc, A + BτF, BτUuc) ,
(Eqr, A + BτF, BτUqr) ,

(25)

it holds:

Rti = minI(A + BτF, BτUti) ⊆ ker(Euc) ∩ ker(Eqr), EtiRti = im(Eti), (26)

Ruc = minI(A + BτF, BτUuc) ⊆ ker(Eti) ∩ ker(Eqr), EucRuc = im(Euc), (27)

Rqr = minI(A + BτF, BτUqr) ⊆ ker(Eti) ∩ ker(Euc), EqrRqr = im(Eqr). (28)

Here,

minI(A, im(B)) =
n−1∑
i=0

Aiim(B)
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is a minimum A–invariant subspace containing im(B). Moreover, the partition matrices
Uuc and Uti satisfy the following relationships

im(BτUuc) = im(Bτ ) ∩Ruc,
im(BτUti) = im(Bτ ) ∩Rti,
im(BτUqr) = im(Bτ ) ∩Rqr.

(29)

The stabilizing matrix F is such that

(A + BτF)Ruc ⊆ Ruc, (A + BτF)Rti ⊆ Rti, (A + BτF)Rqr ⊆ Rqr. (30)

Considering
U = [Uti,Uuc,Uqr,Uc],

where Uc is defined in a complementary fashion. It is assumed that the intersections
in (26) are invariant subspaces. If this is not the case, there are several other ways to
realize the non-interacting controller, for instance, as described in [3].

5. MAIN RESULTS: PARAMETRIZATION OF THE FEED-FORWARD
CONTROL AND GEOMETRIC STRUCTURES

Subspaces im(Tqr) and im(Th) are defined such that

Tqr =


Γqr 0
0 0
0 Γqr

0 0

 , Th =


Γh 0
0 0
0 Γh

0 0

 . (31)

Subspace im(Γqr) is a basis matrix for ker(J), and represents a basis matrix of the
redundant movements subspace, according to Definition (4). Subspace im(Γh) is defined
as follows:

Γh = b.m. of im(M−1
h JT ) ∩maxI(M−1

h JT KJ, ker(GKJ)). (32)

maxI(M−1
h JT KJ, ker(GKJ)) represents a basis matrix of the subspace, and charac-

terizes the controlled manipulator movements that do not produce object movements
(ker(GKJ)). Recall from Section 1 that im(M−1

h JT ) is the term responsible for the
effect of the contact forces on the manipulator; thus it can be seen how Γh is a basis
matrix of the “identically internal forces”. Regarding the above notation, recall that the
maximal S–invariant subspace contained in V is indicated by maxI(S,V). The following
discussion outlines the calculation of RK(·) , as defined in (26), (27) and (28). For prac-
tical purposes the subspaces included in RK(·) are calculated. It is very easy to show
that

ker(Eti) = ker
[

Qk 0 Qβ 0
]

3 ⊇ im(Lti),

where

Lti =


Γqr 0 Γqc 0
0 0 Γuc 0
0 Γqr 0 Γqc

0 0 0 Γuc

 . (33)

3It is very easy to show that ker(Qk) = ker(Qβ).
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The inclusion is easily shown using the definition of Qk and Qβ . The following remark
shows this aspect explicitly.

Remark 1. The null subspace of Q(·) can be calculated very easily; in fact, ker(Q(·)) =
ker(J) + V where V = {v|KJv ∈ ker(I−KGT (GKGT )−1G) = im(KGT ),v /∈ ker(J)}.
From (9) it is easy to show that: V = im(Γqc) and thus:

ker(Q(·)) = im(Γqr) + im(Γqc). (34)

In the same way ker(Euc) = ker
[

0 ΓT
uc 0 0

]
⊇ im(Luc) where

Luc =


Γqr 0 Γh 0 SqZ 0 0 0
0 0 0 0 0 0 Xu 0
0 Γqr 0 Γh 0 SqZ 0 0
0 0 0 0 0 0 0 Xu

 , (35)

with Xu = b.m. of ker(ΓT
uc) ∩ im(Su),

im(Sq) = minI(M−1
h JT KJ,M−1

h JT KGT ),
im(Su) = minI(M−1

o GKGT ,M−1
o GKJ),

(36)

and Z such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq) ∩ ker(ΓT
uc). (37)

Recall that Γh is a basis matrix of

im(M−1
h JT ) ∩maxI(M−1

h JT KJ, ker(GKJ)). (38)

Subspace im(Sq) can be interpreted as the subspace of the forces on the manipulator
which are generated by the object movements. Similarly, subspace im(Su) can be
interpreted as the subspace of the forces on the object which are generated by the
manipulator. Relationship (37) is not physically interpretable.

About subspace ker(Eqr) = ker
[

ΓP
qrMh 0 0 0

]
, recall that ΓP

r is the projec-
tion matrix onto ker(J) whose b.m. is Γqr

ΓP
qr = Γqr(ΓT

qrΓqr)−1ΓT
qr (39)

and, for a given S-basic matrix it holds ker(ST ) = (im(S))⊥, and then it follows that
ker(Eqr) ⊇ im(Lqr) where

Lqr =


Xqr 0 0 0
0 Iu 0 0
0 0 Xqr 0
0 0 0 Iu

 , (40)

and Xqr = b.m. of ker(ΓT
qr). If

Sti =


Γh 0 SqZ 0 0 0
0 0 0 0 Xu 0
0 Γh 0 SqZ 0 0
0 0 0 0 0 Xu

 , (41)
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then from (40), the subspace im(Lqr) includes all of the state space except for the
redundant movements subspace, im(Sti) ⊆ im(Luc) ∩ im(Lqr).

If Suc =


Γqc 0
Γuc 0
0 Γqc

0 Γuc

, then, from (33) and (40), im(Suc) ⊆ im(Lti) ∩ im(Lqr).

If Sqr =


Γqr 0
0 0
0 Γqr

0 0

, then, from (33) and (35), im(Lti) ∩ im(Luc) = im(Sqr).

Remark 2. Subspaces im(Sti), im(Suc) and im(Sqr) are controlled invariant subspaces.
In fact, considering the matrix defined in (8), it is straightforward to show that
Aim(S(·)) ⊆ im(S(·)) + im(Bτ ).

Lemma 1.

rank
[

Γh SqZ
]

= rank(Γh) + rank(SqZ) = q − r − c.

P r o o f . The first equality comes from the null intersection between im(Γh) and
im(SqZ). In fact from (38) im(Γh) is a subspace of maxI(M−1

h JT KJ, ker(GKJ)) which,
from (36), is orthogonal to im(M−1

h Sq). The proof of the second equality of the lemma
begins with the following relation.

maxI(M−1
h JT KJ, ker(GKJ)) = im(M−1

h Sq)⊥,

and it follows that

im(M−1
h JT ) ⊆ maxI(M−1

h JT KJ, ker(GKJ))⊕ im(M−1
h Sq).

Now, from (36) im(M−1
h Sq) ⊆ im(M−1

h JT ). From the above mentioned inclusion and
from definition (38) it follows that

im(M−1
h JT ) = M−1

h JT ∩
(
maxI(M−1

h JT KJ, ker(GKJ))⊕ im(M−1
h Sq)

)
=

(
M−1

h JT ∩maxI(M−1
h JT KJ, ker(GKJ))

)
⊕ im(M−1

h Sq)
= im(Γh)⊕ im(M−1

h Sq).

It follows that

rank(Γh) + rank(Sq) = rank(M−1
h JT ) = rank(J) = q − r

and
rank(Γh) = q − r − rank(Sq). (42)

It remains to calculate rank(SqZ). Recalling that Sq and Z are basis matrices and from
(37) rank(Z) ≤ rank(Sq), then

rank(SqZ) = rank(Z). (43)
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From the definition of Z in (37) it follows that

rank(Z) = rank(Sq)− rank(Z⊥), (44)

where rank(Sq) is the number of components z ∈ Z. The last part of this demonstration
consists of estimating rank(Z⊥), which from (37) is

rank(Z⊥) = rank(ST
q JT KGT M−1

o Γuc).

From (36), it is easy to show that ker(ST
q ) ⊆ ker(GKJ), and thus

ker(ST
q ) ∩ im(JT KGT ) = 0

and
rank(Z⊥) = rank(JT KGT M−1

o Γuc). (45)

Now
rank(Z⊥) = rank(JT KGT M−1

o Γuc) = rank(Γuc) = c. (46)

If (45) is transposed, then

rank(Z⊥) = rank(ΓT
ucM

−1
o GKJ),

and from (9)
rank(Z⊥) = rank(ΓT

ucM
−1
o GKGT Γuc) = rank(Γuc),

where the last equality follows because matrix ΓT
ucM

−1
o GKGT Γuc has full rank. Finally,

from (43), (44) and (46), it can be concluded:

rank(SqZ) = rank(Sq)− c.

Now, if this last result with (42) is compared

rank
[

Γh SqZ
]

= q − r − c.

�

Theorem 2. Given the system in (4), then the following relationship holds:

im(BτUc) =
(
im(BτUti)⊕ im(BτUuc)⊕ im(BτUqr)

)⊥
∩ im(Bτ ) = 0,

where
im(BτUuc) = Ruc ∩ im(Bτ ) ⊇ im(Suc) ∩ im(Bτ ),

im(BτUti) = Rti ∩ im(Bτ ) ⊇ im(Sti) ∩ im(Bτ ),

im(BτUqr) = Rqr ∩ im(Bτ ) ⊇ im(Sqr) ∩ im(Bτ ),

Bτ is the inputs map defined in (4) and subspaces im(Sti), im(Suc), and im(Sqr) are the
controlled invariant subspaces defined above.
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P r o o f . The previous intersections are calculated:

im(BτUuc) ⊇ im(Suc) ∩ im(Bτ ),where im(BτUuc) ⊇ im(U2) = im


0
0

Γqc

0

 , (47)

the second intersection is

im(BτUti) ⊇ im(Sti) ∩ im(Bτ ),where im(BτUti) ⊇ im(U1) = im


0
0

Xqh

0

 , (48)

with im(Xqh) = im(Γh)⊕ im(SqZ).

At the end, the third intersection

im(BτUqr) ⊇ im(Sqr) ∩ im(Bτ ),where im(BτUqr) ⊇ im(U3) = im


0
0

Γqr

0

 . (49)

(
im(U1)⊕ im(U2)⊕ im(U3)

)⊥
=

((
im(U1)

)⊥ ∩ (
im(U2)

)⊥ ∩ (
im(U3)

)⊥)⊥
,

it follows

ker

 0 0 XT
qh 0

0 0 ΓT
qc 0

0 0 ΓT
qr 0

 = im


Iq 0 0 0
0 Iu 0 0
0 0 P 0
0 0 0 Iu

 4,

where
im(P) = ker(XT

qh) ∩ ker(ΓT
qc) ∩ ker(ΓT

qr).

To prove the theorem, it is enough to show that

im(P) = ker(XT
qh) ∩ ker(ΓT

qc) ∩ ker(ΓT
qr) = 0.

Subsequently, it is sufficient to prove that(
im(P)

)⊥ = im(Xqh)⊕ im(Γqc)⊕ im(Γqr) = <q, (50)

or equivalently that (
im(P)

)⊥has dimention equal to q. (51)

Finally, the following relationship must be proven to show (51):

rank(Xqh) = q − r − c. (52)

Relationship (52) was shown in lemma 1. �

4Note that for a given S-basic matrix it holds:

ker(ST ) =
`
im(S)

´⊥
.
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Fig. 2. Cross-section of manipulator.

6. AN APPLICATION EXAMPLE

As already mentioned, a decoupling control law consists of a feedback and a feedforward
control law. In this section these two control structures are explicitly calculated. Numer-
ical results are reported for the gripper described in Figure 2. This system is a planar
device without redundant movements and two degrees of freedom, a prismatic and a
rotoidal joint. Joint variables are positive when links move left. In the reference frame,
the contacts are c1 = (0, 2), c2 = (1, 2), and the object center of mass is cb = (0.5, 2).
As previously explained, J = H δcm

δq and GT = H δco

δu , the identity matrix is assumed
in the presented case matrix H. The inertia matrices of the object and manipulator
are assumed to be normalized to the identity matrix. The contact behavior is assumed
isotropic at the contacts. Given that q = [q1, q2]T . In general cm

1 = (2 cos q1, 2−2sinq1),
cm
2 = (2 cos q1−q2, 2), the Jacobian matrix, and its linearisation around the point q1 = π

2
assume the following values:

J =

 −2 sin q1 0
−2 cos q1 0
−2 sin q1 −1
−2 sin q1 0

 ;Jl =

 0 0
2 0
0 −1
0 0

 .

The grasp matrix was once assumed u = [x, y, θ]T to be the vector of the generalised
coordinates for the object. Then, the contact points could be represented as follows
co
1 = (x + cos θ, 1 + y + sin θ), co

2 = (1 + x− cos θ, 1 + y − sin θ). The grasp matrix and
its linearisation around θ = 0 have the following form:
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G =

 1 0 1 0
0 1 0 1

− sin θ cos θ sin θ − cos θ

 ;Gl =

 1 0 1 0
0 1 0 1

−1 0 1 0

 . (53)

According to Theorem 1 it is to check the dimension of the subspace of the reachable
internal contact forces. The test to be done is the following:

im((I−KGT (GKGT )−1G)KJ) ⊆ ker(G). (54)

Condition (54) is easy to be checked. In fact,

ker(G) = im


0

−0.7071
0

0.7071

 , (55)

and

im((I−KGT (GKGT )−1G) KJ) = im


0
1
0
−1

 . (56)

The tests in (55) and (56) guarantee that the internal forces are reachable. In this
straightforward example it is, by observing the structure of the manipulator, intuitively
understandable that the two internal contact forces are reachable. If ker

[
J −GT

l

]
=

im (Γ) is calculated, then it follows:

Γ =


0.0000
0.8165
−0.4082
0.0000
−0.4082

 ; (57)

where

Γqc =
[

0.0000
0.8165

]
;Γuc =

 −0.4082
0.0000
−0.4082

 ;Γqr =
[

0
]
. (58)

The manipulator described in Figure 2 does not present redundance movements and this
yields Γqr = 0. It is possible to calculate

Sq =
[

0 1
−1 0

]
, (59)

and also to calculate ker(GKJ) = 0 which yields Γh = 0. In the analysed case,
im(M−1

o GKJSq) ⊆ ker (Γuc)T , then Z = I. According to (47), (48) and (49) the feed-
forward structure is already calculated. In fact, Figure 3 shows the proposed control
scheme structure in which the concept of the feed-forward control law is visible through
matrix U. Matrix U is defined as follows:

U =
[

BτUuc BτUti

]
. (60)
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Fig. 3. Control scheme.

From this scheme the concept of the conditioned and controlled-invariant subspace as
an algebraic feedback is visible. Considering the main results shown in [11], which are
reported here below, it is possible to build the decoupling feedback law which, together
with the feed-forward control law, can obtain a robust decoupling. In fact, it is possible
to show that a robust decoupling controller is obtained through matrix L. This matrix
represents a static-output feedback control law, together with the above defined matrix
U which represents the static feed-forward control law. According to the structures and
the results in [11], then

a) min I ((A(∆k, ∆b) + BτLC),BτUuc) ⊆ ker Eti;

b) imEti(∆k, ∆b) = Eti(∆k, ∆b) min I ((A(∆k, ∆b) + BτLC),BτUuc) ;
(61)

c) min I ((A(∆k, ∆b) + BτLC),BτUti) ⊆ ker Euc;

d) imEuc(∆k, ∆b) = Euc(∆k, ∆b) min I ((A(∆k, ∆b) + BτLtiC),BτUti) .
(62)

The sensed outputs are weighted by the coefficients of the matrix L. It will be shown that
the decoupling control of the internal forces can be obtained by means of an algebraic
output feedback control from the sensed output consisting of contact forces t and of
manipulator joint positions q. These have an output relationship for the linearised
model denoted by the following:

ym = Cx

C =
[

Iq×q 0 0 0
KJ −KGT BJ −BGT

]
.

(63)
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According to equations (61) all the object movements Euc remain inside the subspace
im(Euc) ∀K and B. This means that, thanks to the decoupling control law, the object
motions do not influence the subspace of the internal contact forces. According to
equations (62) all the internal contact forces Eti remain inside the subspace im(Eti) ∀K
and B. To conclude, thanks to the decoupling control law which is characterised by
matrix U and matrix L, the internal contact forces do not influence the subspace of the
object motions. In the presented case the outputs which describe the object motions
and the internal contact forces are the following:

Euc =
[

0.71 −0.71 0 0 0 1.42 −1.42 0 0 0
]
, (64)

Eti =
[

0 0 −0.58 0 0 0 0 0 0 0
]
. (65)

From equation (61) and (62) it is also possible to calculate matrix L. In the case
presented matrix L assumes the following values:

L =
[
−9.3 −9.3 0 4.7 0 3.7
−9.3 −9.3 0 3.7 0 4.7

]
. (66)

Matrix L guarantees also the stability of the system. From Figures 4, it is visible
how the contact forces “compensate”. Essentially, no movements are allowed, and the
desired force on the object is obtained. The dynamics of the forces, represented on the
lower (left and right) part of Figure 4 are due to the particular choice of eigenvalues that
characterise the force answer of the system. Figures 5 show the case in which the center
of mass is moving but the force acting on it remains constant. The robustness, with
respect to the variations of K and B, is widely explained in [11]. The robust decoupling
controller exits if some structural conditions are satisfied. These structural conditions are
satisfied by those mechanisms that present some symmetry in their geometric structure.
In fact, a symmetric structure always uses symmetric contact forces to guarantee the
existence of the compensation mentioned above.

7. CONCLUSIONS

A generalized linear model is used and a careful analysis is performed for the design
of a force/motion controller. This work shows an explicit formula for the reachable
internal contact forces of a general manipulation system. The main contribution of
the paper consists of investigating the design of a feed-forward force-motion control
which, together with a feedback structure, realizes a decoupling force-motion control.
Structural geometric properties are proposed, and a general matrix parametrization of a
feed-forward control for a task-oriented choice of input subspaces is provided. The exis-
tence of these input subspaces is a necessary condition for the structural non-interaction
property. In particular, a theorem is shown which offers a general parametrization of
the pre-compensator. Work on the synthesis of the force/motion non-interacting con-
trol law of manipulation systems continues. Specifically, the synthesis of non-interacting
force/motion controllers for defective devices appears to be straightforward to be imple-
mented in several application examples.

(Received January 15, 2011)
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Fig. 4. Upper-Left: Resulting horizontal squeezing force on the

center of mass of the object. Upper-Right: Resulting horizontal

position of the center of mass of the object. Lower-Left: Force acting

at the contact point with coordinates (0, 2). Lower-Right: Force

acting at the contact point with coordinates (1, 2).
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Fig. 5. Upper-Left: Resulting horizontal squeezing force on the

center of mass of the object. Upper-Right: Resulting horizontal

position of the center of mass of the object. Lower-Left: Force acting

at the contact point with coordinates (0, 2). Lower-Right: Force

acting at the contact point with coordinates (1, 2).
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