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A GEOMETRIC ALGORITHM FOR THE OUTPUT
FUNCTIONAL CONTROLLABILITY IN GENERAL
MANIPULATION SYSTEMS AND MECHANISMS

Paolo Mercorelli

In this paper the control of robotic manipulation is investigated. Manipulation system anal-
ysis and control are approached in a general framework. The geometric aspect of manipulation
system dynamics is strongly emphasized by using the well developed techniques of geometric
multivariable control theory. The focus is on the (functional) control of the crucial outputs in
robotic manipulation, namely the reachable internal forces and the rigid–body object motions.
A geometric control procedure is outlined for decoupling these outputs and for their perfect
trajectory tracking. The control of robotic manipulation is investigated. These are mechanical
structures more complex than conventional serial–linkage arms. The robotic hand with possi-
ble inner contacts is a paradigm of general manipulation systems. Unilateral contacts between
mechanical parts make the control of manipulation system quite involved. In fact, contacts can
be considered as unactuated (passive) joints. The main goal of dexterous manipulation consists
of controlling the motion of the manipulated object along with the grasping forces exerted on
the object. In the robotics literature, the general problem of force/motion control is known
as “hybrid control”. This paper is focused on the decoupling and functional controllability of
contact forces and object motions. The goal is to synthesize a control law such that each output
vector, namely the grasping force and the object motion, can be independently controlled by
a corresponding set of generalized input forces. The functional force/motion controllability is
investigated. It consists of achieving force and motion tracking with no error on variables tran-
sients. The framework used in this paper is the geometric approach to the structural synthesis
of multivariable systems.

Keywords: geometric approach, manipulators, functional controllability

Classification: 93D09, 19L64, 70Q05, 14L24

1. INTRODUCTION

This paper deals with general manipulation systems. These are mechanical structures
more complex than conventional serial–linkage arms. The coordinated use of multiple
fingers in a robot hand or, similarly, of multiple arms in cooperating tasks; the use of
inner links of a robot arm (or finger) to hold an object and the exploitation of paral-
lel mechanical structures are all examples of non–conventional usage of mechanisms for
manipulation. Robotic hands can be considered as paradigms of general manipulation
systems. The presence of unilateral contact phenomena between different parts of the
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mechanical structure is a special feature of manipulation systems. Mechanical contacts
between the robotic parts and the environment can be viewed as actuated (passive)
joints and, for this reason, they make manipulation system control quite involved. The
analysis of dynamics and the control of manipulation systems become more complex
when it is not possible to control contact forces in all directions. This usually happens
when the number q of DoF’s of the robotic device is smaller than t, the dimension
of the contact force space. In [14], such a case is defined as “defective grasp”. The
importance of defective grasps has been underlined for the first time in “whole–hand”
manipulation [17], where all links of the hand may be exploited to manipulate objects
(see Figure 1). In industrial applications, kinematic defectivity is a common factor of
almost all grippers used to grasp industrial parts. Consider, for instance, the simple
mechanism in Figure 3 of Section 5. It will be shown that it exhibits a defective grasp.
The main goal of dexterous manipulation tasks consists of controlling the motion of
the manipulated object along with the grasping forces exerted on the object. In the
robotics literature, the general problem of force/motion control is known as “hybrid
control”. For a broad overview on these topics, the reader is referred to [12, 18] and the
references therein. In force/motion control, a very interesting aspect is the decoupling
control. Roughly speaking, the multi–input, multi–output manipulation system is de-
coupled if each output vector, namely the grasping force and the object position vectors,
can be independently controlled by a corresponding set of generalized input forces. Such
a structure is desirable in a considerable number of advanced applications, including mi-
cromanipulation of tissues in surgery and in laparoscopy or assembly and manipulation
of non–rigid (rubber or plastic) parts in industry. In all the examples above, it could
be very dangerous to increase the squeezing force while giving rise to undesired, even
if transient, object motions. Such a problem is common to all those hybrid controllers
which do not rank noninteraction as a specific goal. In [7], the authors proved in a geo-
metric setting that it is possible to decouple the object position and the squeezing force
control for a wide class of manipulation systems by using a state–space feedback con-
troller. This paper presents a systematic procedure in order to obtain the noninteracting
controllability between force and motion and their functional controllability. Here, the
noninteraction problem is investigated thoroughly in order to extend previous results to
the functional force/motion controllability. Roughly speaking, it consists of achieving
force and motion tracking with no error variables transients. To achieve a noninteraction
a feedback control law is needed together with a feed-forward regulator. The functional
controllability represents a structural property of the system which must be proven. In
this paper noninteraction and functional controller is obtained. The relevance of the out-
put functional controllability to manipulation control is justified by the necessity of very
fast, loops of force control counteracting the grasp failure caused by possible disturbance
actions. The framework used in this paper is the geometric approach to the structural
synthesis of multivariable systems. For a broad overview the reader is referred to [3, 19]
and the references therein. References [8, 11] and [16] mark progress in the analysis
and synthesis of geometric controller for mechanical systems. The force/motion control
problem has attracted significant attention over the last decade in the fields of robotic
manipulation and mobile manipulators. Approaches exploiting input-output decoupling
controllers are found, for instance, in the work [20]. The geometric approach allows very
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elegant solutions to control problems. Nevertheless, robustness analysis using a linear
geometric control offers answers through rank conditions of matrices that are necessary
conditions. These conditions are often not constructive ones. Even though the rank
conditions offer simple “on-off” conditions, it is also possible to measure the robustness.
The work in [10] investigates the geometric and structural characteristics involved in
the control of general mechanisms and manipulation systems. These systems consist
of multiple cooperating linkages that interact with a reference member of the mecha-
nism (the “object”) by means of contacts on any available part of their links. Grasp
and manipulation of an object by the human hand is taken as a paradigmatic example
for this class of manipulators. Special attention is devoted to the output specification
and its controllability. The paper is organized as follows. Section 2 is devoted to the
background. Section 3 shows some results on the noninteracting control. The main
contribution of this paper is shown in Section 4 in which the functional controllability is
presented as a structural property. The formal demonstrations of the results are shown
in the appendix. At the end, a section dedicated to the case study presents, together
with an example, a general procedure to calculate the geometric structures which are
used for the control. The conclusions close the paper.

Fig. 1. Defective grasp: ker(JT ) 6= {0}. Contact force fv and object

position uv which are not controllable by joint torques.

2. PRELIMINARIES

The manipulation system dynamics is linearized at an equilibrium configuration. The use
of linearized model dynamics in the analysis of general manipulation systems is believed
to be a significant advancement with respect to the literature, which is almost solely
based on quasi–static models, especially for defective systems, and in fact provides richer
results and better insights. For a detailed discussion of dynamics and the derivation of
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its linearized model the reader is referred to previous works by the authors, [15] and
[14]. Notation and some results on the linearized dynamics of general manipulation
systems, are summarized in this section. Let q ∈ <q be the vector of joint positions,
τ ∈ <q the vector of joint forces and/or torques, u ∈ <d the vector locally describing
the position and the orientation of a frame attached to the object and finally w ∈ <d

the vector of external disturbances acting on the object. Let us further introduce the
vector t ∈ <t whose components include contact forces and torques. Assume that contact
forces arise from a lumped–parameter model of visco–elastic phenomena at the contacts,
summarized by the stiffness matrix K and the damping matrix B. Jacobian matrix J
and the grasp matrix G are usually defined as the linear maps relating the velocities
of the contact points on the links and on the object, to the joint and object velocities,
respectively. Besides advanced robotic tasks discussed in the introduction, whereas
visco–elastic contact model is mandatory, it might be worthwhile to mention another
reason, discussed in [13], for taking into account the visco–elastic contact model. It was
shown that if the grasp is hyperstatic, i. e. ker(JT )∩ker(G) 6= 0, the rigid–body contact
model leaves the nonlinear dynamics undetermined and, consequently, the visco–elastic
model of contact interaction becomes mandatory. By the way, notice that kinematic
deficiency (ker(JT ) 6= ∅) is a necessary condition for hyperstaticity. Consider a reference
equilibrium configuration (q,u, q̇, u̇, τ, t) = (qo,uo,0,0, τo, to), such that τo = JT to and
wo = −Gto. In the neighbourhood of such an equilibrium the linearized dynamics of
the manipulation system can be written as

ẋ = Ax + Bττ ′ + Bww′, (1)

where state, input and disturbance vectors are defined as the departures from the refer-
ence equilibrium configuration:
x =

[
(q− qo)T (u− uo)T q̇T u̇T

]T
, τ ′ = τ − JT to, w′ = w + Gto and

A =
[

0 I
Lk Lb

]
, Bτ =

 0
0

M−1
h

0

 , Bw =

 0
0
0

M−1
o

 , (2)

where Mh and Mo are the inertia matrices of the manipulator and the object, respec-
tively. To simplify notation we will henceforth omit the prime in τ ′ and w′. Neglecting
rolling phenomena at the contacts, assuming a locally isotropic model of visco–elastic
phenomena and assuming that local variations of the Jacobian and grasp matrices are
small, simple expressions are obtained for Lk = −M−1Pk and Lb = −M−1Pb, where
M = diag(Mh,Mo), Pk = ST KS, Pb = ST BS, and S = [J − GT ]. According
to the lumped visco–elastic model, the local description of the contact force vector is
t′ = t− to = Ctx with Ct =

[
KJ −KGT BJ −BGT

]
. To our purposes, object, joint

positions and forces are of interest as outputs. The corresponding output matrices are,
respectively,

Cu = [ 0 I 0 0 ] , Cq = [ I 0 0 0 ] , Ct =
[

KJ −KGT BJ −BGT
]
.
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3. CONTROLLED OUTPUTS AND NONINTERACTING CONTROL

In this paper it has been assumed that contact points do not change. The manipulation
is studied in those intervals of time when contact points hold without rolling and/or
sliding. Thus, manipulation control goal involves mainly the control of grasp and the
tracking of the desired object trajectory. With reference to the first control requirement
let us introduce concept of internal forces. Usually, forces belonging to the null space
of the grasp matrix G are referred to as “internal forces” (which are contact forces
with zero resultant on the object). Such forces enable the robotic device to grasp the
object and play a fundamental role in controlling the manipulation task. A suitable
control of internal forces allows the manipulation system to counteract the possible
grasp failure caused by disturbance actions on the object. Analytically, internal forces
are defined as those forces belonging to the null space of the grasp matrix G. In [14]
manipulation systems with ker(G) 6= 0 were defined as graspable systems. With reference
to object trajectories, rigid–body kinematics plays a particular role in manipulation
control. Rigid–body kinematics has been studied in a quasi–static setting in [4] and in
terms of unobservable subspaces in [5]. In both cases rigid kinematics was described by
the base matrix Γ whose columns form a basis for ker

[
J −GT

]
= im(Γ) where

Γ =
[
ΓT

qc ΓT
uc

]T
, and JΓqc = GT Γuc. (3)

Observe that, for the sake of brevity, it is assumed here that the system is not redundant:
ker(J) = {0} and that it is not indeterminate: ker(GT ) = {0}, see [4] for further details.
The column space of Γ consists of coordinated rigid–body motions of the mechanism,
for the manipulator (Γqc) and the object (Γuc) components. They do not involve visco–
elastic deformations at contacts and can be regarded as low–energy motions. In this
sense, they represent the easiest way to move the object. In the following, a special
subspace of internal forces and the rigid–body object motions are characterized as output
matrices of the linearized dynamics, see Section 2. These outputs, namely t′ and u′

(henceforth t and u), represent variations of contact force and object position vectors
from the relative equilibrium values. Before introducing the controlled outputs, let us
recall the concept of contact–kinematics defectivity, or briefly defectivity. According
to [14] and [6], a given grasp is called contact–kinematics defective if ker(JT ) 6= {0}.
As pointed out, the grasp defectivity deeply affects contact forces and the object motion
controllability which, in general, is lost. Figure 1 describes some uncontrollable directions
of contact forces fv and object motions uv for a simple 3–DoF’s defective device.

Recall that whenever the number of joints is lower than the number of elements of the
contact force, as in the simple grippers of Figures 1 and 3, it ensues that ker(JT ) 6= {0}
and the grasp is defective. Although, in the presence of defectivity, contact forces t
and object motions u loose the output controllability. It was shown in [14] that the
output controllability property holds for their projection on the subspace of reachable
internal forces ti and of rigid–body object motions uc. Moreover, if the output vector
is chosen by grouping such projections y =

(
tT
i uT

c

)T
, not only y is consistent, i. e.

output controllable, but it also exhausts the control capability by making the input–
output representation of dynamics square. The reachable internal contact forces ti are
defined as the projection of the force vector t into the null space of G: Then the output
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matrix is defined as follows

eti = Etix; with Eti = (I−KGT (GKGT )−1G)Ct =
[

Qk 0 Qβ 0
]
, (4)

where
Qk = (I−KGT (GKGT )−1G)KJ (5)

and
Qβ = (I−BGT (GBGT )−1G)BJ. (6)

One can remark that im(Qk) = im(Qβ) under the hypothesis im(K) = im(B) and the
rigid–body object motions uc are defined as the projection of the object displacement u
onto the column space of Γuc:

euc = Eucx, where Euc = Γuc(ΓT
ucΓuc)−1ΓT

uc [0 I 0 0] . (7)

Notice that to simplify notation, matrices (QT Q)−1 and (ΓT
ucΓ)−1 will be omitted in

the following.

3.1. Noninteracting control

In [9] the following decoupling theorem was stated,

Theorem 1. (Noninteraction) Consider the linearized manipulation system of Sec-
tion 2. If ker(GT ) = {0}, there exists a stabilizing state–feedback control law, τ =
Fx + τ∗ and an input partition τ∗ = Utiuti + Uucuuc which decouples reachable inter-
nal forces ti and rigid–body object motions uc.

Remark 1. Theorem 1 states that a control law and a joint torques partition exist such
that, for zero initial conditions each input affects only the relative output.

The geometric concept from which the previous result develops is originally developed
in [3] the S–constrained controllability. It consists of those state space vectors reachable
through trajectories entirely lying in the constraining subspace S. It was shown that,
for the aforementioned outputs ti and uc, there exists a decoupling and stabilizing state
feedback matrix F, along with two input partition matrices Uti and Uuc such that, for
the following two triples

(Eti, A + BτF, BτUti) ,

(Euc, A + BτF, BτUuc) ,
(8)

it holds:
Rti = minI(A + BτF, BτUti) ⊆ ker(Euc),

EtiRti = im(Eti),
(9)

Ruc = minI(A + BτF, BτUuc) ⊆ ker(Eti),

EucRuc = im(Euc).
(10)
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Here,

minI(A, im(B)) =
n−1∑
i=0

Aiim(B) (11)

is the minimum A–invariant subspace containing im(B) with respect to a general system
defined by the triple (A,B,C). Moreover, the partition matrices Uuc and Uti satisfy
the following relations

im(BτUuc) = im(Bτ ) ∩Ruc,
im(BτUti) = im(Bτ ) ∩Rti,

(12)

and the stabilizing matrix F is such that

(A + BτF)Ruc ⊆ Ruc,
(A + BτF)Rti ⊆ Rti.

(13)

The decoupling controller is that sketched in Figure 2.

Fig. 2. Force/motion decoupling controller.

4. FORCE/MOTION FUNCTIONAL CONTROLLABILITY

This section is aimed at the analysis of the output functional controllability of manip-
ulation systems. As already pointed out, we are interested in controlling the internal
contact forces and the rigid–body object motions to achieve force and motion tracking
without transients of error variables. In the whole, in robotic manipulation, the exact
trajectory tracking is paramount and this is particularly emphasized by the advanced
manipulation tasks recalled in Section 1. It is our belief that noninteraction should
be a basic requirement of internal–force and object–motion control, thus the objective



A geometric algorithm for the output functional controllability in manipulation systems 1273

of the control becomes twofold and an effort is made to achieve both decoupling and
functional controllability of reachable internal forces and rigid body motions in general
manipulation systems. To attack the problem, the natural approach is to analyze the
constrained output controllability idea, cf. [2] and [3], formalized below.

Definition 1. (Perfect output controllability) Given the triple (A,B,C), the output
subspace Li is said to be perfect output functionally (OF) controllable with respect to
ith derivative and with respect to the subspace of states S if Li = CS and, for every
initial state x0 ∈ S, it is possible, by means of proper bounded and measurable control
function, to follow in L any trajectory arbitrarily given in the class of functions which
admit ith derivative with respect to time, while the state evolves into S.

Recall, cf. [2], that the output functional controllability is strictly related to the
geometric–type extension of the relative degree for multivariable systems and that each
subspace S satisfying Definition 1 is an (A,B)–controlled invariant. The last observation
highlights the relationships between the noninteracting controller and the output func-
tional controllability will help to prove next theorem which states the OF–controllability
of general manipulation systems to be decoupled according to the previous section.

Theorem 2. (Output Functional Controllability and Noninteraction) Consider the lin-
earized System (1) with ker(GT ) = 0. The output subspaces im(Eti), im(Euc) are OF
controllable with respect to the 1st and 3rd derivative and with respect to the con-
strained reachable subspaces Rti and Ruc, respectively. Moreover the state–feedback
decoupling controller of Section 3.1 (eqs. 8, 12 and 13) makes the system, with outputs
ti and uc, noninteracting and OF–controllable.

The proof is reported in Appendix III.

Remark 2. Regarding the functional controllability of rigid–body as object motions,
the 3–rd order of derivative means that the output uc can perfectly track any desired
trajectory ucd which has a piecewise continuous 3–rd derivative. This is true for all
initial states xo in Rti + Ruc and with piecewise continuous control functions uc(t).
Furthermore, it could be easily shown that order 3 of the rigid–body object motions uc

is not due to the particular choice of the subspace Ruc but it is an inherent property of
the system. It is related to the relative degree of the relationship between the rigid–body
object motion and the joint–torques.

In [14] it has been proven that the input–output representation, y(s) = G(s)τ(s), of
linearized dynamics of manipulation systems is invertible. In this paper the problem of
the output functional controllability is approached after having solved the force/motion
decoupling problem by means of a state–feedback controller. The improvement consists
in obtaining a more robust controller. If the inversion algorithm fails, the decoupling
structure is able to fix at least the possible force/motion coupling problems. Moreover,
regarding computational aspects, in general the inversion of a block–diagonal transfer
function involves less operations than the inversion of the undecoupled G(s).

5. CASE STUDY

In this section numerical results are reported for the simple defective gripper pictorially
described in Figure 3. It is a planar 3–DoF’s Cartesian manipulator and has been chosen
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Fig. 3. Planar 3–DoF’s Cartesian manipulator. It exhibits a

defective (ker(JT ) = 0) grasp.

in order to show the effectiveness of previous results for industrial grippers. In the base
frame B, the contact centroids, cf. [4], are c1 = (2, 2), c2 = (2, 3) and object center of
mass is cb = (2, 2.5) while the transpose of the Jacobian and the grasp matrix assume
the following values

JT =

[
0 1 0 0
1 0 1 0
0 0 0 1

]
; G =

[
1 0 1 0
0 1 0 1

0.5 0 −0.5 0

]
.

The inertia matrices of the object and manipulator along with stiffness and damping
matrices at the contacts are assumed to be normalized to the identity matrix. The
controlled outputs are (a) the projection ti of the contact forces along the 1–dimensional
subspace of reachable contact force im([0 1 0 − 1]T ) and (b) the projection of the rigid–

body motion in the 2–dimensional subspace of object motions im

[
1 0
0 1
0 0

]
which, since

u = [δx δy δθ]T , corresponds to translations of the object.

5.1. General procedure

The objective of the control is twofold. First, force and motion control must be de-
coupled, then the perfect tracking of desired trajectories tid and ucd can be achieved.
The decoupling controller is pictorially described in Figure 2 and has been synthesized,
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according to Section 3.1, eqs. (8), (12) and (13). State–feedback matrix F and input
partition matrix U =

[
Uti Uuc

]
are obtained respectively according to the following

procedure:

• Step 1: According to (9), calculate the reachable subspace of the internal contact
force with the following expression:

Rti = (ET
tiEti)−1ET

tiim(Eti). (14)

• Step 2: Once Rti is calculated, the following calculation allows to calculate parti-
tion Uti according to (12):

im(Uti) = (BT
τ Bτ )−1BT

τ im(Bτ ) ∩Rti. (15)

• Step 3: According to (9) calculate state–feedback matrix Fti solving the following
linear problem:

Rti = minI(A + BτFti, BτUti) ⊆ ker(Euc). (16)

• Step 4: According to (10) calculate the reachable subspace of the internal coordi-
nated movements with the following expression:

Ruc = (ET
ucEuc)−1ET

ucim(Euc). (17)

• Step 5: Once Ruc is calculated, the following calculation allows to calculate par-
tition Uuc according to (12):

im(Uuc) = (BT
τ Bτ )−1BT

τ im(Bτ ) ∩Ruc. (18)

• Step 6: According to (10) calculate state–feedback matrix Fuc solving the following
linear problem:

Ruc = minI(Ati + BτFuc, BτUuc) ⊆ ker(Eti). (19)

• Step 7 : The final state–feedback decoupling matrix is the following:

F = Fti + Fuc. (20)

End

Note the matrix Fti makes the subspace of the internal contac forces invariant. This
means that the internal contact forces do not influnce the coordinated movements. The
practical meaning of that is that it is possible to sqeeze the object without moving it.
Through state–feedback matrix Fti the following matrix which represents the system is
obtained:

Ati = A + BτFti. (21)

Note that, matrix Ati is that defined in (21), and matrix Fuc makes the subspace of
the object motions invariant. This means that the object motions do not influence the
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internal contact forces. The practical meaning of that is that, it is possible to move
the object without squeezing it. Through the feedback matrix Fuc the following matrix
which finally represents the state of the noninteracting system is obtained:

Adec = Ati + BτFuc. (22)

Relation (20) can be derived considering that Ati = A + BτFti and that Adec = Ati +
BτFuc. In fact, combining these two relations the following mathematical expression is
obtained:

Adec = A + Bτ (Fti + Fuc), (23)

and expression (20) comes directly from (23). After the numerical calculations the
following matrices are obtained:

F =

[ −7 6.5 −6 −1 −41 0 −7.5 −0.02 −5.5 −3 −22 0
10 −120 10 −72 5 0 0.29 −16 0.29 7.2 −6.2 0
−6.1 6.5 −7.1 −0.97 −41 0 −5.5 −0.021 −7.5 −3.1 −22 0

]
,

Uti =

 −0.707
0

0.707

 , Uuc =

 0 −0.707
1 0
0 −0.707

 .

The control task is set to follow a circle with angular velocity of 0.1rad/sec, starting from
point uo of coordinates (2.5, 1), see Figure 3, while keeping the contact force constant to
the value to = [0; 1; 0;−1]T . The computed prismatic joint forces τ∗ = Utiuti +Uucuuc

realizing the perfect tracking of desired object motions and internal force are reported in
Figure 4 along with the perfectly tracked internal force parametrization ti. The object
trajectory perfect tracking, which is a circular trajectory of the center of mass of the
object, is reported in Figure 3. It is worthwhile to remark that for the simple possibly
industrial gripper, under the reasonable hypothesis that the angular dynamics of the
object can be disregarded, linearized dynamics represents the complete description of
manipulation system dynamics.

6. CONCLUSIONS

The decoupling and trajectory tracking procedure discussed in this paper applies to
robotic manipulation systems whose dynamics can be modelled according to Section 2.
The class of manipulation systems under investigation is wide enough to include a con-
siderable number of grasp configurations, such as those using internal and/or extremal
links to grasp objects, those with contact kinematic redundancy and so forth.
Due to the possible presence of defectivity, the control outputs were suitably chosen as
the reachable internal forces and the rigid–body object motions. The main results of
this paper are summarized in two theorems. The first one is related to noninteracting
control of general manipulation systems. The second one focuses on the perfect output
functional controllability of internal force and object motions. The problem approached
in this paper is relevant to the robotic community and is commonly addressed as hybrid
control. With respect to the solution for the system inversion proposed in [14], the im-
provement presented here consists of the synthesis of a more robust controller. In fact
its inner decoupling structure is able to fix the possible coupling problems, whatever the
joint input signals are.
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Fig. 4. Internal force ti perfectly tracks the constant internal force

while the object center of mass perfectly tracks the unit circle as

depicted in Figure 3.

APPENDIX

Appendix I: Some geometrical properties

This part of the appendix is devoted to calculate some structures which will be useful
in order to show the proposed theorem on the functional controllability. Let Γh be the
basis for the identical internal forces subspace as explained in [15], thus

im(Γh) : im(M−1
h JT ) ∩maxI(M−1

h JT KJ, ker(GKJ)). (24)

Here,

maxI(A, ker(C)) =
n−1⋂
i=0

Aiker(C) (25)

is maximum A–invariant subspace contained in ker(C) with respect to a general system
defined by the triple (A,B,C). More in depth about the meaning of equation (24), it is
possible to observe that this intersection states a basis for the identical internal forces
subspace. In fact these forces are all those forces which do not generate movements of
the object. In fact, the maximal invariant subspace of the forces through M−1

h JT KJ,
see the dynamic matrix of the system represented in (2), contained in ker(GKJ)) is
considered. Subspace ker(GKJ)) represents the null of the object motion (no motions),
see (2).

Remark 3. The subspace null of Q can be calculated very easily, in fact ker(Q) =
ker(J) + V where V = {v|KJv ∈ ker(I−KGT (GKGT )−1G) = im(KGT ),v /∈ ker(J)}.
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From (7) it is easy to show that V = im(Γqc) and thus that

ker(Q) = im(Γr) + im(Γqc). (26)

The following two Lemmas show the following condition:

EtiRBti = im(Eti). (27)

To show condition (27) it is equivalent to show that

im(Q
[

Γh SqZ
]
) = im(Q), (28)

with
im(Sq) = minI(M−1

h JT KJ,M−1
h JT KGT ), (29)

and where Z is such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq) ∩ ker(ΓT
uc). (30)

Remark 4. About the meaning of the equivalence of equation (27) with (28) it is
to observe as follows. Eq. (30) states the intersection between the controllable object
motions from the manipulator movements, through subspace im(M−1

o GKJ) of the object
motions, and the object motions which belong to the orthogonal subspace with respect
to the object motions themselves. The orthogonal subspace with respect to the object
motions subspace is represented by ker(ΓT

uc). In fact, it is known from the linear algebra
that ker(ΓT

uc) = (im(Γuc))⊥. This means that SqZ states all the object motions which
are not coordinate with the manipulator movements. Expression im(M−1

o GKJSq) of eq.
(30) represents the subspaces of the controllable object motions from the manipulator
movements. In fact, subspace im(Sq) is the minimal invariant subspace of the dynamics
of the manipulator, which is represented by subspace im(M−1

h JT KJ), see (2), which
includes the subspace of the object motions through subspace im(M−1

h JT KGT ), see
(2).

To prove (27), the following two relationships are to be shown.

ker(Q) ∩ im
[

Γh SqZ
]

= 0, (31)

rank(
[

Γh SqZ
]
) = rank(Q). (32)

Lemma 1. Let im(Γh), ker(Q), and im(SqZ) be subspaces as given in (24), (26), and
(30), respectively, then the following relation holds:

ker(Q) ∩ im
[

Γh SqZ
]

= 0. (33)
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P r o o f . From the previous remark, (33) can be verified by checking if vectors x, y, v
and w such that

Γrx + Γqcy = Γhv + SqZw (34)

exist. The demonstration consists of showing that these vectors do not exist. From
the definition of im(Γqc) and im(Γh) it is possible to see that im(Sq) is included in
im(Mh

−1JT ). im(Γr) is not included in im(Mh
−1JT ) because this is included in ker(J)1.

Thus eq. (34) could be written in the following way:

Γqcy = Γhv + SqZw. (35)

If eq. (35) is true, then M−1
o GKJ and

M−1
o GKJΓqcy = M−1

o GKJΓhv + M−1
o GKJSqZw. (36)

Considering that im(Γh) ⊆ ker(GKJ), then

M−1
o GKGT Γucy = M−1

o GKJSqZw, (37)

but this is never verified. In fact, because of choice of Z, im(M−1
o GKJSqZ) ⊆ ker(ΓT

uc)
and it is very easy to show that if im(M−1

o GKGT Γuc) ⊆ ker(ΓT
uc), then matrix M−1

o GKGT

would be an orthogonal projector, but it is not true because this is not a projector form2.
This means that vectors which satisfy eq. (34) do not exist. This shows that (33) is
proven. �

Lemma 2. Let im(Γh) and im(SqZ) be subspaces as given in (24) and (30), respectively,
then the following relation holds:

rank
[

Γh SqZ
]

= rank(Γh) + rank(SqZ) = q − r − c. (38)

P r o o f . The first equality comes from the null intersection between im(Γh) and im(SqZ).
In fact, from (24) im(Γh) is a subspace of maxI(M−1

h JT KJ, ker(GKJ)) which, from
(29), is orthogonal with respect to im(M−1

h Sq)3. The proof of the second equality of the
lemma begins with the following relation.

maxI(M−1
h JT KJ, ker(GKJ)) = im(M−1

h Sq)⊥, (39)

and it follows that

im(M−1
h JT ) ⊆ maxI(M−1

h JT KJ, ker(GKJ))⊕ im(M−1
h Sq). (40)

Now, from (29) im(M−1
h Sq) ⊆ im(M−1

h JT ). From the above mentioned inclusion and
from definition (67) it follows that

im(M−1
h JT ) = M−1

h JT ∩
(
maxI(M−1

h JT KJ, ker(GKJ))⊕ im(M−1
h Sq)

)
=

(
M−1

h JT ∩maxI(M−1
h JT KJ, ker(GKJ))

)
⊕ im(M−1

h Sq)
= im(Γh)⊕ im(M−1

h Sq).
(41)

1 In general for a linear application L the following relationship holds: im(LT ) + ker(L) = im(I).
2Given a subspace L of which the basis matrix is L, then the orthogonal projector is

(I− L(LTL)−1LT).
3Given a subspace L of which the basis matrix is L, then ker(LT ) = (im(L))⊥.
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It follows that

rank(Γh) + rank(Sq) = rank(M−1
h JT ) = rank(J) = q − r (42)

and
rank(Γh) = q − r − rank(Sq). (43)

It remains to calculate rank(SqZ). Recalling that Sq and Z are basis matrices and from
(30) rank(Z) ≤ rank(Sq), then

rank(SqZ) = rank(Z). (44)

From the definition of Z in (30) it follows that

rank(Z) = rank(Sq)− rank(Z⊥), (45)

where rank(Sq) is the number of components z ∈ Z. The last part of this demonstration
consists of estimating rank(Z⊥), which from (30) is

rank(Z⊥) = rank(ST
q JT KGT M−1

o Γuc). (46)

From (29), it is easy to show that ker(ST
q ) ⊆ ker(GKJ), and thus

ker(ST
q ) ∩ im(JT KGT ) = 0 (47)

and
rank(Z⊥) = rank(JT KGT M−1

o Γuc). (48)
Now

rank(Z⊥) = rank(JT KGT M−1
o Γuc) = rank(Γuc) = c. (49)

If (48) is transposed, then

rank(Z⊥) = rank(ΓT
ucM

−1
o GKJ), (50)

and from (3)
rank(Z⊥) = rank(ΓT

ucM
−1
o GKGT Γuc) = rank(Γuc), (51)

where the last equality follows because matrix ΓT
ucM

−1
o GKGT Γuc has full rank. Finally,

from (44), (45) and (49), it can be concluded:

rank(SqZ) = rank(Sq)− c. (52)

Now, if this last result is compared with (43), then

rank
[

Γh SqZ
]

= q − r − c. (53)

�

Remark 5. Eq. (32) is proven only if in case of kinematic defectivity, which can be
mathematically expressed as ker(JT ) 6= 0, i. e., being J ∈ <(t×q), thus only in case of
t > q. It is easy to prove that in case of t ≤ q is only a trivial extension. Let r e c
be the ranks of matrices Γr and Γuc, respectively. Then rank(J) = q − r. From Lemma
2 we have that rank

[
Γh SqZ

]
= rank(Γh) + rank(SqZ) = q − r − c. In conclusion in

(32) it is shown that
rank(Q) = q − r − c, (54)

and this comes trivially from (26). In fact, rank(Q) = rank(QT ) = q − rank(ker(Q)) =
q − (r + c).
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Appendix II: Calculation of the controlled invariant subspaces

Part a)

The following subspace must be calculated:

maxV(A, im(Bτ ), im(Buc)). (55)

According to equations (4), it is possible to write as follows. Considering

ker(Eti) = ker
[

Qk 0 Qβ 0
]
, (56)

it could be useful to remark that ker(Qk) = ker(Qβ) under the hypothesis of propor-
tionality enunciated above, then

ker(Eti) ⊇ im(Buc), (57)

with

Buc =


Γqc 0 Γqc 0 Γqc 0 Γqc 0 ..

Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc 0 ..
0 Γqc 0 Γqc 0 Γqc 0 Γqc ..

0 Γuc 0 −Γuc 0 −HΓuc 0 −H4Γuc ..

 ,

(58)
where H = M−1

o GBGT. To verify that

maxV(A, im(Bτ ), im(Buc)) = im(Buc), (59)

it results very easy. In fact, im(Buc) is a controlled invariant subspace. The inclusion
condition (57) comes from the inspection of the two subspaces considering relation-
ship (26).

The following subspace must be calculated:

maxV(A, im(Bτ ), im(Bti)). (60)

According to equations (7), it is possible to write as follows. Considering that

Euc = (ΓT
ucΓ)−1ΓT

uc [0 I 0 0] , (61)

then

ker(Euc) = im


Iq×q 0 0 0
0 ker(ΓT

uc) 0 0
0 0 Iq×q 0
0 0 0 Iu×u

 . (62)

Considering the following subspace:

im(Bti) = im


Γh 0 Sq 0 0 0
0 0 0 0 ker(ΓT

uc) ∩ Su 0
0 Γh 0 Sq 0 0
0 0 0 0 0 ker(ΓT

uc) ∩ Su

 , (63)
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then it follows that
ker(Euc) ⊇ im(Bti), (64)

just by observing that

im(Sq) = minI(M−1
h JT KJ,M−1

h JT KGT ), (65)

im(Su) = minI(M−1
o GKGT ,M−1

o GKJ), (66)

and finally that Γh is a basis matrix of

im(M−1
o JT ) ∩maxI(M−1

h JT KJ, ker(GKJ)). (67)

From these considerations it follows that (63) is a subspace included in ker(Euc).

Remark 6. It is to observe that subspace im(Su) represents the controllable object
motions from the manipulator movements. In fact, im(Su) is the minimal invariant sub-
space of the object motions which is represented by subspace im(M−1

o GKGT), see (2),
which includes the subspace of the manipulator movements through subspace im(GKJ),
see (2).

To calculate the subspace defined in (60) it will be sufficient to find a subspace im(V)
controlled invariant in (A,Bτ ) and included in im(Bti) with the following structure4:

V =


Γh 0 SqZ 0 M1 0 0 0
0 0 0 Mb M2 0 0 0
0 Γh 0 0 0 SqZ 0 M1

0 0 0 0 0 0 Mb M2

 . (68)

With Z such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq) ∩ ker(ΓT
uc). (69)

Subspace im(V) must be controlled invariant and it is necessary that

Aim(V) ⊆ im(V) + im(Bτ ), (70)

im(V) ⊆ im(Bti). (71)

Eq. (71) of the previous relations is satisfied if:

im(M1) ⊆ im(Sq), (72)

im(M2) ⊆ ker(ΓT
uc), (73)

im(Mb) ⊆ ker(ΓT
uc), (74)

while eq. (70) it is satisfied if:

im(M−1
o GKJSqZ) ⊆ im

[
Mb M2

]
, (75)

4 It will be enough to consider a subspace included in im(Bti). This choice will help to design the
controller. In fact, this choice is constructive and the solvent subspace must be controlled invariant.
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im(−M−1
o GKGT Mb) ⊆ im

[
Mb M2

]
, (76)

im(M−1
o GKJM1 −M−1

o GKGT M2) ⊆ im
[

Mb M2

]
. (77)

Part b)

In this part of the appendix the proof of the necessary conditions of eqs. (75), (76), and
(77) to obtain subspace im(V) as a controlled invariant one. To show that it is useful
to distinguish three possible cases depending on ker(ΓT

uc).

Case 1:

ker(Γuc) is M−1
o GKGT invariant.

This is the easiest case, in fact if we take im(Mb) = ker(ΓT
uc) and M2 = 0, so eqs. (75)

and (76) are satisfied automatically, eq. (77) is satisfied for M1 = 0.

Case 2:

ker(ΓT
uc) 6⊇ M−1

o GKGT ker(ΓT
uc) and ker(ΓT

uc) ∩M−1
o GKGT ker(ΓT

uc) 6= 0.

In this case eq. (76) is verified if the following two relations hold:
im(M2) = ker(ΓT

uc);
Mb : im(M−1

o GKGT Mb) = ker(ΓT
uc) ∩M−1

o GKGT ker(ΓT
uc).

Now eq. (75) is trivially verified, while eq. (77) is verified if:

M−1
o GKGT ker(ΓT

uc) ⊆
[

im(M−1
o GKJSq) ker(ΓT

uc)
]
. (78)

It will be demonstrated that this condition is always verified.

Case 3:

The last case to be analyzed is the following:

ker(ΓT
uc) ∩M−1

o GKGT ker(ΓT
uc) = 0. (79)

Under this condition eq. (76) is satisfied only with Mb = 0; for eq. (75) will be enough
to choose imM2 = ker(ΓT

uc). This implies the same conditions of the second case and
thus to complete the demonstration it must be verified the following relation:

M−1
o GKGT ker(ΓT

uc) ⊆
[

im(M−1
o GKJSq) ker(ΓT

uc)
]
. (80)

The following lemma shows how condition (80) is verified.

Lemma 3. If Sq 6= 0, and considering the following subspace:[
im(M−1

o GKJSq) ker(ΓT
uc)

]
, (81)

then it is to show that a basis matrix of subspace in (81) is a basis for the subspaces in
<d, where d is the dimension of the physical space.
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P r o o f . Sq = minI(M−1
h JT KJ,M−1

h JT KGT ) and the M−1
h is positive definite:

im(M−1
o GKJ) ⊇ im(M−1

o GKJSq) ⊇ im(M−1
o GKJM−1

h JT KGT ) = im(M−1
o GKJ),

(82)
this implies that

im(M−1
o GKJSq) = im(M−1

o GKJ). (83)

Now it is easy to prove that

<d ⊇
[

im(M−1
o GKJ) ker(ΓT

uc)
]
⊇

[
im(M−1

o GKJΓqc) ker(ΓT
uc)

]
, (84)[

im(M−1
o GKGT Γuc) ker(ΓT

uc)
]

= <d, (85)

and
rank(M−1

o GKGT Γuc) = rank(Γuc), (86)

because M−1
o GKGT has null space equal to zero. �

Appendix III: Proof of Theorem 2

In order to proof the theorem shown in (2) the following two controlled invariant sub-
spaces, im(V) e im(Buc), calculated in appendix II, (68) and (58) respectively are con-
sidered. Now we will show that these two subspaces respect the following condition.

Projection Condition

Given the system represented as (A,B,C). F i is a subspace of functional controlla-
bility of the output with respect to the i-derivative, if

F i ⊆ F i ∪ Zi−1 + C, (87)

where Zi−1 is defined in the following way: Zo = B and Zj = B + A(Zj−1 ∪ F i ∪ C).
Further details in [1].

ker(Eti) = im


ker(Qk) 0 0 0 Iq×q

0 Iu×u 0 0 0
0 0 ker(Qβ) 0 −αIq×q

0 0 0 Iu×u 0

 , (88)

where Iq×q and Iu×u are the identity matrices with dimensions q× q and u× u, respec-
tively. In appendix II it is demonstrated that

ker(Q) = ker(Qk) = ker(Qβ) = im(Γr) + im(Γqc), (89)

then it follows that

ker(Eti) = im


Γr 0 Γqc 0 0 0 Iq×q

0 0 0 0 Iu×u 0 0
0 Γr 0 Γqc 0 0 −αIq×q

0 0 0 0 0 Iu×u 0

 , (90)
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while

ker(Euc) = im


Iq×q 0 0 0
0 ker(ΓT

uc) 0 0
0 0 Iq×q 0
0 0 0 Iu×u

 . (91)

It is possible to see that controlled invariant subspace im(V) defined in (68) satisfies the
Projection Condition stated in (87). This means that the subspace im(V) is a functional
controllability subspace with respect to first order derivative. In fact:

im(V) ⊆ ker(Eti) + im(V) ∩ im(Bτ ) = L, (92)

where subspace L is equal to

L = im

2664
0 0 Γr 0 Γqc 0 0 0 Iq×q

0 0 0 0 0 0 Iu×u 0 0
Γh SqZ 0 Γr 0 Γqc 0 0 −αIq×q

0 0 0 0 0 0 0 Iu×u 0

3775 . (93)

It is easy to show that

im


0
0

Iq×q

0

 ⊆ L. (94)

In fact, in Appendix II it was demonstrated that

ker(Q) ∩ im
[

Γh SqZ
]

= 0, (95)

ker(Q) = im(Γr) + im(Γqc), (96)

and likewise
rank

[
Γh SqZ

]
= q − r − c, (97)

and
rank(Q) = rank(Γr) + rank(Γqc). (98)

This yields

rank(Γr) + rank(Γqc) + rank(Γh) + rank(SqZ) = rank(Iq×q). (99)

About subspace Rker(Euc)
with numerical simulations it is possible to show that this

subspace is not a functional controllability subspace with the first and the second order
derivative.
It is easy to show that this is a functional controllability subspace with respect to the
third order derivative. This means that there exists a controlled invariant subspace
included in ker(Euc) for which the Projection Property (87) holds. Subspace im(Buc)
defined in (58) is considered:

Z0 = im(Bτ ), (100)
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now im(Buc) is not included in

ker(Euc) = im

2664
Iq×q 0 0 0
0 ker(ΓT

uc) 0 0
0 0 Iq×q 0
0 0 0 Iu×u

3775 , (101)

it is easy to show that the element M−1
o GBJΓqc in general is not included in ker(ΓT

uc).
This means that subspace im(Buc) is not a functional controllability subspace with
respect to the second order derivative. The next step:

Z1 = im(Bτ ) + A(Z0 ∩ im(Buc) ∩ ker(Euc)), (102)

where

Z0 ∩ im(Buc) ∩ ker(Euc) = im


0
0
Γqc

0

 , (103)

thus

Z1 = im

2664
0 Γqc

0 0
M−1

h 0
0 M−1

o GBJΓqc

3775 , (104)

we can see again that im(Buc) is not included in Z1 ∩ RBuc + ker(Euc). We can verify
that subspace im(Buc) is a functional controllability subspace with respect to the third
order derivative.

Z2 = im(Bτ ) + A (Z1 ∩ im(Buc) ∩ ker(Euc)) , (105)

where

Z1 ∩ im(Buc) ∩ ker(Euc) = im

2664
0 Γqc

0 0
Γqc 0
0 M−1

o GBJΓqc

3775 , (106)

thus

Z2 = im


0 Γqc 0
0 0 M−1

o GKJΓqc

M−1
h 0 0
0 M−1

o GBJΓqc L

 , (107)

and
L = M−1

o GKJΓqc −M−1
o GBGT M−1

o GBJΓqc. (108)

It follows that

im(Buc) ∩ Z2 = im


0 Γqc 0 Γqc

0 0 M−1
o GKJΓqc 0

Γqc 0 0 0
0 M−1

o GBJΓqc L 0

 , (109)

and that
im(Buc) ⊆ im(Buc) ∩ Z2 + ker(Euc). (110)
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To show that it is enough to notice that

im(M−1
o GKJΓqc) + ker(ΓT

uc) = im(Iu×u). (111)

In fact, considering that

M−1
o GKJΓqc = M−1

o GKGT Γuc, (112)

and that
rank(M−1

o GKGT Γuc) = rank(Γuc). (113)

Relation (113) follows from

rank(M−1
o GKGT Γuc) = rank(Γuc), (114)

because of matrix M−1
o GKGT having the null subspace equal to zero. To complete the

demonstration, it might be worthwhile to remember that the following property holds:
im(Γuc) + ker(ΓT

uc) = im(Γuc) + (im(Γuc))⊥ = im(Iu×u). 2

(Received January 14, 2011)
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