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Abstract. We characterize the existence of the L
1 solutions of the truncated moments

problem in several real variables on unbounded supports by the existence of the maximum
of certain concave Lagrangian functions. A natural regularity assumption on the support
is required.
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1. Introduction

The present paper is concerned with the truncated problem of moments in several

real variables, in the following context. Let n ∈ N and fix a closed subset T 6= ∅

of Rn, a finite subset I ⊂ (Z+)n with 0 ∈ I and a set g = (gi)i∈I of real numbers

with g0 = 1, where Z+ = N ∪ {0}. Typically a problem of moments [1] requires to

establish whether there exist Borel measures ν > 0 on R
n, supported on T , such

that
∫

T |ti| dν(t) < ∞ and
∫

T ti dν(t) = gi for all i ∈ I. As usual ti = ti11 . . . tin
n

where t = (t1, . . . , tn) is the variable in R
n and i = (i1, . . . , in) is a multiindex. In

this case we call ν a representing measure of g, and gi the moments of ν. We are

interested in those measures ν = f dt that are absolutely continuous with respect

to the n-dimensional Lebesgue measure dt = dt1 . . . dtn, in which case we call f

a representing density of g. Namely, the (class of equivalence of the) Lebesgue

integrable function f is > 0 almost everywhere (a.e.) on T , has finite moments of

orders i ∈ I and

(1)

∫

T

tif(t) dt = gi (i ∈ I).
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Our main result is Theorem 3, the statement of which relies on the following rather

known idea. Given partial information in the integral form
∫

T ti f ̺ dt = gi about

representing densities f on a space (T, ̺ dt) endowed with a reference density ̺ does

not determine them uniquely. An approach favorite to physicists and statisticians is,

when ̺ is a probability density, to choose that particular density f∗ minimizing the

entropy functional h(f) =
∫

T
(f ln f)̺ dt amongst all solutions of the moments con-

straints. This uniquely selects the unbiased probability distribution f∗ (that proves

to have the form f∗(t) = e
∑

i∈I λ∗
i ti

) on the knowledge of the prescribed average val-

ues gi of ti, where t is considered as a T -valued random variable with repartition

̺ [6], [9], [18], [20]. Under suitable hypotheses, f∗ turns to exist whenever problem

(1) is feasible, even for more general reference measures. A main tool to this aim is

Fenchel duality [8], [24], [26], [27], that deals with minimizing such convex functionals

h : X → R∪{∞} on convex subsets of locally convex spacesX , in connection with the

dual problem of maximizing −h∗, where h∗ : X∗ → R∪{∞} is the convex conjugate

of h, called also its Legendre-Fenchel transform [26], [27], defined on the dualX∗ ofX

by h∗(y) = sup{〈x, y〉 − h(x) : h(x) < ∞}. Typically inf h = max(−h∗) and, briefly

speaking, minimizing h(f) =
∫

T f ln f̺ dt as above (that is, maximizing the corre-

sponding −h∗) is to find λ∗ = (λ∗
i )i∈I maximizing L(λ) =

∑

i∈I

giλi −
∫

T
e
∑

i∈I
λit

i

̺ dt.

Many results exist in this direction [3], [5]–[9], [16], [17], [21], [22], [23]. Additional

hypotheses are always necessary when the conclusion inf h = min h is sought for,

since there are data g for which the primal attainment (that is, the existence of f∗
such that inf h = h(f∗)) fails [16], [17] although problem (1) has solutions.

By Theorem 3 we prove that the feasibility of problem (1) is equivalent to the

boundedness from above sup L < ∞ with attainment sup L = maxL for the concave

function L (the Lagrangian). This holds no matter whether inf h is attained or not

(the general theory still provides us with inf h = max L).

Initiated by Stieltjes, Hausdorff, Hamburger and Riesz, the area of the truncated

problems of moments knows various other approaches, based for instance on operator

methods, or sums-of-squares representations of positive polynomials [10]–[14], [19],

[25]. Although important, these topics remain beyond the aim of this work.

The author got the idea to consider L instead of h from the works [5] where a

similar characterization exists, and [16], [17], drawn to his attention by professor

Mihai Putinar. Our statement and proof are rather general, independent of these

cited works.
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2. Main results

We recall that a linear Riesz functional ϕγ [12] associated with a set γ = (γi)i∈J

of real numbers γi for J ⊂ Z
n
+ is defined on the polynomials p from the linear span

of X i1
1 . . . X in

n where i = (i1, . . . , in) ∈ J by ϕγX i = γi. One calls ϕγ T -positive [12]

if ϕγp > 0 whenever p(t) > 0 for all t ∈ T . If γ has representing measures ν > 0 on

T , ϕγ is T -positive since ϕγp =
∫

T p dν for any such polynomial p. In the full case

J = Z
n
+ the T -positivity condition is sufficient for the existence of the representing

measures, by the Riesz-Haviland theorem [15]. An analogue of this theorem [12] for

the truncated case I = {i : |i| 6 2k} characterizes the existence of the representing

measures by the existence of T -positive extensions of ϕγ to the space of polynomials

of degree6 2k+2. For later use, we state below a version of these results (Theorem 1)

and a Fenchel theoretic result of dual attainment (Theorem 2).

Definitions. We call T regular [4] if for any t ∈ T and ε > 0 the Lebesgue

measure of the set {x ∈ T : ‖x − t‖ < ε} is positive. As usual ‖t‖ =
( n

∑

ι=1
t2ι

)1/2

.

For any i ∈ I set σi = {j ∈ Z
n
+ : jk = either 0 or ik, 1 6 k 6 n}. We call I regular

[4] if σi ⊂ I for all i ∈ I. Define Γ, G ⊂ R
N (N = card I) by Γ = {γ = (γi)i∈I : ∃

measures ν > 0 on T with
∫

T ti dν(t) = γi, i ∈ I} and G = {γ = (γi)i∈I 6= 0: ∃ f ∈

L1
+(T, dt) such that

∫

T
tif(t) dt = γi, i ∈ I}. The notation Lp(T, µ), Lp(µ) for a

measure µ on T , 1 6 p 6 ∞ has the usual meaning. In particular, L1
+(T, µ) is the

set of all f ∈ L1(T, µ), f > 0 µ-a.e. For γ = (γi)i∈I , ϕγ is the linear functional

defined on the span PI ⊂ R[X1, . . . , Xn] of all X i with i ∈ I by ϕγX i = γi. Set

eι = (0, . . . ,
ι
1, . . . , 0) for 1 6 ι 6 n.

By [4, Theorem 6] the convex cone G is the dense interior of the cone Γ.

Theorem 1 [4, Theorem 7]. Let T ⊂ R
n be a closed regular set, I ⊂ Z

n
+ a finite

regular set and g = (gi)i∈I a set of numbers with g0 = 1. Then g ∈ G ⇔ ϕg p > 0

for every p ∈ PI \ {0} such that p(t) > 0 for all t ∈ T .

Theorem 2 [8, Corollary 2.6]. Let T be a space with finite measure µ > 0,

1 6 p 6 ∞ and ai ∈ Lq(µ), gi ∈ R for i ∈ I = finite where 1/p + 1/q = 1. Let

ϕ : R → (−∞,∞] be proper, convex, lower semicontinuous with ϕ|(0,∞) < ∞. If

there are x ∈ Lp(µ), x > 0 a.e. such that ϕ ◦ x ∈ L1(µ) and
∫

T aixdµ = gi, then the

quantities

P = inf

{
∫

T

ϕ(x(t)) dµ(t) : x ∈ Lp(µ), x > 0 a.e., ϕ ◦ x ∈ L1(µ),

∫

T

aixdµ = gi ∀i

}

,
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D = max

{

∑

i∈I

giλi −

∫

T

ϕ∗

(

∑

i∈I

λiai(t)

)

dµ(t) : λi ∈ R, ϕ∗ ◦
∑

i∈I

λiai ∈ L1(µ)

}

are equal, −∞ 6 P = D < ∞ and the maximum D is attained.

Theorem 3 is a reminiscent to [3, Theorem 4], where
∫

T
f ln f̺ dt is minimized

subject to
∫

T tif̺ dt = gi under stronger hypotheses on ̺, like ̺(t) ∼ e−ε‖t‖p

with

p > 2k (to fit the notation in [3], let a = 1 and our f := ̺ f, whence L̺,a,g(λ) =

L(λ − λ0) + 1, where λ0 = (λ0i)i∈I with λ0i = δi,0 and δi,j is Kronecker’s symbol,

δi,j = 1 if i = j and 0 if i 6= j). Although we do not obtain here the existence of a

maximum entropy solution f∗, our present hypotheses on ̺ are weaker and condition

g ∈ G is characterized in Lagrangian terms.

Theorem 3. Let T ⊂ R
n be a closed regular set. Let I ⊂ Z

n
+ be a finite regular

set such that max
i∈I

|i| = 2k where k ∈ N. Assume 2keι ∈ I (1 6 ι 6 n). Let

g = (gi)i∈I be a set of numbers with g0 = 1. Fix ̺ ∈ L1(T, dt), ̺ > 0 a.e. The

following statements (a) and (b) are equivalent:

(a) There exist functions f ∈ L1
+(T, dt) such that

∫

T
|ti|f(t) dt < ∞ and

∫

T

tif(t) dt = gi (i ∈ I).

(b) The functional L : R
N → R ∪ {−∞} defined by

L(λ) =
∑

i∈I

giλi −

∫

T

e
∑

i∈I
λit

i

̺(t) dt, λ = (λi)i∈I

is bounded from above and sup L is attained at a (unique) point λ∗.

P r o o f. Since L(0) > −∞, L 6≡ −∞. Since g0 = 1, each of the conditions (a)

and (b) implies that T has positive Lebesgue measure, finite or not. Hence by means

of Jensen’s inequality one can show that L is strictly concave. Then whenever sup L

is finite and attained at some point λ∗, this λ∗ is unique.

(a) ⇒ (b) The regularity condition on T is not necessary for this implication. Let

µ = ˜̺dt be the measure on T with density ˜̺ := ̺e−
∑

n
ι=1

t2k
ι . Then 0 < µ(T ) < ∞.

Since (1) has a solution f , hence f̃ := f/ ˜̺ satisfies

(2)

∫

T

tif̃(t) dµ(t) = gi (i ∈ I).

By [8, Theorem 2.9], see also [4, Lemma 4] for β = 0, problem (2) has also a solution

f0 ∈ L∞(T ) with f0 > 0 a.e. The conclusion sup L < ∞ may hold either directly
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by Theorem 2, or by an elementary argument as shown below. Let x = f0(t) a.e.

and y = ‖f0‖∞ + 1 in the inequalities −e−1 6 x ln x 6 y ln y for 0 6 x 6 y, y > 1,

then integrate with respect to µ. Hence f0 ln f0 ∈ L1(T, µ). Fix λ = (λi)i∈I . Let

x = f0(t) and y =
∑

i∈I

λit
i in the simple version x lnx − x > xy − ey of Fenchel’s

inequality [27], then integrate. It follows, using (2) for f0, that

∫

T

f0 ln f0 dµ −

∫

T

f0 dµ >
∑

i∈I

giλi −

∫

T

e
∑

i∈I λit
i

dµ(t) = L(λ − λ0) +
∑

i∈I

giλ0i

where λ0 = (λ0i)i∈I with λ0i =
n
∑

ι=1
δi, 2keι

and δi,j is Kronecker’s symbol. Since λ

was arbitrary, we get sup
λ

L(λ) < ∞. Now for the attainment sup L = maxL, we

need Theorem 2 as follows. Use |tj | 6

( n
∑

ι=1
t2k
ι

)1/2k

,

|ti| = |t1|
i1 . . . |tn|

in 6

( n
∑

ι=1

t2k
ι + 1

)|i|/2k

6

n
∑

ι=1

t2k
ι + 1 (|i| 6 2k)

and ν + 1 6 eν for ν =
n
∑

ι=1

t2k
ι to get

∫

T
|ti| dµ(t) 6

∫

T
̺ dt < ∞ for i ∈ I. Then

let T = T , the measure µ = ˜̺dt, p = ∞, the moment functions ai(t) = ti and

the integrand ϕ be defined by ϕ(x) = x lnx for x > 0, ϕ(0) = 0 and ϕ(x) = +∞

for x < 0. The feasibility hypotheses is fulfilled by x = f0. The convex conjugate

ϕ∗(y) = sup
x>0

(xy − x lnx) of ϕ is given by ϕ∗(y) = ey−1 for y ∈ R. We get the

attainment D = supL for L(λ) = L(λ − λ′
0) +

∑

i∈I

giλ
′
0i where λ′

0 = (λ′
0i)i∈I with

λ′
0i = λ0i + δi,0. Thus we obtain a λ∗ such that sup L = L(λ∗).

(b) ⇒ (a) Let λ∗ ∈ R
N be such that sup L = L(λ∗). We prove that ϕg satisfies

the positivity condition in Theorem 1. Let p =
∑

i∈I

λiX
i, p 6≡ 0 be arbitrary such

that p(t) 6 0 for t ∈ T . We show that ϕgp < 0. The vector λ := (λi)i∈I is 6= 0.

For any r > 0, set er(t) = er
∑

i∈I
λit

i

. Thus er(t) 6 1 for t ∈ T . Then the integral

term
∫

T
er̺ dt of L(rλ) = r

∑

i∈I

giλi −
∫

T
er̺ dt remains bounded as r → ∞. Hence

ϕgp =
∑

i∈I

giλi 6 0, for otherwise the linear term rϕgp of L(rλ) would give sup L = ∞

which is false. Assume that ϕgp = 0. Then the restriction of the function L to the

half-line l := {rλ : r > 0} is given by the function r 7→ −
∫

T
er̺ dt. This function

is finite, bounded and strictly monotonically increasing on (0,∞). Use to this aim

that 0 < er 6 1,
∫

T
̺ dt < ∞, er = erp with p 6 0 and L|l is strictly concave. Then
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a finite limit lim
r→∞

L(rλ) = sup
l

L exists, in particular sup
r>1

|L(rλ)| < ∞. For a > 0,

∞ > L(λ∗ + aλ) =
∑

i∈I

giλ
∗
i + a

∑

i∈I

giλi −

∫

T

e
∑

i∈I
λ∗

i ti

ea
∑

i∈I
λit

i

̺(t) dt

>
∑

i∈I

giλ
∗
i + r · 0 −

∫

T

e
∑

i∈I λ∗
i ti

̺(t) dt = L(λ∗) = maxL > L(0) > −∞

because
∑

i∈I

giλi = 0 and
∑

i∈I

λit
i 6 0 for all t ∈ T . Hence L is finite at every point

of the half-line {λ∗ + aλ}a>0. Note that λ∗ cannot be colinear with λ due to the

behaviour of L on l: namely, λ∗ 6∈ l because L reaches its global maximum only in

λ∗ while L|l increases strictly along l as r → ∞. Also λ∗ 6∈ {0} ∪ (−l), for otherwise

the concavity of the restriction L|Rλ : Rλ → {−∞} ∪ R of L to the line Rλ would

imply, for some r > 0 with λ∗ = −rλ, that L(rλ) > L(0) = L(1
2 (λ∗ + rλ)) >

1
2 (L(λ∗) + L(rλ)), whence L(λ∗) 6 L(rλ) < sup L|l 6 sup L = L(λ∗), which is

impossible. Thus λ∗ 6∈ Rλ. Then a 2-dimensional drawing shows that for every r > 1

there is a unique point xr of intersection of the segments (λ∗, rλ) and (λ, λ∗ + λ).

Write to this aim xr = sλ∗ + (1 − s)rλ = s′λ + (1 − s′)(λ∗ + λ) with coefficients

s = sr, s′ = s′r, use the linear independence of λ
∗, λ and get s = (r−1)/r, s′ = 1− s

whence s, s′ ∈ (0, 1) and lim
r→∞

s′r = 0. Then lim
r→∞

xr = λ∗ + λ. The concavity

(and hence, continuity [27]) of L on the segment (λ, λ∗ + λ ] gives lim
r→∞

L(xr) =

L(λ∗ + λ) < L(λ∗) with strict inequality, because the point λ∗ of maximum of L is

unique. But L(xr) = L(sλ∗ + (1− s)rλ) > sL(λ∗)+ (1− s)L(rλ) and letting r → ∞

we derive, using lim
r→∞

sr = 1 and sup
r>1

|L(rλ)| < ∞, that lim
r→∞

L(xr) > L(λ∗). We

got a contradiction. Hence ϕgp < 0. The feasibility of problem (1) follows then by

Theorem 1. �

R em a r k s. Since λ∗ may be on the boundary of domL := {λ : L(λ) > −∞},

one cannot prove (b) ⇒ (a) by differentiating under the integral in λ∗, and the h-

minimization may fail [17]. Additional hypotheses may compel λ∗ to be interior to

domL [16] in which case the entropy minimization can be obtained [24], providing the

particular solution f∗(t) = e
∑

i∈I
λ∗

i ti

, see for instance [3]. For example let T = R
n,

I = {i : |i| 6 2k} and ̺(t) = e−‖t‖2k

. By Theorem 3, problem (1) is feasible if

and only if L is bounded from above and attains its maximum at a point λ∗, even

when a minimum entropy solution does not exist. By Fatou’s lemma and Lebesgue’s

dominated convergence theorem, f0 := e
∑

|i|62k
λ∗

i ti

has finite moments of order 6 2k,

we can get
∫

tif0 dt = gi for |i| < 2k and
∫

t2k
ι f0 dt 6 g2keι

(1 6 ι 6 n), but the

equalities (1) may fail for |i| = 2k [17]. By integration in polar coordinates, the

homogeneous polynomial p :=
∑

|i|=2k

λ∗
i X

i is shown to always satisfy p(t) 6 0 on Rn;
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if moreover p(t) < 0 for all t 6= 0, then λ∗ is interior to domL and f0 is indeed

a solution of problem (1), f0 = f∗. We omit the details and refer the reader to

[16], [17].

Note also that whenever ̺ is at our disposal, various choices may be tried [3] to

facilitate the numerical maximization of L = L̺.
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