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KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 1 , PAGES 2 3 – 3 9

MIXTURE DECOMPOSITIONS OF EXPONENTIAL
FAMILIES USING A DECOMPOSITION
OF THEIR SAMPLE SPACES

Guido F. Montúfar

We study the problem of finding the smallest m such that every element of an exponential
family can be written as a mixture of m elements of another exponential family. We propose an
approach based on coverings and packings of the face lattice of the corresponding convex support
polytopes and results from coding theory. We show that m = qN−1 is the smallest number for
which any distribution of N q-ary variables can be written as mixture of m independent q-ary
variables. Furthermore, we show that any distribution of N binary variables is a mixture of
m = 2N−(k+1)(1 + 1/(2k − 1)) elements of the k-interaction exponential family.

Keywords: mixture model, non-negative tensor rank, perfect code, marginal polytope

Classification: 52B05, 60C05, 62E17

1. INTRODUCTION

The m-mixture of a set of probability distributions M is the set of all possible convex
combinations of m of its points:

Mixtm(M) :=
{ m∑

j=1

αjpj

∣∣∣ pj ∈M, αj≥0 for j ∈ {1, . . . ,m}, and
m∑

j=1

αj =1
}

.

The numbers αj ∈ R≥0 are called mixture weights and the summands pj mixture com-
ponents. There is an abundant literature on mixture models, see [5, 25, 26, 33]. They
arise within probabilistic models that involve latent variables, see for instance [27, 28].
An exponential family on a finite set X , with sufficient statistics A ∈ Rd×X and reference
measure ν ∈ RX>0, is the set of probability distributions pθ, parametrized by θ ∈ Rd, of
the form

pθ(x) =
1
Zθ

ν(x) exp(θ>Ax) ∀x ∈ X ,

where Ax, x ∈ X are the columns of A, and Zθ =
∑

y∈X ν(y) exp(θ>Ay) is the partition
function. See Section 2 for details and [2, 7, 10] for standard references. We consider
the following problem:

Problem 1. Given two exponential families E and E ′ on a finite set X , find the smallest
natural number m = m(E , E ′), if there is any, for which Mixtm(E) ⊇ E ′.
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We propose a general approach based on coverings and packings of support sets of prob-
ability distributions, combinatorics of convex polytopes, and results from coding theory.
We give explicit solutions when E is the independence model of N finite valued ran-
dom variables, or a k-interaction exponential family, expressed in terms of the number
of variables and the cardinality of their state spaces. When E ′ is equal to the convex
hull of E , for instance equal to the set P of strictly positive probability distributions on
X , then m(E , E ′) is the Carathéodory number of E . We address Problem 1 for closures
of exponential families as well. The closure of a statistical model M, in the standard
topology of the real valued functions, is denoted by M. When E is the set of product
distributions of N random variables, then m(E , E ′) is the maximal non-negative outer-
product rank of the N -way tables of probabilities described by E ′. Problem 1 can be
thought of as a tensor decomposition problem.

The problem of representing probability distributions as mixtures of specific models
has a long record. A renowned result in this direction is de Finetti’s theorem, which
states that exchangeable sequences of Bernoulli (i. e., binary) variables, are mixtures of
independent and identically distributed Bernoulli variables, see [9, 24]. In general, the
expressive power of mixture models is not satisfactorily understood. Until recently it was
a long standing problem whether the m-mixture of the set of probability distributions of
n independent binary variables had the dimension expected from parameter counting,
which is min{n ·m+(m−1), 2n−1}. M. Catalisano, A. Geramita, and A. Gimigliano [8]
proved that this mixture model indeed has the expected dimension for any combination
of m and n, except for n = 4 and m = 3 when the dimension is smaller. In connection
with this, the identifiability of parameters of mixtures of independent binary variables
has been treated, for example in [6]. For mixtures of independent non-binary variables
the dimension and parameter identifiability problems are largely unsettled.

When E is the set of probability distributions of two independent variables with values
in X1 and X2, respectively, it is known that Mixtm(E) equals the set P of all possible
probability distributions (on X1×X2) as soon as m ≥ min{|X1|, |X2|}, see [16, 31]. This is
to say that every non-negative k×l matrix can be written as the sum of at most min{k, l}
non-negative rank-one matrices. If |X1|, |X2| > 2, it is known that Mixt2(E) 6= P, see [16].
We generalize these results in Theorem 13:

The smallest m for which any probability distribution on {1, . . . , q}N can be written as
the mixture of m product distributions, is qN−1 (when q is a prime power).

The result qN−1 is larger than expected from näıve parameter counting. In particular,
the m-mixture model of N ≥ 5 independent binary variables has the same dimension as
P whenever m ≥ 2N/(N + 1). The m-mixture of a k-interaction model can be viewed as
a system of stochastic units including higher-order interactions and a hidden m-valued
variable. We show (Theorem 16):

The smallest m for which any probability distribution on {0, 1}N can be represented as the
mixture of m distributions from the k-interaction model is at most 2N−(k+1)(1+ 1

(2k−1)
).

We provide similar, however weaker, results when the variables are not binary, but take
values in arbitrary finite sets. We also give a bound on the smallest number of mixtures
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of independent binary distributions needed to represent k-interaction models.

Our proofs are based on comparison of the support sets of probability distributions
contained in the closures of different exponential families. The support of a probability
distribution p is the set supp(p) := {x ∈ X : p(x) > 0}. Combinatorial aspects of support
sets of closures of exponential families have been studied in [20, 21, 22, 30]. We add to
this analysis and put forward the analysis of a special type of support sets:

Definition 2. Given a set of probability distributions M on a finite set X we call
Y ⊆ X an S-set of M iff every probability distribution p with support supp(p) ⊆ Y, is
contained in M.

The “S” in this definition stands for “support” and “simplex”, considering that the set
of probability distributions p with supp(p) ⊆ Y is a simplex (the convex hull of affinely
independent points in Euclidian space). A probability distribution p can be decomposed
as a mixture of m probability distributions from the closure of M whenever the support
of p is contained in the union of m S-sets of M. This gives rise to the problem: Given
an exponential family on X , find the smallest possible collection of S-sets that covers X .

In Section 2 we review basics of exponential families, their support sets, and convex
supports. Section 3 formalizes our approach and discusses S-sets of exponential families.
Section 4 treats coverings and packings using support sets of independence models and k-
interaction families, and contains our solutions to Problem 1 for these models. Technical
proofs are displaced to the Appendix.

2. EXPONENTIAL FAMILIES AND CONVEX SUPPORTS

We consider a system of N ∈ N random variables Xi with values in finite sets Xi for
i ∈ [N ] := {1, . . . , N}. The joint sample space of this system is X := ×N

i=1Xi. The prob-
ability distributions with support Y ⊆ X are denoted by P(Y), or just by P if Y = X is
clear. The closure P(Y) is the set of all probability distributions p with supp(p) ⊆ Y and
is called the probability simplex on Y. The variable Xi is called q-ary when |Xi| = q. For
a subset of indices λ ⊆ [N ], xλ denotes an element of ×i∈λXi, or the natural restriction
of some x ∈ X to the coordinates i ∈ λ. The expression [xλ] represents a cylinder set of
dimension (N − |λ|), defined as the set of all y ∈ X with yλ = xλ. In the binary case
X = {0, 1}N the cylinder sets and the (sets of vertices of) faces of the N -dimensional
unit cube [0, 1]N are in natural correspondence.

Consider a strictly positive function ν on X , and a linear subspace V of the space
RX of real valued functions on X . The exponential family Eν,V is defined as the image
of V → P ⊂ RX ; f 7→ ν exp(f)/

∑
x∈X ν(x) exp(f(x)). For simplicity we set ν ≡ 1 and

omit the subscript, as the results contained in this paper hold for any strictly positive ν.
A matrix A ∈ Rd×X with row span V is called a sufficient statistics of EV . The rows of
A are functions on X called observables. Denoting the columns by Ax, x ∈ X , the prob-
ability distributions in EV can be written as pθ(x) = 1

Zθ
exp(θ>Ax) ∀x ∈ X ∀ θ ∈ Rd,

where Zθ :=
∑

y exp(θ>Ay). For simplicity we always denote a sufficient statistics by
A and the corresponding exponential family by E . The parametrization given above
depends on A, but E itself only depends on V (modulo the constant functions). We
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assume, without loss of generality, that 1 := (1, . . . , 1) is a row of A. The map θ 7→ pθ

is bijective and E has dimension rk(A)−1 exactly when the rows of A (including 1), are
linearly independent, see for instance [2]. The elements of an exponential family E are
strictly positive. The closure E includes probability distributions with support strictly
contained in X .

Given a collection of sets ∆ ⊆ 2[N ], the hierarchical model E∆ is the exponential
family defined by V∆ := {

∑
λ∈∆ fλ : fλ ∈ RX with fλ(xλ, x[N ]\λ) = fλ(xλ, x̃[N ]\λ)

∀x, x̃ ∈ X , ∀λ ∈ ∆}. The k-interaction exponential family Ek is the hierarchical model
E∆k

with ∆k := {λ ⊆ [N ] : |λ| ≤ k}. The special case E1 is called independence model.
The independence model consists of all strictly positive independent distributions, or
product distributions, of the variables X1, . . . , XN . There is a natural hierarchy of
nested models E1 ⊂ E2 ⊂ · · · ⊂ EN = P, see details in [1, 3]. The dimension of E∆

is dim(E∆) =
∑

λ∈∆

∏
i∈λ(|Xi| − 1) − 1, see [19]. The binary k-interaction model has

dimension dim(Ek
N,bin) =

∑k
i=1

(
N
i

)
. The sufficient statistics of any binary hierarchical

model E∆ can be chosen as A = (σλ,x)λ∈∆,x∈{0,1}N , where

σλ,x := (−1)|supp(x)∩λ| ∀x ∈ {0, 1}N ∀λ ∈ 2[N ] .

The rows of σ = (σλ,x)λ∈2[N],x∈{0,1}N with labels λ from an inclusion complete set
∆ ⊆ 2[N ] are an orthogonal basis of V∆ ⊆ RX , X = {0, 1}N . In particular, σ is a
Hadamard matrix.

The convex support of E , as realized from a sufficient statistics A, is the image of the
moment map, π : P → Rd ; p 7→ A · p. This is the following convex polytope (the convex
hull of finitely many points in Euclidian space):

Q := conv{Ax}x∈X .

The moment map π defines a homeomorphism of E and Q, and A · p is called the ex-
pectation parameter vector of the point p ∈ E , see [2, 10] and further details in the
Appendix. A face of the polytope Q is the intersection of Q with a hyperplane in Rd

such that all points of Q lie on one of the closed halfspaces defined through that hy-
perplane. In particular, Q is a face of itself. The dimension of a face F is defined
as the dimension of its affine hull dim(F ) := dim aff(F ). The combinatorial type of Q
is the set of all its faces, denoted by F(Q), together with the partial order of inclu-
sion. For any 0 ≤ g ≤ dim(Q)− 1 the union of g-dimensional faces ∪F∈F(Q):dim(F )=gF
contains all vertices of Q [18, Theorem 15.1.2]. Any nonsingular affine transformation
of a polytope preserves its combinatorial type [17, Theorem 3.2.3]. In turn, the com-
binatorial type of Q depends only on the row span of A (modulo the constant functions).

A set Y ⊆ X is called a facial set of the exponential family E iff Y = {x ∈ X : Ax ∈ F}
for some face F of Q. The set of all facial sets of E is denoted by F(E) ⊆ 2X . It is well
known that F(E) and F(Q) are in one-to-one correspondence (see, for example [14, 30]):
A set Y ⊆ X is the support of a distribution p ∈ E if and only if Y is a facial set of E .
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E1

δ(00)

δ(01)

δ(11)

δ(10)

Q1

A(01) A(00)

A(11) A(10)

Fig. 1. Left: The set of probability distributions of two independent

binary variables E1 (red surface) within the three-dimensional simplex

of probability distributions on {0, 1}2. The vertices of the probability

simplex are the point measures δx, x ∈ {0, 1}2 (distributions with a

single support point {x}). Right: The convex support of E1 realized

as the convex hull of the sufficient statistics A from Example 3.

Example 3. Consider the set of strictly positive product distributions of two binary
variables, p(x1, x2) = p1(x1)p2(x2) for all (x1, x2) ∈ {0, 1}2, where p1 and p2 are strictly
positive distributions on {0, 1}. This is an exponential family E1 with sufficient statistics

A =

1 1 1 1
1 1 0 0
1 0 1 0


(00) (01) (10) (11)

,

whereby p1(x1)p2(x2) = 1
Z exp(θ>A(x1x2)) when exp(θ2) = p1(0)/p1(1) and exp(θ3) =

p2(0)/p2(1). The parameter θ1 is irrelevant. The convex support Q1 = conv{Ax}x∈{0,1}2

is a square. See Figure 1. The two-mixture Mixt2(E1) is the union of all line segments
{αp + (1− α)q : α ∈ [0, 1]} connecting pairs p, q ∈ E1. The support sets of distributions
in E1 are {0, 1}2, the pairs {(00), (01)}, {(01), (11)}, {(11), (10)}, {(10), (00)}, and all
the points {(00)}, {(01)}, {(10)}, {(11)}. All support sets are S-sets, except for {0, 1}2.
Figure 1 reveals that every point in the probability simplex is a mixture of two distri-
butions with supports in the S-sets {(0, 0), (0, 1)} and {(1, 0), (1, 1)}. These two S-sets
cover the entire sample space {0, 1}2.

3. S-SETS OF EXPONENTIAL FAMILIES

We assess the expressive power of mixture models, comparing the support sets of distri-
butions from different models. In this section we formalize the idea, and relate S-sets of
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exponential families to simplex faces of their convex supports.

Given an exponential family E on X we consider the following function, which gives
the minimal cardinality of a facial packing of any set Z ⊆ X :

κf
E : 2X → N ; Z 7→ min{n ∈ N : ∃Y1, . . . ,Yn ∈ F(E) with ∪i Yi = Z} .

We set κf
E(Z) = ∞ if there does not exist a facial packing of Z. All Yi in this definition

are required to be subsets of Z. For many exponential families, including hierarchical
models (with ∪λ∈∆λ = [N ]), every {x} is a facial set. In particular κf

k := κf
Ek < ∞ for

all k > 0. We also consider the smallest number of S-sets that cover Z, which is the
following function:

κs
E : 2X → N ; Z 7→ min{n ∈ N : ∃Y1, . . . ,Yn S-sets with ∪i Yi ⊇ Z} ,

whereby we set κs
E(Z) = ∞ if there does not exist an S-set covering of Z. If κ S-sets

cover X , then at most κ S-sets are needed for packing any Z ⊆ X , because any subset
of an S-set is an S-set. We abbreviate κs

E(X ) with κs
E . Finally, given two exponential

families E and E ′, we consider the maximum of κf
E restricted to the facial sets of E ′:

κf
E,E′ := max

Z∈F(E′)
κf
E(Z) .

The functions κf
E and κs

E can be defined for any model M ⊆ P in the place of the
exponential family E by simply replacing “facial sets” with “support sets of distributions
within M.” We have the following:

Lemma 4. Consider two exponential families E , E ′ ⊆ P(X ).

• If m ≥ κs
E < ∞, then Mixtm(E) = P.

• Mixtm(E) ⊇ E ′ implies m ≥ κf
E,E′ .

P r o o f . See Appendix. �

Remark 5. If Mixtm(E) = P, then also Mixtm(E) = P, and if Mixtm(E) 6= P, then
P \ Mixtm(E) has a non-empty interior. If Mixtm(E) = P, then m ≥ max κf

E , and if
κf
E,E′ = ∞, then conv(E) 6⊃ E ′. Lemma 4 can be formulated for arbitrary models as

well. In that case however, the implication of the first item holds only for the closures:
If m ≥ κs

M, then Mixtm(M) = P.

Example 6. Any distribution p with support in a cylinder set [yΛc ], Λ ⊆ [N ], |Λ| = k

is contained in the closure of the k-interaction family Ek. Indeed, if p ∈ P is arbitrary
with support [yΛc ], then p(x) = lim

α→∞
exp(f(xΛ) − α

∑
j∈Λc gj(xj))/Z, where Z is a

normalization constant, f(x) = f(xΛ) is a function of the variables Xi, i ∈ Λ with
f(xΛ) = log(p(x)) + log(Z) ∀x ∈ [yΛc ], and gj is a function of Xj , only, taking value 0
for xj = yj and 1 otherwise. Therefore, every k-dimensional cylinder set is an S-set of
Ek. In particular, if X = {1, . . . , q}N , then κs

Ek ≤ qN−k and MixtqN−k

(Ek) = P.
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Lemma 7. Consider an exponential family E ⊆ P(X ) and some Y ⊆ X . The following
items are equivalent:

• E ⊇ P (Y), i. e., Y is an S-set.

• conv{Ay}y∈Y is a (|Y| − 1)-dimensional simplex face of the convex support Q.

• supp(m±) 6⊂ Y for all m ∈ ker(A) ⊂ RX \ {0} , where m±(x) := max{0,±m(x)}
∀x ∈ X .

P r o o f . The first item implies the second, because the moment map defines a bijection
between P(Y) and conv{Ay}y∈Y . For the other direction: The matrix AY := (Ay)y∈Y
defines an exponential family EY = E ∩ P(Y), because Y is facial. If conv{Ay}y∈Y
is a (|Y| − 1)-simplex, then all columns of AY are linearly independent (1 is a row
of A), and hence kerAY = {0}. As a consequence, any p ∈ P(Y) trivially satisfies∏

x(p(x))m+(x) −
∏

x(p(x))m−(x) = 0 ∀m ∈ ker AY , which implies p ∈ EY [14, 30].
The third item is equivalent to: Y is facial, see [30], and additionally supp(m) 6⊂ Y
∀m ∈ ker(A) \ {0}. This implies ker AY = {0}. �

Remark 8. By Lemma 7, E contains any p with |supp(p)| < |supp(m+)| for all m ∈
ker(A) \ {0}, and there always exists some q ∈ P(X ) \ E with

|supp(q)| = min
m∈ker(A)\{0}

|supp(m+)|.

When every column Ax of the sufficient statistics is a vertex of Q and κ simplex faces
of Q contain all Ax, then Mixtκ(E) = conv(E). When all Ax, x ∈ X are distinct vertices
of Q, then E contains all possible point measures, κs

E is the smallest number of simplex
faces that contain all vertices, and Mixtκs

E (E) = P. Computing κs
E can be difficult,

in general. Two examples of related problems are: Finding minimum clique coverings,
which is a graph-theoretical NP-complete problem, and describing perfect covering codes
on {0, 1}N , which so far are not completely understood (see [11]).

A polytope P is called K-neighborly, when the convex hull of any K, or less, of its
vertices is a face (see [23, 32]). If the convex support of E is K-neighborly and E contains
all point measures, then every Y ⊆ X with |Y| ≤ K is an S-set of E . It is known that
the convex support Qk of the k-interaction family is (2k − 1)-neighborly, see [20]. In
Section 4 we will study the simpliciality of Qk and corresponding vertex set coverings
using simplex faces. A polytope P is K-simplicial if all its K-dimensional faces are
simplices (this does not mean that any (K + 1) vertices define a face of P ).

Example 9. The convex support of the two-interaction family E2 on X = {0, 1}4 is a
polytope with 16 vertices and dimension 10. We computed the face lattice of Q2 (using
the software Polymake [13]). We found 56 facets (proper faces of maximal dimension,
9), out of which 16 are simplices. One of them is conv{Ax}x∈Y , Y = {(0000), (1000),
(0100), (0010), (1001), (0101), (0011), (1101), (1011), (0111)}. In total 8 S-sets of E2

contain 6 binary vectors with an even number of ones, and 8 contain 6 vectors with
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ED

δ1

δ3

δ2

δ0

δ4
QD

A1

A0

A2

A3

A4

Fig. 2. Schlegel diagram of the four-dimensional probability simplex

on {0, . . . , 4} and corresponding projection of the two-dimensional

exponential family ED with convex support QD a regular pentagon.

The color indicates the value that the distributions take on x = 4;

blue for p(4) = 0 and red for p(4) = 1. The uniform distribution 1
5

and the point measure δ4 are projected into the same point.

an odd number of ones. The other 40 facets have each 12 vertices. Denote the S-
sets (of cardinality 10) by Fi, i = 1, . . . , 16 and the facial sets of cardinality 12 by
Gi, i = 1, . . . , 40. We found that Fi ∪ Fj 6= X ∀ i, j and Fi ∪ Gj 6= X ∀ i, j. Since all
faces (and in particular all simplex faces) are subsets of some facet, at least 3 S-sets of
E2 are needed to cover X .

Example 10. Let X = {0, . . . , n − 1} and let E be an exponential family with convex
support an n-gon (a polygon with n vertices). We call this family an n-gon exponen-
tial family. It is two-dimensional and contains all point measures δx in its closure.
n-gon exponential families have been studied in the context of model design in [4]. As-
sume that the boundary of the convex support Q of an n-gon family is the polyline
A0A1 · · ·An−1A0. The facial sets are: X , the pairs {i, i + 1} mod n, and the points
{i} for i ∈ X . All facial sets, except X , are S-sets. The sample space X is covered by
κs
E =

⌈
n
2

⌉
S-sets, while the packing of any set Y ⊆ X requires at most maxκf

E =
⌊

n
2

⌋
facial sets. By Lemma 4 the smallest m for which Mixtm(E) = conv(E) = P satisfies⌊

n
2

⌋
≤ m ≤

⌈
n
2

⌉
. For n = 5 (see Figure 2 right) we show that m ≥ 2 =

⌊
n
2

⌋
is necessary

and sufficient, see below.

Proposition 11. If ED is an exponential family on X = {0, 1, 2, 3, 4} with pentagonal
convex support, then Mixt2(ED) = P(X ).

P r o o f . See Appendix. �
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Remark 12. Example 10 shows that in general κf
E 6= κs

E . In such a case m = κs
E is not

necessarily the smallest m for which Mixtm(E) = P. For pentagonal exponential families
κs
E is off by one, and the same likely happens for all n-gon exponential families with odd

n greater or equal to five. However, in the next section we show that κf
E equals κs

E for
many independence models, and we believe that this generalizes to many interaction
models.

4. MIXTURES OF HIERARCHICAL MODELS

4.1. Independence Models

The Hamming distance between two vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ) is
dH(x, y) := |{i ∈ [N ] : xi 6= yi}|. A set Y ⊆ X has minimum distance d if the smallest
Hamming distance between two distinct points x, y ∈ Y is at least d. The independence
model of N variables with joint sample space X = ×i∈[N ]Xi is:

E1 =
{

p ∈ P : p(x1, . . . , xN ) =
∏

i∈[N ]

pi(xi) ∀ (x1, . . . , xN ) ∈ X , (1)

and pi ∈ P(Xi) ∀ i ∈ [N ]
}

.

For binary variables the convex support of E1 is a combinatorial N -cube, the facial sets
are the cylinder sets (including those of dimension zero), and the S-sets are the pairs
of vectors with Hamming distance one to each other, plus all individual binary vectors.
In general, the convex support is a Cartesian product Q1 = ×i∈[N ]Si, where Si is a
(|Xi| − 1)-dimensional simplex for every i ∈ [N ]. The facial sets are:

F(E1) = {×i∈[N ]Yi : Yi ⊆ Xi for all i ∈ [N ]} , (2)

and the S-sets are the subsets of one-dimensional cylinders; i. e., the sets

{y1} × · · · × {yi−1} × Yi × {yi+1} × · · · {yN} (3)

with yj ∈ Xj for all j ∈ [N ] \ {i} and Yi ⊆ Xi for i ∈ [N ].
We consider the maximal cardinality of subsets Y ⊆ X = ×i∈[N ]Xi with minimum

distance two:

AX := max{|Y| : Y ⊆ X and dH(x, y) ≥ 2 ∀x, y ∈ Y, x 6= y} . (4)

For example, the sets of binary vectors of length N with an even (odd) number of ones,
Z± :=

{
x ∈ X = {0, 1}N :

∏
i∈[N ](−1)xi = ±1

}
, have the largest possible cardinality

|Z±| = 2N−1 among all sets of length-N binary vectors of minimum distance two. For
mixtures of independence models we have:

Theorem 13. The mixture model Mixtm(E1) contains every probability distribution
with support in a union of m one-dimensional cylinder sets, and does not contain any
probability distribution supported by a set of cardinality more than m and minimum
distance (at least) two. Furthermore,
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• If m ≥ |X |/ max{|Xi|}i∈[N ], then Mixtm(E1) = P.

• If Mixtm(E1) ⊇ P, then m ≥ AX ≥ max{ sN

1+N(s−1) , q
N−1},

where s = min{|Xi|}i∈[N ] and q is the largest prime power smaller or equal to s.

In particular, when X = {1, . . . , q}N and q is a prime power, then

Mixtm(E1) = P if and only if m ≥ qN−1 .

P r o o f . For the first statement: Any face of Q1 which has more than one vertex
contains edges. An edge of Q1 is the convex hull of a column pair Ax, Ay of the
sufficient statistics, with dH(x, y) = 1. Therefore, any facial set contained in a set
that does not contain pairs of Hamming distance one, has cardinality one. For the
remaining statements, assume (without loss of generality) |X1| = max{|Xi|}i∈[N ] and
|XN | = min{|Xi|}i∈[N ]. The first bullet is by Lemma 4, covering the sample space with
the S-sets {(x1, y2, . . . , yN ) : x1 ∈ X1} for all (y2, . . . , yN ) ∈ ×i∈[N ]\{1}Xi. For the second
bullet we use the first part of this theorem, and the fact that P({1, . . . , s}N ) is contained
in P(X ). For any q the maximal cardinality of a q-ary code of length N and minimum
distance d, defined as Aq(N, d) := max{|Y| : Y ⊆ {1, . . . , q}N and dH(x, y) ≥ d ∀x, y ∈
Y, x 6= y}, is familiar in coding theory. It is known that Aq(N, 2) ≥ qNPd−1

j=0 (N
j )(q−1)j

(Gilbert-Varshamov bound [15, 34]), and that when q is any power of a prime number,
Aq(N, d) ≥ qk, where k is the largest integer with qk < qNPd−2

j=0 (N−1
j )(q−1)j

. Evaluating

these bounds for d = 2 completes the proof. �

Corollary 14. Let 1 ≤ k ≤ N − 1. If X = {0, 1}N and Mixtm(E) ⊇ Ek, then

m ≥ max{|Z| : Z ∈ F(Ek), Z ⊆ Z±} ≥ 2k − 1 .

P r o o f . The first inequality is by Lemma 4, since κf
1,k ≥ max{|Z| : Z ∈ F(Ek). The

second one follows from Lemma 18. �

Example 15. The first inequality in Corollary 14 is useful when we have information
about the support sets of Ek. The second inequality improves the bound

m ≥ (dim(Ek) + 1)/(N + 1) =
k∑

j=0

(
N

j

)
/(N + 1)

that can be derived comparing the dimension of both models, when k is close to N . For
instance:

• When X = {0, 1}4, E2 has S-sets of cardinality 6, contained in Z+ (see Example 9).
Hence, if Mixtm(E1) ⊇ E2, then m ≥ 6.

• If X = {0, 1}4 and Mixtm(E1) ⊇ E3, then m ≥ 7. For comparison, counting
parameters yields only m ≥

⌈
(dim(E3) + 1)/(4 + 1)

⌉
= 3.
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4.2. Interaction Models

Theorem 16. Consider a hierarchical model E∆ on X = ×i∈[N ]Xi with ∆ ⊇ ∆k,
1 ≤ k < N .

• The mixture model Mixtm(E∆) contains any probability distribution p ∈ P(X )
when m is larger or equal to min{n : ∃Y1, . . . ,Yn k-cylinder sets of X with
supp(p) ⊆ ∪n

i=1Yi}. Furthermore, Mixtm(E∆) = P whenever
m ≥ |X |/ max{

∏
i∈λ |Xi| : λ ⊆ [N ], |λ| = k}.

• In the case of binary variables, the convex support Q∆ is (2k−1)-neighborly, (2k+1−
3)-simplicial, and all its vertices are contained in the union of 2N−(k+1)(1 + 1

2k−1
)

simplex faces. Moreover, Mixtm(E∆) = P whenever m ≥ 2N−(k+1)(1 + 1
2k−1

).

The first item of Theorem 16 follows from the observation that all k-cylinders are
S-sets of Ek, see Example 6. The (2k − 1)-neighborliness of Q∆ was shown in [20]. The
(2k+1−3)-simpliciality follows from a classic result of convex polytopes, which states that
if P a K-neighborly d-dimensional polytope, then every face F of dimension less than
2K is a simplex, see [17, Theorem 7.4.3]. In order to prove the remaining statements of
the theorem, we need to find the (2k+1 − 3)-dimensional faces of Q∆ and show that at
most 2N−(k+1)(1 + 1

2k−1
) of them cover all vertices. Before proving this, some remarks

are appropriate:

Remark 17. Regarding the upper bound 2N−(k+1)(1+ 1
2k−1

) on the minimal cardinality
of an S-set covering of {0, 1}N (second item of Theorem 16): When k = 1 the bound
equals 2N−1 and is tight by Theorem 13. When N = 4 and k = 2 the bound is⌈
24−(2+1)/(1− 2−2)

⌉
= 3 and is tight in view of Example 9. When k = N−1 the bound

equals 2 and is tight, because Mixt1(E∆) = E∆ 6= P. In spite of this, the characterization
of the simplex faces of convex support polytopes and the computation of the smallest
simplex-face-vertex-set coverings for hierarchical models with general interaction sets
∆ and non-binary variables, is not fully accomplished at this point. In particular we
believe that the bound provided in the first item can be further improved, as for binary
variables the second item provides a much better bound.

Note that any facial set of Ek is a facial set of E∆, ∆ ⊇ ∆k. For 0 < k < N , any
(k+1)-dimensional cylinder set [yλc ], λ ⊆ [N ], |λ| = k+1 is a facial set of Ek (for example
by similar arguments as in Example 6). Hence the vertices of Q∆ can be covered by
2N−(k+1) disjoint faces {Fi}i corresponding to (k + 1)-dimensional cylinder sets. These
Fi are not simplices, but they contain (2k+1− 3)-dimensional simplex faces (see below),
which we can arrange in a convenient way to cover all vertices of Qk disjointly. We use
the following Lemma 18, which subsumes various ideas and remarks from [17, 19, 22].

A d-dimensional cyclic polytope with v vertices (see [12]) is defined as the convex
hull of v distinct points on the d-moment curve: C(v, d) := conv{x(ti)}i=1,...,v, where
v ≥ d + 1, t1 < · · · < tv ∈ R, and x(t) = (t, t2, . . . , td) ∈ Rd.

Lemma 18. Let 0 < k < N and X = {0, 1}N . Any (k + 1)-dimensional cylinder set Y
is a facial set of Ek and the corresponding face F of the convex support Qk is a simplicial
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polytope, combinatorially equivalent to the cyclic polytope C(2k+1, 2k+1−2). There are
exactly 22k S-sets of cardinality (2k+1−2) contained in Y; namely {Z ⊂ Y : Y∩Z± 6⊆ Z}.
In particular, if a set Z ⊆ X contains Y ∩ Z± but does not contain Y, then Z is not
facial.

P r o o f . See Appendix. �

P r o o f o f T h e o r e m 16. Let xi+k
i := (xi, . . . , xi+k) ∈ {0, 1}{i,...,i+k}. Consider the

following partition of {0, 1}N into (k + 1)-dimensional cylinder sets:

Cy := {(xk+1
1 , xN

k+2) ∈ {0, 1}N : xN
k+2 = y} for all y ∈ {0, 1}N−(k+1) .

By Lemma 18 the elements of any Cy can be disjointly covered by:
(i) An S-set of Ek of cardinality 2k+1 − 2. We denote this set by Gy.
(ii) A pair of vectors differing in one entry:

Ey := {(zk
1 , xk+1, y) ∈ {0, 1}N : zk

1 fixed} . (5)

The vector z in eq. (5) can be chosen equal for all Ey, such that the S-sets {Gy}y

satisfy: ⋃
y∈{0,1}N−(k+1)

Gy = {0, 1}N \ C̃N−k ,

where C̃N−k is the following (N − k)-dimensional cylinder set:

C̃N−k =
⋃

y∈{0,1}N−(k+1)

Ey = {(zk
1 , ỹN−k

1 ) : zk
1 fixed} .

The cylinder set C̃N−k can be considered as a new sample space which still has to be
covered using as few S-sets as possible. If N − k < k + 1, only one S-set is required.
Iteration of the previous idea until exhausting all coordinates yields that κ, the minimal
number of simplex faces of Qk covering all vertices, is not more than:

κ ≤ 1 +
∑

0≤i≤N−(k+1)
k

2N−ik

2k+1
=

⌈
2N

2k+1

∞∑
i=0

1
(2k)i

⌉
=

⌈
2N−(k+1)

1− 2−k

⌉
.

2

We conclude this section with a few observations on S-sets of hierarchical models.
From Lemma 18 we can derive a rough cardinality upper bound for the S-sets of Ek.
Let K(N, k +1) denote the smallest cardinality of a set Y ⊆ {0, 1}N which intersects all
(k + 1)-dimensional cylinder sets, and let BN,k+1 denote a Hamming ball in {0, 1}N of
radius k + 1.

Proposition 19. If Y ⊆ X = {0, 1}N is an S-set of Ek, then

|Y ∩ Z±| ≤ 2N−1 −K(N, k + 1) ≤ 2N−1(1− 2/|BN,k+1|)
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and |Y| ≤ |∆k|. Furthermore,

|Y| ≤ 2N − 2K(N, k + 1) ≤ 2N (1− 2/|BN,k+1|),

since X is disjointly covered by the two sets Z+ and Z−.

P r o o f . See Appendix. �

Example 20. When X = {0, 1}4, by Proposition 19 any S-set of E2 intersects Z+, or
Z−, at most at 8− 2 = 6 points. This bound is attained exactly, in view of Example 9.

It is worthwhile mentioning that, if a collection of index sets ∆ ⊆ 2[N ] is symmetric
with respect to a permutation π : [N ] → [N ], then the convex support Q∆ of the
associated exponential family, also has this symmetry. In particular, if Y is an S-set of
Ek, then π(Y) := {(xπ(1), . . . , xπ(N)) : x ∈ Y} is also an S-set, for any permutation π.
Furthermore, we have:

Proposition 21. If E is an exponential family with sufficient statistics

A = ((−1)|supp(x)∩λ|)λ∈∆,x∈X , ∆ ⊆ 2[N ], X = {0, 1}N ,

then Y is an S-set if and only if x ∗ Y := {x + y mod 2 : y ∈ Y} is an S-set ∀x ∈ X ,
and moreover, Y ⊆ X is a facial set if and only if x ∗ Y is a facial set ∀x ∈ X .

P r o o f . See Appendix. �

The sets {x ∗ Y}x∈X are not necessarily all different from each other, but they are if
|Y| is odd, or if Y is a Hamming ball. The orbit {x ∗ z : x ∈ X} of any z ∈ X , covers
X . In particular, ∪x∈Xx ∗ Y = X and |x ∗ Y| = |Y| for any x ∈ X , Y ⊆ X , Y 6= ∅.
These observations have interesting relations to coding theory; for example, any binary
hierarchical model has a convex support which is the convex hull of a binary linear code,
see [22].

APPENDIX

P r o o f o f L e m m a 4.
1. Let {Yi}m

i=1 be an S-set covering of X . W.l.o.g. Yi∩Yj = ∅ ∀ i 6= j. Any p ∈ P can be
written as

∑m
i=1 αifi and fi ∈ E choosing fi with supp(fi) ⊆ Yi, fi = p|Yi

/
∑

x∈Yi
p(x)

and αi =
∑

x∈Yi
p(x). This shows Mixtm(E) = P.

For strictly positive distributions: The convexity of P implies Mixtm(E) ⊆ P for all
m ≥ 1. The direction “⊇” is a bit more elaborate. By the first part of this proof
the set Mixtm(E) is dense in P; we need to show that within P only the bound-
ary ∂P := P \ P is not contained in Mixtm(E). We use topological arguments. Let
Yi := P(Yi), i = 1, . . . ,m be disjoint faces of P containing all point measures {δx}x∈X .
Let pη := (A|E)−1(η) denote the distribution in E with expectation parameter η. The
mixture map φ : D := Pm × (×m

i=1Q) → P ; (α, η1, . . . , ηm) 7→
∑m

i=1 α(i)pηi is sur-
jective. Restricting the domain D to the subset C := ∂(Pm × (×m

i=1(A · Yi))) we get a
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continuous bijection φ|C : C → ∂P between the compact domain C and the Hausdorff
codomain ∂P. Therefore, φ|C is a homeomorphism and induces isomorphisms between
the homotopy groups of C and those of ∂P ' S|X |−2, the (|X | − 2)-sphere. Denote
by D̊ the relative interior of the polytope D. Note that φ(D̊) ⊆ P. For any ε > 0
there is a continuous deformation C → C̃ ⊆ D̊ which is mapped by φ into a continuous
deformation ∂P → φ(C̃) ⊂ P \ Pε, Pε := {p ∈ P : p(x) ≥ ε ∀x ∈ X}. If φ(D̊) does not
contain Pε, then φ(C̃) is not contractible in φ(D̊), in contradiction to the contractibility
of D̊ (which is a convex set). Since any element of P belongs to some Pε, this shows
Mixtm(E) ⊇ P.

2. Consider some p ∈ E ′ with supp(p) = Z ∈ F(E ′). If p is written as a mixture
of elements from E , then every mixture component with positive mixture weight must
have a support Y ∈ F(E), Y ⊆ Z. Furthermore, the union of the support sets of these
summands must equal Z. The minimal number of summands is, by definition, equal to
κf
E(Z). 2

P r o o f o f P r o p o s i t i o n 11. Consider any exponential family E , and assume (with-
out loss of generality) that the sufficient statistics contains the row 1. The image of
the moment map π : p 7→ A · p is the convex support Q = conv{Ax}x∈X . Since π is
continuous, E is compact, and Q is Hausdorff, this bijective map is in fact a home-
omorphism. We denote by pη = (π|E)−1(η) the unique preimage of η ∈ Q by the
moment map restricted to E . The m-mixture of E is parametrized by a mixture map
φ : D := Pm × Qm → P ; (α, η1, . . . , ηm) 7→

∑m
i=1 αipηi

. Consider the normal space
N = ker A of E . For any p ∈ P the set Np := {q ∈ P : p − q ∈ N} is a polytope of
dimension dim kerA which intersects E at a unique point pE ∈ E ∩ Np (see [29, Theo-
rem 2.16]). Hence P = (E + kerA) ∩ P = ·∪p∈ENp. The boundary of Np is contained in
the boundary of P.

In the case of ED dim kerA = 2. Furthermore, any subset of X = {0, 1, 2, 3, 4} of
cardinality 4 is contained in the union of two S-sets. Hence Mixt2(E) ⊃ ∂P := P \ P,
and the restriction φ|C : C := ∂(P2 × Q2) → ∂P is a continuous surjection. Now, for
any p ∈ ED we consider the set Bp = φ−1(Np) = {(α, η1, η2) ∈ D :

∑2
i=1 αiηi = π(p)}.

This set is mapped by φ into the set of convex combinations of 2 elements of ED which
have the same expectation parameter as p. We consider also ∂Bp = Bp ∩ (P2 × (∂Q)2),
which corresponds to the same kind of mixtures, but with mixture components from the
boundary ∂ED := ED \ ED. We have that φ : ∂Bp → ∂Np is surjective and has degree
2! (the cardinality of the preimage of a regular value, which arises from the freedom to
permute the mixture components). The set ∂Bp is parametrized by an angle, say γ, and
φ|∂Bp(γ) circulates ∂Np twice. Using that Bp is contractible, it follows that φ|Bp = Np

and Mixt2(ED) = P. For strictly positive distributions the claim follows from the fact
that φ(B̊p) ⊆ P, and that the image of an ε-retraction of Bp, (1 − ε)(Bp − p) + p, can
be made such that it contains any δ-retraction of Np, (1− δ)(Np − p) + p. 2

P r o o f o f L e m m a 18. By Lemma 7 Y is not an S-set ⇔ ∃m ∈ ker A \ {0} with
supp(m+) ⊆ Y. If supp(m+) = Y, then Y is not facial, see [14, 30]. Consider the suffi-
cient statistics A=(σλ,x)λ∈∆k,x∈X . The kernel of this matrix is spanned by the rows of
the matrix (σλ,x)λ∈2[N]\∆k,x∈X , which can be written as (σλ,x)λ∈∆N−k,x∈X diag(σ[N ],x)x∈X .
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The row span of (σλ,x)λ∈∆N−k,x∈X contains any function of (N −k) variables, including
the indicator function 1Y(x) of any (k + 1)-cylinder set Y. This corresponds to a kernel
element of A with entries m(x) = 1Y(x)σ[N ],x, x ∈ X and supp(m+) = Z+ ∩ Y.

Since not all subsets of Y are facial, the corresponding face F of the convex support,
which has 2k+1 vertices, is not a simplex and has dimension less than 2k+1 − 1. By [17,
Theorem 7.4.3] and the (2k− 1)-neighborliness of Qk [20], F is (2k+1− 3)-simplicial and
has dimension less than 2k+1 − 2 (otherwise it would be a simplex). The combinatorial
equivalence of F and the cyclic polytope C(2k+1, 2k+1 − 2) follows from the fact that
any 2n-dimensional, n-neighborly polytope with v ≤ 2n + 3 vertices is combinatorially
equivalent to the cyclic polytope C(v, 2n) [17, Theorem 7.2.3].

To complete the proof we use Gale’s Evenness Criterion: A d-tuple VJ = {x(tj)}j∈J

J ⊂ [v], |J | = d of vertices of C(v, d), spans a facet iff between any two elements of
J there is an even number of elements in [v] \ J [17, Theorem 4.7.2]. In our case
v = 2k+1 and d = 2k+1 − 2. The combinatorial structure of the cyclic polytope is inde-
pendent of the map i 7→ ti and we may choose I = [v] := {1, . . . , 2k+1} ⊂ N. The sets
VJ , |J | = 2k+1− 2 satisfying the evenness criterion are exactly the complements of pairs
{ie, io} ⊂ [v], where ie is even and io is odd. There are 22k such pairs, and hence facets.
This is the same as the number of sets respecting the condition on S-sets, Z 6⊇ Y ∩Z±,
shown at the beginning of this proof. Therefore, all sets Z with Z 6⊇ Y ∩Z± correspond
to facets of C(2k+1, 2k+1 − 2) and are indeed S-sets. 2

P r o o f o f P r o p o s i t i o n 19. Let Y be any S-set of Ek and let C be any (k + 1)-
dimensional cylinder set. By Lemma 18 |(C ∩ Z±) \ Y| ≥ 1. Therefore, the maximal
cardinality of an S-set Y ⊆ Z± is upper bounded by |Z±|−K(N, k+1), where K(N, k+1)
is the smallest cardinality of a set that intersects every (k + 1)-dimensional cylinder set.
The union of all (k + 1)-cylinder sets that contain a point x equals the Hamming ball
BN,k+1(x) ⊆ X of radius k + 1 centered at x. Hence K(N, k + 1) is the minimal cardi-
nality of a binary code of covering radius k + 1. If R < N ≤ 2R + 1, then K(N,R) = 2,
but in general computing K(N,R) is hard (see [11]). A crude lower bound is the sphere-
covering bound: K(N,R) ≥ 2N/|BN,R|. Here |BN,R| =

∑R
i=0

(
N
i

)
. On the other hand,

the cardinality of an S-set of Ek can not exceed dim Qk + 1 = |∆k| = |BN,k|, by param-
eter counting arguments. 2

P r o o f o f P r o p o s i t i o n 21. Consider the sufficient statistics A = (σλ,x)λ∈∆,x∈X .
We abbreviate (σλ,x)λ∈∆,x∈Y by σ(∆,Y). A set Y ⊆ X is an S-set of E if and only if (i)
rkσ(∆,Y) = |Y|, (i. e., Y describes a (|Y| − 1)-simplex), and (ii) there exists a vector
c ∈ R|∆| for which 〈c, σ(∆, y)〉 = 0 ∀ y ∈ Y and 〈c, σ(∆, x)〉 ≥ 1 ∀x ∈ X \Y, (i. e., Y is a
facial set). We show that Y satisfies these properties if and only if x ∗ Y does. We have
that

σ(λ, x ∗ y) = (−1)|(supp(x)4supp(y))∩λ| = (−1)|supp(x)∩λ|(−1)|supp(y)∩λ|

∀x ∈ X , λ ∈ 2[N ], y ∈ X

and thus σ(∆, x ∗ Y) = diag (σ(∆, x)) · σ(∆,Y). Hence rkσ(∆,Y) = rk σ(∆, x ∗ Y).
Consider, on the other hand, the vector c̃ := diag(σ(∆, x)) · c. We have 〈c̃, σ(∆, x∗y)〉 =
〈c, σ(∆, y)〉 = 0 ∀ y ∈ Y, and 〈c̃, σ(∆, z′)〉 ≥ 1 ∀ z′ ∈ X \ y ∗ Y. 2
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