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UPPERS TO ZERO IN R[x] AND ALMOST PRINCIPAL IDEALS

Keivan Borna, Tehrān, Abolfazl Mohajer-Naser, Mainz

(Received April 12, 2012)

Abstract. Let R be an integral domain with quotient field K and f(x) a polynomial of
positive degree in K[x]. In this paper we develop a method for studying almost principal
uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the
form I = f(x)K[x] ∩ R[x] are almost principal in the following two cases:

⊲ J , the ideal generated by the leading coefficients of I , satisfies J−1 = R.
⊲ I−1 as the R[x]-submodule of K(x) is of finite type.

Furthermore we prove that for I = f(x)K[x] ∩ R[x] we have:

⊲ I−1 ∩ K[x] = (I :K(x) I).

⊲ If there exists p/q ∈ I−1−K[x], then (q, f) 6= 1 in K[x]. If in addition q is irreducible
and I is almost principal, then I ′ = q(x)K[x] ∩ R[x] is an almost principal upper to
zero.

Finally we show that a Schreier domain R is a greatest common divisor domain if and only
if every upper to zero in R[x] contains a primitive polynomial.

Keywords: almost principal ideal, divisorial ideal, greatest common divisor domain,
Schreier domain, uppers to zero
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1. Introduction

Throughout this paper let R be a domain and let K denote its quotient field. Our

terminology and notation come from [5], [9]. We first recall some preliminaries for

concepts used in the paper. Recall that R is Schreier if R is integrally closed and

for all x, y, z ∈ R \ {0}, x | yz implies that x = rs where r | y and s | z. R is

a Greatest Common Divisor domain (GCD domain) if any two nonzero elements in

R have a greatest common divisor. A pre-Schreier domain R is a Schreier domain
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without the assumption that R is integrally closed. Schreier domains were introduced

by Cohn in [4] where he showed that a GCD domain is a Schreier domain and also

if R is a Schreier domain, so is R[x]. Examples of GCD domains include unique

factorization domains. It is also well known that any GCD domain is integrally

closed.

One of the motivations of this paper is to obtain certain conditions under which the

category of Schreier domains and GCD domains coincide. To this end, in Section 1

we study the elements of such domains and characterize them via uppers to zero.

Recall that a nonzero ideal I of R[x] is an upper to zero if I ∩R = 0 and I is prime.

Euclid’s lemma on integral domains, Lemma 2.1, and the proof of Proposition 2.3

show that R is a GCD domain if and only if any upper to zero in R[x] is principal.

In fact, in Proposition 2.3 we prove that if R is a Schreier domain and if each upper

to zero in R[x] contains a primitive polynomial, then R is a GCD domain.

A fractional ideal of R is an R-submodule I of K such that there exists a non-

zero r ∈ R such that rI ⊆ R. Call a fractional ideal I invertible if II−1 = R

where I−1 = (R :K I) = {x ∈ K : xI ⊆ R}. Furthermore, let Iv = (I−1)−1 and

It =
⋃
Av, where the union is taken over all finitely generated subideals A of I.

Finally, let F (D) denote the set of fractional ideals of D. The operation on F (D)

defined by A→ (A−1)−1 = Av where A ranges over F (D) is called the v-operation.

A fractional ideal A ∈ F (D) is called a v-ideal if A = Av and a v-ideal A is said to

be a v-ideal of finite type if A = Bv where B is a finitely generated fractional ideal.

Most of the facts about the v- and t-operations which we shall use can be found in

[5, Section 32].

Houston [7] mentioned that being upper to zero is equivalent to I = f(x)K[x]∩R[x]

for some irreducible polynomial f(x) of K[x]. An ideal I of R[x] is called almost

principal if there exists a polynomial f(x) ∈ I of positive degree and a nonzero s ∈ R

such that sI ⊆ (f(x))R[x]. Whenever I is an upper to zero this is equivalent to the

existence of some s ∈ R for which sI ⊆ f(x)R[x]. Furthermore, I is said to be

divisorial if Iv = (I−1)−1 = I.

In the second section of this paper we develop a method for studying almost

principal ideals as it comes in the sequel. Note that each almost principal ideal

of the form I = f(x)K[x] ∩ R[x] is divisorial. (If ∃s ∈ R, sI ⊆ f(x)R[x], then

Iv ⊆ f(x)K[x]. Since Iv ⊆ R[x], we obtain Iv ⊆ f(x)K[x]∩R[x] = I. In addition, the

definition of operations implies the converse statement and thus the result follows.)

As was asked by Houston and studied further by several authors, specially by

Hamann, Houston, Johnson [6], the almost principal property is related to the fol-

lowing question:

Question. When is f(x)K[x] ∩R[x] divisorial?
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In [6, Proposition 1.15] the authors obtained a number of conditions in terms of I−1

and [I : I] equivalent to the almost principal property which are represented here:

(1) I is almost principal.

(2) I−1K[x] = (1/f)K[x].

(3) I−1 6⊆ K[x].

(4) I−1 is not a ring.

(5) I−1 6= [I : I].

(6) There exists g(x) ∈ R[x] − I with g(x)I ⊆ f(x)R[x].

Furthermore, the work of Houston and Zafrullah [8] also concerns divisorial and

almost principal ideals. Although they mentioned no knowledge for divisorial ideals

being almost principal in general, in Proposition 1.9 they proved the following:

Let I = f(x)K[x]∩R[x] be an upper to zero, and let J denote the ideal generated

by the constant terms of the elements of I. If J−1 = R and I−1 6= R[x], then I is

almost principal. Thus if J−1 = R and I is divisorial, then it is almost principal.

(Note that I−1 6= R[x], otherwise Iv = (I−1)−1 = R[x] which contradicts Iv = I.

Hence I is almost principal.)

This result particularly motivated us to study the implication “divisorial ideals of

the form I = f(x)K[x] ∩ R[x] are almost principal”. In fact, we prove this in the

following two cases:

(1) The ideal generated by the leading coefficients of I, say J , satisfies J−1 = R;

see Proposition 3.3.

(2) I−1 as the R[x]-submodule of K(x) is of finite type (finitely generated for ex-

ample); see Proposition 3.5.

Furthermore, in Theorem 3.1 we prove that if there exists p/q ∈ I−1 − K[x]

whenever I = f(x)K[x] ∩R[x] is an ideal of R[x], then (q, f) 6= 1 in K[x]. This will

be applied to deduce that almost principal uppers to zero play an important role

in studying almost principal ideals. More precisely, in Proposition 3.2 we prove the

following:

Let I = f(x)K[x] ∩ R[x] be an almost principal ideal, and suppose that there

exists p/q ∈ I−1 −K[x] for which q is irreducible. Then J = q(x)K[x] ∩ R[x] is an

almost principal upper to zero.
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2. Uppers to zero and GCD domains

In GCD domains any multiple of gcd of any two elements could be excluded,

[9, Theorem 49]. Generally, two elements x, y in a domain R are called v-coprime if

xR∩yR = xyR; see [12]. Further, x, y ∈ R\{0} are said to be coprime if x and y have

no nonunit common factor in R. Note that x, y being v-coprime implies x, y coprime

but not conversely. In a pre-Schreier domain two coprime elements are v-coprime; see

[4, Proposition 3.3]. In addition it is useful to note that gcd(a, b) = 1 ⇐⇒ ∀x ∈ R

((x | a, b) =⇒ x | 1) and so the negation of a, b are coprime would be ∃x ∈ R

((x | a, b), x ∤ 1). Moreover, if a and b are v-coprime, in any domain, and a | by then

a | y; see, e.g., [12]. This observation improves Euclid’s lemma on integral domains:

Lemma 2.1. Let R be an integral domain. Suppose that uR ∩ aR = uaR and u

divides ab for some elements a, b, u in R. Then u | b.

Tang [10, Theorem I], has provided a proof of the fact that an integral domain R

is a GCD domain if and only if any prime ideal of R[x] lying over zero is principal.

If R is noetherian, since a noetherian GCD domain is Unique Factorization Domain

(UFD), R[x] (being noetherian and GCD) is UFD and a height one prime ideal

in a UFD is principal. Now we provide a simple proof of this result without the

noetherian assumption (that is, the same assumptions as in [10, Theorem I]). As

a matter of fact we offer an alternative proof, using the fact that if R is Schreier then

so is R[X ].

Theorem 2.2. Let R be an integral domain. Then R is a GCD domain if and

only if any upper to zero is principal.

P r o o f. (⇐=): Recall that a Generalized GCD domain (GGCD domain) is

a domain in which the intersection of any two invertible ideals is again an invertible

ideal, cf. [1]. From [2, Theorem 15] it is known that an integral domain is a GGCD

if and only if every upper to zero is invertible. Thus R is a GGCD domain. Finally,

since it is also obvious that a GGCD domain is a GCD domain if and only if every

invertible ideal is principal, the result follows.

(=⇒): We use the facts that (i) a GCD domain is Schreier, (ii) if R is Schreier

then so is R[x] and (iii) in a Schreier domain every irreducible element is prime. Now

let P be an upper to zero, i.e. P is a prime ideal in R[x] such that P ∩ R = (0).

Let f ∈ P \ {0} be of the least degree. Then deg(f) > 1. Since R is a GCD

domain we can write f = df1 where d is a GCD of the coefficients of f and f1 is

a primitive polynomial. Since P ∩ R = (0) and since P is a prime, f1 ∈ P . Now

being a primitive polynomial of the least degree, f1 is irreducible, and in a Schreier
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domain an irrededucible element is a prime. So f1R is a prime ideal contained in P .

But being an upper to zero, P is of height one and so P = f1R. �

As we mentioned earlier every GCD domain is Schreier, but in general the converse

is not necessarily true; see [11] for several examples of Schreier domains that are not

GCD domains. We use the notion of a primitive polynomial to accomplish that.

Recall that a polynomial f(x) is primitive if the coefficients of f have no nonunit

common factor. Stated in ring-theoretic terms, a polynomial is primitive if the ideal

generated by the coefficients of f(x), that is, Af = (a0, a1, . . . , an) is not contained

in any proper principal ideal. Products of primitive polynomials are primitive over

a Schreier domain. It is easy to see that over any domain R the factors of a primitive

polynomial in R[x] are again primitive. For more details see [3]. Note that in

a Schreier domain every irreducible element is prime. The following result deals

more seriously with such phenomena.

Proposition 2.3. A Schreier domain R is a GCD domain if and only if every

upper to zero in R[x] contains a primitive polynomial.

P r o o f. Let P be an upper to zero in R[x] and let f be a primitive polynomial

in P . We can assume f to be of the least degree. But then f is irreducible and hence

prime because R[x] is Schreier. Since f ∈ P and since P is of height one we have

P = fR[x]. So every upper to zero in R[x] is principal. To show that R is a GCD

domain, let a, b ∈ R \ {0}. Then by [5, Corollary 34.9],

(a+ bx)K[x] ∩R[x] = (a+ bx)(A(a+bx))
−1R[x]

which is principal. As a matter of fact (a + bx)K[x] ∩ R[x] being principal forces

(a + bx)(a, b)−1R[x] principal which forces (a, b)−1 principal and which means that

gcd(a, b) exists. As a conclusion (A(a+bx))
−1 is invertible and hence principal because

in a Schreier domain every invertible ideal is principal, cf. [2, Theorem 1]. But then

aR ∩ bR is principal for each pair a, b ∈ R \ {0}. The converse is obvious. �

Remark 2.4. As the proof of Proposition 2.3 shows, it is enough to assume that

R[x] is pre-Schreier. But notice that if R[x] is pre-Schreier then actually R and hence

R[x] is Schreier; see [2, Corollary 10]. So Proposition 2.3 will not be improved if we

change the hypothesis “R is Schreier” with “R[x] is pre-Schreier”.
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3. Almost principal ideals and divisorial ideals

Let I = f(x)K[x] ∩ R[x] be an ideal of R[x] which is not an upper to zero in

general. As we set in the Introduction, let I−1 = (R[x] :K(x) I) and Iv = (I−1)−1.

Throughout this section by a | b we mean that a divides b and by gcd(a, b) we mean

their greatest common divisor in K[x] which is a Principal Ideal Domain (PID) and

it makes sense to speak about them.

Note that if I is an upper to zero and almost principal, then ∃p(x)/q(x) ∈ I−1 −

K[x]. Note that if ∃s ∈ R with sI ⊆ f(x)R[x], simply take s/f ∈ I−1 −K[x]. In the

first theorem of this section we explore the converse statement. In fact this result is

a helpful trick to prove the result that was dubbed obvious in [6, Lemma 1.14].

Theorem 3.1. Let R be an integral domain with quotient field K, f(x) a poly-

nomial of positive degree in R[x], and I = f(x)K[x] ∩R[x]. Then we have:

(i) I−1 ∩K[x] = (IK(x)I).

(ii) If there exists p/q ∈ I−1 −K[x], then (q, f) 6= 1 in K[x].

P r o o f. (i) The inclusion (⊆) is easy. Take any g ∈ I−1 ∩ K[x]. For any h ∈

I, h(x) = f(x)l(x) ∈ R[x] for some l(x) ∈ K[x]. So h(x)g(x) = f(x)l(x)g(x) ∈ R[x],

and so it is in I = fK[x]∩R[x]. For the inclusion (⊇), take any t ∈ (I :K(x) I) with

t ∈ I−1. We will prove that t ∈ K[x]. Write down t = p(x)/q(x), where p(x), q(x)

are relatively prime in K[x]. Suppose that deg(q(x)) > 0, and take any non zero

element f(x)l(x) ∈ I. Then

(2.1.1) f(x)l(x)
p(x)

q(x)
∈ I,

and so f(x)l(x)(p(x)/q(x)) = f(x)r(x) for some r(x) ∈ K[x]. We obtain that

l(x)p(x) = q(x)r(x), i.e., q(x) | l(x) and so ∃s(x) ∈ K[x], l(x) = s(x)q(x). Now

(2.1.1) gives us f(x)s(x)p(x) ∈ I. Starting the story for s(x)p(x) instead of l(x)

we deduce that q(x) | s(x)p(x) in K[x]. Since (p(x), q(x)) = 1, q(x) | s(x) and so

q(x)2 | l(x). Iterating this procedure, we get that l(x) = 0, which is a contradiction.

Hence t ∈ K[x].

(ii) First of all note that we can assume that (p, q) = 1. Now suppose the contrary

and assume that (q, f) = 1. Since p(x)/q(x) ∈ I−1, for any l(x) ∈ K[x] for which

f(x)l(x) ∈ I we have f(x)l(x)(p(x)/q(x)) ∈ R[x]. Thus f(x)l(x)p(x) = q(x)r(x) ∈

R[x] for some r(x) ∈ R[x]. Hence q(x) | f(x)l(x)p(x), i.e., q(x) | l(x). Therefore,

∃s(x) ∈ K[x] s.t. l(x) = s(x)q(x). This gives us f(x)s(x)p(x) = r(x) ∈ R[x] and so

q(x) | s(x) or q(x)2 | l(x). Arguing as in (i) finally we end up with l(x) = 0. �

With Theorem 3.1, the following proposition is merely a corollary.
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Proposition 3.2. Let I = f(x)K[x] ∩ R[x] be an almost principal ideal and

suppose that there exists p/q ∈ I−1 − K[x] for which q is irreducible. Then J =

q(x)K[x] ∩R[x] is an almost principal upper to zero.

P r o o f. By Theorem 3.1(ii), (q, f) 6= 1 and since q is irreducible we have

f(x) = g(x)q(x) for some g(x) ∈ K[x]. Hence ∃0 6= s ∈ R such that sg(x) ∈ R[x].

Now let t(x) = sf(x) and g1(x) = sg(x), then [6, Lemma 1.5] implies that J is almost

principal. Note that since I = t(x)K[x] ∩ R[x] is almost principal, we claim that

I1 = g1(x)K[X ] ∩R[x] and J = q(x)K[x] ∩R[x] are both almost principal. Thus J

is an almost principal upper to zero. �

Now we give affirmative answers for the implication “divisorial ideals are almost

principal” in two new situations.

Proposition 3.3. Let I = f(x)K[x]∩R[x] be an upper to zero, and let J denote

the ideal generated by the leading coefficients of I. If J−1 = R and I is not almost

principal, then I−1 = R[x]. As a corollary, I is not divisorial.

P r o o f. Suppose the contrary and assume that I−1 6= R[x]. Then there exists

an element ψ ∈ I−1 −R[x]. Let ψ = anx
n + . . .+ a0 be of the minimum degree with

such property. For any g ∈ I which is of the form g = bmx
m + . . . + b0, we have

ψ · g ∈ R[x] and so anbm ∈ R. We claim that bm · ψ ∈ R[x]. Suppose the result fails

to hold, and for an 1 6 i < n, aibm is not in R. Put θ = bmψ − bmanx
n. Note that

θ ∈ I−1 − R[x], deg θ < degψ, which is a contradiction. As g was arbitrary we get

that ai ∈ J−1 = R and so ψ ∈ R[x]. Hence I−1 = R[x]. The corollary now is proved

since Iv = (I−1)−1 = R[x] 6= I. �

Corollary 3.4. Let I = f(x)K[x] ∩ R[x] be an upper to zero, and let J denote

the ideal generated by the leading coefficients of I. Then I divisorial implies that I

is almost principal or J−1 is not equal to R.

Note that I−1 is a v-ideal and a v-ideal A is said to be of finite type if there is

a finitely generated ideal B contained in A with Av = Bv. Hence in the following

result we can replace “of finite type” with “finitely generated” harmlessly.

Proposition 3.5. Let I = f(x)K[x]∩R[x] be an upper to zero, and assume that

I is not almost principal. If I−1 as the R[x]-submodule of K(x) is of finite type,

then I is not divisorial.

P r o o f. Proceeding contrapositively, suppose that I is divisorial. Since I−1 is

finitely generated, there exists a nonzero element c of R such that cg is in R[x] for

all g in I−1. It yields that c ∈ (I−1)−1. Since I is divisorial, we claim that c ∈ I.

But this is a contradiction since I is an upper and so I ∩R = 0. �
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