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Abstract. The current article considers some infinite groups whose finitely generated
subgroups are either permutable or pronormal. A group G is called a generalized radical, if
G has an ascending series whose factors are locally nilpotent or locally finite. The class of
locally generalized radical groups is quite wide. For instance, it includes all locally finite,
locally soluble, and almost locally soluble groups. The main result of this paper is the
following
Theorem. Let G be a locally generalized radical group whose finitely generated subgroups

are either pronormal or permutable. If G is non-periodic then every subgroup of G is
permutable.
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0. Introduction

One of the oldest and most efficient approaches to the investigation of groups

consists in the studying of groups whose all proper subgroups possess some general

property. At the early age of group theory, this approach was introduced in the clas-

sical works of R.Dedekind [2], G.A.Miller, H.Moreno [17], and O.Yu. Schmidt [22].

The cited papers were crucial for the farther development of group theory. They had

numerous continuations in which the families of the subgroups satisfying the imposed

general properties became proper subfamilies of all subgroups. This remark is valid

for finite groups (see, for example, the book of L.A. Shemetkov [24, Chapter VI]),

for infinite groups (see, for example, the survey [3]). However, we should admit that

the case when all subgroups of a group possess the same is quite rare. More often
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we deal with the cases when subgroups of a group possess different, sometime even

opposite properties. For example, a group simultaneously can have subnormal and

selfnormalizing subgroups, normal and abnormal subgroups, and so on. It is logical

to consider the case when subgroups of a group split into two classes (families) each

of which possess one of two given properties. One of the first articles adopting this

approach was the article of A. Fattahi [7] in which the finite groups whose subgroups

are either normal or abnormal have been described. Recall that a subgroup H of

a group G is abnormal if for every element g of G the subgroup 〈H, Hg〉 contains

this element g (see for example, [24, Definition 17.1]). G. Ebert and S. Bauman [4],

generalizing the results of A. Fattahi, considered finite groups all subgroups of which

are either subnormal or abnormal. Infinite groups with this property have been later

studied by M.De Falco, L.A.Kurdachenko and I.Ya. Subbotin [5]. In this paper [5],

the infinite groups whose all subgroups are subnormal or contranormal have been

also considered. Following J.Rose [21], we call a subgroup H of a group G contra-

normal in G if HG = G. L.A.Kurdachenko and H. Smith [10] described the groups

in which all subgroups are either subnormal or selfnormalizing.

Abnormal subgroups are a partial case of pronormal subgroups. A subgroup H

of a group G is called pronormal in G if for every element g of G the subgroups H

and Hg conjugate in 〈H, Hg〉 (see for example, [24, Definition 17.1]). Observe that

there is no such significant distinction between subnormal and pronormal subgroups

as we have noted for subnormal and abnormal subgroups. A pronormal subgroup

can be subnormal, and in this case, it is normal. In the articles of P. Legovini [15],

[16], the author obtained some results about the finite groups with only subnormal

and pronormal subgroups. In the paper [11], some infinite groups of this kind have

been considered.

Recall that a subgroup H of a group G is called permutable if HK = KH for

each subgroup K of G. The study of permutable subgroups has been continued for

considerable time, and many interesting results have been obtained here (see, for

example, the book [23]). Observe that a permutable subgroup is ascendant [25]. It is

logical to investigate the groups whose subgroups are either permutable or pronormal.

Thus the case where groups whose finitely generated subgroups are either permutable

or pronormal seems to be an interesting subject for research. Note that in the groups

whose finitely generated subgroups are permutable every subgroup is permutable.

The groups whose finitely generated subgroups are pronormal have been studied by

I. Ya. Subbotin and Kuzennyi [14].

In the paper [12], the study of groups whose finitely generated subgroups are either

permutable or pronormal was initiated. More concretely, the authors described the

locally finite groups whose finitely generated subgroups are either permutable or

pronormal. Note that this result cannot be extended to arbitrary periodic groups.
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A.Yu.Olshanskij [18, Theorem 28.2] constructed an example of an infinite p-groupG,

where p is a big enough prime, whose proper subgroups have order p. Clearly,

every subgroup of G is pronormal. The current article is a continuation of [12].

Here we consider some infinite groups whose finitely generated subgroups are either

permutable or pronormal. In the non-periodic case we need additional restrictions.

Indeed, A.Yu.Olshanskij [18, Theorem 28.3] constructed an example of a simple

infinite torsion-free group G whose proper subgroups are cyclic. Every subgroup of

this group is pronormal. Therefore in the current article, we employ the following

quite weak restriction. We recall that a group G is called generalized radical if G

has an ascending series whose factors are locally nilpotent or locally finite. Hence

a generalized radical group G has either an ascendant locally nilpotent subgroup or

an ascendant locally finite subgroup. In the first case, the locally nilpotent radical

Lnr(G) of G is non-identity. In the second case, G includes a non-identity normal

locally finite subgroup. Clearly, in every group G the subgroup Lfr(G) generated by

all normal locally finite subgroups (the locally finite radical) is the largest normal

locally finite subgroup. Thus every generalized radical group has an ascending series

of normal subgroups with locally nilpotent or locally finite factors. Observe also

that the class of locally generalized radical groups is quite wide. For instance, it

includes all locally finite, locally soluble, and almost locally soluble groups. Observe

that a periodic generalized radical group is locally finite, and hence a periodic locally

generalized radical group is locally finite.

Our main result in this paper is the following

Theorem. Let G be a locally generalized radical group whose finitely generated

subgroups are either pronormal or permutable. If G is non-periodic then every

subgroup of G is permutable.

1. Preliminary results

We will need the following preliminary results about the groups whose finitely

generated subgroups are either pronormal or permutable. Note at once, that if G

is a group whose subgroups (finitely generated subgroups) are either pronormal or

permutable, then the same property holds for every subgroup H of G and every

factor-group of G, and therefore for every section of G.

If G is a group, then put Gr(G) = 〈g ∈ G : 〈g〉 is an ascendant subgroup of G〉.

A subgroup Gr(G) is called the Gruenberg radical of group G.

Note that a subgroupGr(G) is locally nilpotent (see, [6]). In particular, the locally

nilpotent radical includesGr(G). If G = Gr(G), then G is called a Gruenberg group.
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Suppose that G is a group whose finitely generated subgroups are either pronormal

or subnormal. If a cyclic subgroup 〈g〉 of G is not pronormal, then 〈g〉 is permutable

in G. It follows that 〈g〉 is ascendant in G [25, Theorem 1]. Then Gr(G) 6= 〈1〉, in

particular, the locally nilpotent radical of G is non-identity.

Lemma 1.1. Let G be a group whose finitely generated subgroups are either

pronormal or subnormal. If L is a locally nilpotent radical of G, then every cyclic

subgroup of G/L is pronormal in G/L.

P r o o f. Suppose that x /∈ L. If we suppose that 〈x〉 is permutable in G, then

〈x〉 is ascendant in G [25, Theorem 1], in particular, x ∈ L. This contradiction shows

that a cyclic subgroup 〈x〉 is pronormal. Then 〈xL〉 is pronormal in G/L. �

The next result, which has been proved in [13], is very useful.

Lemma 1.2. Let G be a locally nilpotent group. If H is a pronormal subgroup of

G, then H is normal in G.

We will need some results about the groups whose cyclic subgroups are pronormal.

Finite groups with this property have been studied by T.A. Peng [19]. Locally soluble

groups whose cyclic subgroups are pronormal have been studied by N. F. Kuzenny

and I. Ya. Subbotin [14]. Now we want to extend the main result of the paper [14].

Proposition 1.3. Let G be a locally generalized radical group whose cyclic sub-

groups are pronormal.

(i) If G is not periodic, then G is abelian.

(ii) If G is periodic, then G includes an abelian normal subgroup L satisfying the

following conditions:

every subgroup of L is G-invariant,

G/L is a Dedekind group,

2 /∈ Π(L),

Π(L) ∩ Π(G/L) = ∅.

P r o o f. Let K be an arbitrary finitely generated subgroup of G. Being a gen-

eralized radical group, K has an ascending series whose factors are locally nilpotent

or locally finite. Let U , V be normal subgroups of K such that U 6 V and V/U is

locally finite. It is not hard to see that every cyclic subgroup of V/U is pronormal in

V/U . Let F/U be a finite subgroup of V/U . Then F/U is metabelian [19]. It follows

that V/U is metabelian. Hence K is the radical. Let L be the locally nilpotent

radical of K. By Lemma 1.2, every cyclic subgroup of L is normal in L. It follows

that every cyclic subgroup of L is subnormal in K. Being pronormal, every cyclic
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subgroup of L is normal in K. Then K/CK(L) is abelian (see, for example, [23,

Theorem 1.5.1]). Since K is the radical, CK(L) 6 L [20, Lemma 4], so that K/L

is abelian. In particular, K is soluble and hence G is locally soluble. Now we can

apply the main result of [14]. �

Corollary 1.4. Let G be a locally generalized radical group whose finitely gener-

ated subgroups are either pronormal or permutable and let B be a locally nilpotent

radical of G.

(i) If G/B is not periodic, then G/B is abelian.

(ii) If G/B is periodic, then G/B includes an abelian normal subgroup L/B such

that every subgroup of L/B isG-invariant,G/L is a Dedekind group, 2 /∈ (L/B),

Π(L/B) ∩Π(G/L) = ∅.

P r o o f. Indeed, by Lemma 1.1, every cyclic subgroup of G/B is pronormal, and

we may apply Proposition 1.3. �

Lemma 1.5. Let G be a group whose finitely generated subgroups are either

pronormal or permutable. If H is a locally nilpotent subgroup of G, then every

subgroup of H is permutable in H . In particular, H is metabelian.

P r o o f. Indeed, consider an arbitrary cyclic subgroup 〈x〉 of H . Suppose that

〈x〉 is not permutable in G. It follows that 〈x〉 is pronormal in G. Consider an

arbitrary finitely generated subgroup F of H containing x. Then F is nilpotent,

and hence 〈x〉 is subnormal in F . Being pronormal and subnormal, 〈x〉 is normal

in F . Since this is true for each finitely generated subgroup F of H , 〈x〉 is normal

in H . Thus in any case, 〈x〉 is permutable in H . Hence every cyclic subgroup of H

is permutable in H . It follows that every subgroup of H is permutable in H . The

last assertion follows from the description of groups whose subgroups are permutable

(see, for example, [23, Lemma 2.4.10, Theorem 2.4.11 and Theorem 2.4.12]). �

Corollary 1.6. Let G be a group whose finitely generated subgroups are either

pronormal or permutable. If H is an ascendant locally nilpotent subgroup of G, then

every subgroup of H is permutable in G. In particular, every subgroup of the locally

nilpotent radical of G is permutable in G.

P r o o f. Indeed, consider an arbitrary cyclic subgroup 〈x〉 of H . Then 〈x〉 is

either permutable or pronormal in G. If 〈x〉 is pronormal in G, then 〈x〉 is pronormal

in H and, by Lemma 1.4, 〈x〉 is normal in H . It follows that 〈x〉 is ascendant in G.

But an ascendant pronormal subgroup is normal, so that 〈x〉 is normal in G. Thus

every cyclic subgroup of H is permutable in G. It follows that every subgroup of H

is permutable in G. �
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Lemma 1.7. Let G be a group and g an element of G. Suppose that A is a

〈g〉-invariant subgroup of G such that A ∩ 〈g〉 = 〈1〉 and a ∈ A. If 〈g〉〈a〉 = 〈a〉〈g〉,

then 〈a〉〈g〉 = 〈a〉.

P r o o f. Put L = 〈a〉〈g〉. Then it is not hard to see that K = 〈g, a〉 = L〈g〉. The

equation 〈g〉〈a〉 = 〈a〉〈g〉 implies

L = L ∩ (〈a〉〈g〉) = 〈a〉(L ∩ 〈g〉) = 〈a〉.

�

2. Proof of the main theorem

Lemma 2.1. Let G be a group whose finitely generated subgroups are either

pronormal or permutable and let g be an element of G such that 〈g〉 is pronormal in

G (in particular, it happens if g does not belong to the locally nilpotent radical of

G). Suppose that G contains a 〈g〉-invariant torsion-free abelian subgroup B. If the

element gCG(B) has finite order, then g ∈ CG(B).

P r o o f. We can suppose that gCG(B) is a p-element for some prime p. Then

gk ∈ CG(B) for some k = pm. Put C = CB(g). Suppose the contrary and let C 6= B.

Observe that the subgroup C is 〈g〉-invariant. Let b be an element of B such that

bm ∈ C for some m ∈ N. Put b1 = bg, then

bm
1 = (bg)m = (bg)m = (bm)g = bm.

Since a subgroup B is torsion-free abelian, it follows that bg = b1 = b, that is b ∈ C.

In other words, the factor-group B/C is torsion-free. Let u ∈ B \ C, U = 〈u〉〈g〉.

Clearly U is a finitely generated subgroup and by the above U/(U ∩ C) is torsion-

free. Being finitely generated, U/(U ∩ C) is free abelian. In particular, U ∩ C

has a complement in U . Then U includes a 〈g〉-invariant subgroup V such that

V ∩ (U ∩ C) = 〈1〉, and V (U ∩ C) has finite index in U [9, Corollary 5.10]. In

particular, V is non-identity. Since g ∈ D, a subgroup 〈g〉 is pronormal. Thus 〈g〉 is

pronormal in V 〈g〉. Put V1 = V p, V2 = V p
1 , Vn+1 = V p

n , n ∈ N. Then V/Vn is a finite

p-group and (gVn)k ∈ ζ(〈V/Vn, gVn〉). It follows that 〈V/Vn, gVn〉/ζ(〈V/Vn, gVn〉) is

a p-group. Therefore 〈V/Vn, gVn〉 is nilpotent. Being pronormal in 〈V/Vn, gVn〉,

〈gVn〉 is normal in 〈V/Vn, gVn〉. It follows that [V, g] 6 〈g〉Vn. Since this is valid

for all n ∈ N, [V, g] 6
⋂

n∈N

〈g〉Vn. The equality 〈1〉 = V ∩ (U ∩ C) implies that

V ∩〈g〉 = 〈1〉. Since
⋂

n∈N

Vn = 〈1〉, it follows that
⋂

n∈N

〈g〉Vn = 〈g〉. Hence [V, g] 6 〈g〉.
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On the other hand, V is 〈g〉-invariant, so that [V, g] 6 V . Thus [V, g] 6 V ∩〈g〉 = 〈1〉.

In turn, it follows that V 6 C, and we obtain a contradiction. This contradiction

proves the equality A = CA(g), which is required. �

If G is a group, then by Tor(G) we denote the maximal normal periodic subgroup

of G. We recall that if a group G is locally nilpotent, then Tor(G) contains all

elements of finite order, so that G/Tor(G) is torsion-free in this case.

Corollary 2.2. Let G be a group whose finitely generated subgroups are either

pronormal or permutable, and let D be the locally nilpotent radical of G. Suppose

that D 6= Tor(D) and G/D is locally finite. Then G/Tor(D) is abelian.

P r o o f. Put T = Tor(D). Then D/T is abelian (see, for example, [23, Lem-

ma 2.4.10 and Theorem 2.4.11]). Suppose that ζ(G/T ) does not contain D/T . Then

there exist elements x ∈ D \ T and g ∈ G such that gT /∈ CG/T (xT ). Since D/T

is abelian, D/T 6 CG/T (xT ), which shows that g /∈ D. Put X/T = 〈xT 〉〈gT 〉.

Then X/T is torsion-free and 〈g〉-invariant. Since G/D is locally finite, Lemma 2.1

shows that gT ∈ CG/T (X/T ), in particular, gT ∈ CG/T (xT ). This contradiction

proves that D/T 6 ζ(G/T ). By Corollary 1.4, G/D contains a normal abelian

subgroup L/D such that G/L is a Dedekind group. The inclusion D/T 6 ζ(G/T )

implies that L/T is nilpotent. Let yT be an arbitrary element of L/T having infinite

order. If yT ∈ D/T , then by the above, yT ∈ ζ(G/T ). Assume that y ∈ L \ D.

Then 〈y〉 is pronormal in G. Hence 〈yT 〉 is pronormal in G/T . The fact that

L/T is nilpotent implies that 〈yT 〉 is subnormal in L/T , and hence in G/T . Being

simultaneously subnormal and pronormal, 〈yT 〉 is normal in G/T . Using the above

argument, we again obtain that yT ∈ ζ(G/T ). Now we observe that every nilpotent

non-periodic group is generated by its elements having infinite order. It follows that

L/T 6 ζ(G/T ). Since G/L is a Dedekind group, G/T is nilpotent. Now we can

repeat the above argument and obtain that G/T is abelian �

Corollary 2.3. Let G be a group whose finitely generated subgroups are either

pronormal or permutable and let D be the locally nilpotent radical of G. Suppose

that D 6= Tor(D) and G/D is abelian. Then G/Tor(D) is abelian.

P r o o f. Put T = Tor(D). Then D/T is abelian (see, for example, [23, Lem-

ma 2.4.10 and Theorem 2.4.11]). Let R/D = Tor(G/D). If R = G, then the result

follows from Corollary 2.2. Therefore suppose that G 6= R. Lemma 2.1 shows that

D/T 6 ζ(R/T ). By Corollary 1.6, every subgroup of D/T is permutable in G/T .

If g ∈ G \ R, then gR has infinite order, in particular, gD has infinite order. It

follows that 〈gT 〉 ∩ D/T = 〈1〉. If d ∈ D \ T , then by Lemma 1.7, subgroup 〈dT 〉 is

〈gT 〉-invariant. It follows that (xT )2 ∈ CG/T (D/T ) for each element x ∈ G. Then
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(G/T )/CG/T (D/T ) is periodic and Lemma 2.1 implies the inclusion D/T 6 ζ(G/T ).

By repeating the argument of the proof of Corollary 2.2 we can obtain that G/T is

abelian. �

Corollary 2.4. Let G be a locally generalized radical group whose finitely gener-

ated subgroups are either pronormal or permutable and let D is the locally nilpotent

radical of G. If D 6= Tor(D), then G/Tor(D) is abelian.

P r o o f. Put T = Tor(D). By Corollary 1.6, G/D is either locally finite or

abelian. If G/D be locally finite, then the result follows from Corollary 2.2. If G/D

is abelian, then the result follows from Corollary 2.3. �

Lemma 2.5. Let G be a group and suppose that G includes a normal periodic

abelian subgroup T such that G/T is abelian and non-periodic. If every finitely

generated subgroup of G is either pronormal or permutable, then every subgroup of

T is G-invariant.

P r o o f. By Corollary 1.4, every subgroup of T is permutable in G. Let x be an

arbitrary element of T and g an element having infinite order. Then 〈g〉 ∩ T = 〈1〉,

and Lemma 1.7 implies that 〈x〉 is a 〈g〉-invariant subgroup. Since G/T is non-

periodic, it is generated by all its elements having infinite order. It follows that 〈x〉

is a G-invariant subgroup. Since every cyclic subgroup of T is G-invariant, every

subgroup of T is G-invariant. �

Lemma 2.6. Let G be a group and suppose that G includes a normal abelian

p-subgroup T , and p is a prime such that G/T is abelian and non-periodic. Suppose

that every finitely generated subgroup of G is either pronormal or permutable. If

L is the locally nilpotent radical of G, then G/L is a finite cyclic group of order

dividing p − 1.

P r o o f. By Lemma 2.5, every subgroup of T is G-invariant.

Put L = Ω1(T ) = {a ∈ T ; ap = 1}. Let C = CG(L). Then G/C is a cyclic group

of order p− 1 (see, for example, [23, Theorem 1.5.6]). We observe that the mapping

z 7→ zp, z ∈ T , is a G-endomorphism of T , and therefore the factor Ω2(T )/Ω1(T )

is C-central. Similarly, the factor Ωn+1(T )/Ωn(T ) is also C-central for each n ∈ N.

Since G/T is abelian, it follows that C is hypercentral. Let K be the locally nilpotent

radical of G. Then C 6 K, and hence G/K is finite of order dividing p − 1. �

Corollary 2.7. Let G be a group and suppose that G includes a normal abelian

2-subgroup T such that G/T is abelian and non-periodic. If every finitely generated

subgroup of G is either pronormal or permutable, then G is locally nilpotent.
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Lemma 2.8. Let G be a group and L a locally nilpotent radical of G. Suppose

that L includes a G-invariant abelian p-subgroup T , where p is a prime satisfying

the following conditions:

G/T is abelian and non-periodic;

every subgroup of Tor(L) is G -invariant;

r0(G/T ) > 2.

If every finitely generated subgroup of G is either pronormal or permutable, then G

is abelian.

P r o o f. By Lemma 2.6, G/L is a finite cyclic group of order dividing p − 1.

By Corollary 1.6, every subgroup of L is permutable in G. Then the condition

r0(G/T ) > 2 implies that L is abelian (see, for example, [23, Lemma 2.4.10]).

Let a be an arbitrary element of L. If a has finite order, then by our conditions the

subgroup 〈a〉 is G-invariant. Suppose now that a has infinite order. Let g be such

an element that G/L = 〈gL〉. We remark that if g has finite order, then because the

order of gL divides p−1, we can assume that p does not divide the order of g. Hence

A = 〈a〉G = 〈a〉〈g〉. Since G/T is abelian, 〈a〉〈g〉 = 〈a〉E for some finite subgroup E

of T . Since T is a p-subgroup, E is a finite p-subgroup. It follows that there is a

positive integer k such that B = As 6 〈a〉 where s = pk. Clearly the subgroup B is

G-invariant. The factor A/B is a finite p-group. By Corollary 1.6, every subgroup

of A/B is permutable in G/B. The choice of g implies that 〈gB〉 ∩ A/B = 〈1〉.

Lemma 1.7 shows that the subgroup 〈aB〉 is 〈gB〉-invariant. The inclusion B 6 〈a〉

proves that the subgroup 〈a〉 is 〈g〉-invariant. We noted above that L is abelian, so

that 〈a〉 is G-invariant. Consequently, every subgroup of L is G-invariant.

Since L is not periodic, G/CG(L) is a group of order 2 (see, for example, [23,

Theorem 1.5.7]). A group G is soluble, therefore CG(L) 6 L [20, Lemma 4], so that

G/L has order at most 2. Suppose that G 6= L. Then xg = x−1 for each element

x ∈ L (see, for example, [23, Theorem 1.5.7]). Being non-periodic, L contains an

element d of infinite order. Then d /∈ T and the equation dg = d−1 implies that

(dT )gT = (dT )−1. On the other hand, a factor-group G/T is abelian, which implies

(dT )gT = dT . This contradiction shows that G = L. �

Proposition 2.9. Let G be a locally generalized radical group whose finitely

generated subgroups are either pronormal or permutable and let D be the locally

nilpotent radical of G. If D 6= Tor(D) and r0(G) > 2, then G is abelian.

P r o o f. Put T = Tor(D). Then by Corollary 2.4, G/T is abelian, in partic-

ular, if T = 〈1〉, then G is abelian. Therefore suppose that T is non-identity. By

Lemma 2.5, every subgroup of T is G-invariant.
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We have T = Dr
p∈Π(T )

Tp where Tp is a Sylow p-subgroup of T . Put Qp =

Dr
q∈Π(T ),q 6=p

Tq. We remark that Tor(D/Qp) = T/Qp
∼= TpQp/Op

∼=G Tp. It follows

that every subgroup of T/Qp is G-invariant.

Let

Lp/Qp = Ω1(T/Qp) = {yQp ∈ T/Qp : (yQp)
p = 1}, p ∈ Π(T ).

By Corollary 2.7, the factor-group G/Q2 is locally nilpotent. Corollary 1.6 shows

that every subgroup of G/Q2 is permutable. The condition r0(G/Q2) > 2 implies

that G/Q2 is abelian (see, for example, [23, Lemma 2.4.10]).

Let now p 6= 2. Every finitely generated subgroup of G/Qp is either pronormal

or permutable. Let Kp/Qp be the locally nilpotent radical of G/Qp. Let aQp be an

arbitrary element of Kp/Qp having finite order. If aQp ∈ T/Qp, then by the above

〈aQp〉 is G-invariant. If aQp /∈ T/Qp, then a /∈ D. It follows that the subgroup 〈a〉

is not permutable, so that 〈a〉 is pronormal in G. Then 〈aQp〉 is pronormal in G/Qp.

On the other hand, Corollary 1.6 shows that every subgroup ofKp/Qp is permutable

in G/Qp. Being permutable, 〈aQp〉 is ascendant in G/Qp. Now we recall that every

ascendant pronormal subgroup is normal. Thus again 〈aQp〉 is G-invariant. Now we

can apply Lemma 2.8 to the factor-group G/Qp. By this Lemma, G/Qp is abelian,

so that [G, G] 6 Qp for each prime p. Clearly, 〈1〉 =
⋂

p∈Π(T )

Gp, which implies that

[G, G] = 〈1〉, i.e. G is abelian. �

Lemma 2.10. Let G be a finite group whose subgroups are either pronormal or

permutable. Then permutability is a transitive relation in G.

P r o o f. Let K be a permutable subgroup of L and L be a permutable subgroup

of G. Suppose that K is not permutable in G. We remark that every permutable

subgroup of finite group is subnormal (see, for example, [23, Theorem 5.1.1]). Since

K is not permutable, it is pronormal in G. Being pronormal and subnormal, K is

normal. This contradiction shows that it permutable in G. �

Proposition 2.11. Let G be a locally generalized radical group whose finitely

generated subgroups are either pronormal or permutable and let D be the locally

nilpotent radical of G. If D 6= Tor(D) and r0(G) = 1, then every subgroup of G is

permutable.

P r o o f. Put T = Tor(D). Since D 6= Tor(D) and r0(G) = 1, we have

r0(D) = 1. By Corollary 1.6, every subgroup of D is permutable in G. Then either

D is abelian, or D/T is locally cyclic, T is abelian and every subgroup of T is D-

invariant (see, for example, [23, Theorem 2.4.11]). By Corollary 2.4, the factor-group
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G/T is abelian, in particular, if T = 〈1〉, then G is abelian. Therefore suppose that

T is non-identity. By Lemma 2.5, every subgroup of T is G-invariant.

We have T = Dr
p∈Π(T )

Tp where Tp is a Sylow p-subgroup of T . Put Qp =

Dr
q∈Π(T ),q 6=p

Tq. We remark that Tor(D/Qp) = T/Qp
∼= TpQp/Op

∼=G Tp. It follows

that every subgroup of T/Qp is G-invariant.

Let
Lp/Qp = Ω1(T/Qp) = {yQp ∈ T/Qp : (yQp)

p = 1}

= Ω1(T/Qp) = Ω1(Tp)Qp/Qp, p ∈ Π(T ).

By Corollary 2.7, the factor-groupG/Q2 is locally nilpotent. Corollary 1.6 shows that

every subgroup of G/Q2 is permutable. Then either G/Q2 is abelian or hypercentral

(see, for example, [23, Lemma 2.4.10]). In any case, the upper hypercenter of G/Q2

contains T/Q2. The isomorphism T/Q2
∼= T2Q2/O2

∼=G T2 implies that the upper

hypercenter of G includes T2.

Let now p 6= 2. Every finitely generated subgroup of G/Qp is either pronormal

or permutable. Suppose that the center of G/Qp does not include Lp/Qp. By the

above every subgroup of Lp/Qp is G-invariant. Let C/Qp = CG/Qp
(Lp/Qp), then

G/C is a cyclic group of order p − 1 (see, for example, [23, Theorem 1.5.6]). If

g is the element such that G/C = 〈gC〉, then by our assumption there exists an

element aQp ∈ Lp/Qp such that 〈gQp, aQp〉 is not nilpotent. Let also bQp be an el-

ement of C/Qp having infinite order. Since (G/Qp)/(T/Qp) is abelian, 〈bQp, T/Qp〉

is normal. It follows that Up/Qp = 〈bQp, aQp〉〈gQp〉 = (P/Qp)〈bQp〉 where P/Qp is

a finite p-subgroup. Moreover, this subgroup is nilpotent. So there exists a num-

ber k = ps such that Vp/Qp = (Up/Qp)k is torsion-free and has finite index in

Up/Qp; moreover, (Up/Qp)/(Vp/Qp) is a finite p-group. Without loss of generality

we may suppose that (Vp/Qp)(P/Qp) 6= Up/Qp. Denote Kp/Qp = 〈gQp, aQp, bQp〉

and consider the factor-group (Kp/Qp)/(Vp/Qp). Every finitely generated sub-

group of (Kp/Qp)/(Vp/Qp) is either pronormal or permutable. Since r0(G) = 1,

(Kp/Qp)/(Vp/Qp) is finite, every subgroup of (Kp/Qp)/(Vp/Qp) ∼= (KpVp)/Vp is ei-

ther pronormal or permutable. By Lemma 2.10, (KpVp)/Vp is a PT -group. As we

remarked above, G/T is abelian, therefore PVp/Vp includes the nilpotent residual

R/Vp of (KpVp)/Vp. We remark that a nilpotent residual of a finite soluble PT -

group is its Hall subgroup [26]. On the other hand, the choice of V p/Qp implies that

PVp/Vp is not a maximal p-subgroup of (KpVp)/Vp. This contradiction shows that

the center of G/Qp includes Lp/Qp. In turn, it follows that the upper hypercenter of

G/Qp includes T/Qp. The isomorphism T/Qp
∼= TpQp/Op

∼=G Tp implies that the

upper hypercenter of G includes Tp. Since this is true for each p ∈ Π(T ), the upper

hypercenter of G includes T . As remarked above, G/T is abelian, which implies that

G is hypercentral. By Corollary 1.6, the lemma is proved. �
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Now we can prove the main result of this paper.

Theorem 2.12. Let G be a locally generalized radical group whose finitely gener-

ated subgroups are either pronormal or permutable. If G is non-periodic then every

subgroup of G is permutable.

P r o o f. Let D be a locally nilpotent radical of G, and put T = Tor(D).

Suppose first that D 6= Tor(D). If r0(G) > 2, then G is abelian by Proposition 2.9.

If r0(G) = 1, then our assertion follows from Proposition 2.11. Suppose now that D

is periodic. Lemma 1.5 and Corollary 1.4 imply that G is soluble. Since G is not

periodic, G/D is not periodic. Corollary 1.4 shows that G/D is abelian.

We have D = Dr
p∈Π(T )

Dp where Dp is a Sylow p-subgroup of D. Suppose that

D is abelian. Let p ∈ Π(D) and put Qp = Dr
p∈Π(T ),q 6=p

Dq. We remark that

D/Qp
∼= DpQp/Op

∼=G Dp. Consider further the factor-group G/Qp. Then D/Qp is

an abelian p-group. Every finitely generated subgroup of G/Qp is either pronormal

or permutable. Let L/Qp be the locally nilpotent radical of G/Qp. Then Lemma 2.6

shows that G/L is a finite cyclic group of order dividing p−1. Let aQp be an arbitrary

element of L/Qp. Lemma 2.5 shows that every subgroup of D/Qp is G-invariant, so

if a ∈ D, then 〈aQp〉 is G-invariant. If a /∈ D, then the subgroup 〈a〉 is pronormal in

G. It follows that 〈aQp〉 is pronormal in G/Qp and hence in L/Qp. Using Lemma 1.2,

we obtain that 〈aQp〉 is normal in L/Qp, in particular, 〈aQp〉 is subnormal in G/Qp.

Being simultaneously subnormal and pronormal, 〈aQp〉 is normal in G/Qp. Conse-

quently, every cyclic subgroup (and hence every subgroup) of L/Qp is G-invariant.

Since G/Qp is not periodic and G/L is finite, L/Qp is not periodic. The group

L/Qp is generated by its elements of infinite order. Using the argument from the

proof of Lemma 2.1, we can obtain that these elements belong to the center of

G/Qp. On the other hand, since G/Qp is soluble, L/Qp includes its centralizer [20,

Lemma 4], so thatG = L. In other words,G/Qp is locally nilpotent and non-periodic.

As we have seen above, every subgroup of G/Qp is normal. Being a non-periodic

Dedekind group, G/Qp is abelian [1]. Since this is valid for each prime p, the equality

〈1〉 =
⋂

p∈Π(T )

Gp implies that G is abelian.

Suppose that D is not abelian. Then there is a prime p such that Dp is non-

abelian. By Corollary 1.6, every subgroup of D is permutable in G. It follows that

Dp is nilpotent and bounded. Put Cp = [Dp, Dp], Rp = QpCp. Then D/Rp is an

abelian p-group. Repeating word by word the above argument, we obtain that G/Rp

is abelian. We have

[D/Qp, D/Qp] = [DpQp/Qp, DpQp/Qp]

= [Dp, Dp]Qp/Qp] = CpQp/Qp = Rp/Qp.
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Thus (G/Qp)/[D/Qp, D/Qp] is abelian, and the fact that D/Qp is nilpotent implies

that G/Qp is likewise nilpotent [8, Theorem 7]. By Corollary 1.6, every subgroup

of G/Qp is permutable. Since G/Qp is not periodic, Tor(G/Qp) is abelian (see, for

example, [23, Lemma 2.4.10 and Theorem 2.4.11]), in particular, Dp
∼= DpQp/Op =

D/Qp is abelian. This final contradiction completes the proof. �
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