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Abstract. The purpose of this paper is to establish some common fixed point results for
f -nondecreasing mappings which satisfy some nonlinear contractions of rational type in the
framework of metric spaces endowed with a partial order. Also, as a consequence, a result
of integral type for such class of mappings is obtained. The proved results generalize and
extend some of the results of J. Harjani, B. Lopez, K. Sadarangani (2010) and D.S. Jaggi
(1977).
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1. Introduction and preliminaries

The Banach contraction mapping is one of the pivotal results of analysis. It is

a very popular tool for solving existence problems in different fields of mathematics.

There are a lot of generalizations of the Banach contraction principle in literature

(see [1]–[11]).

Ran and Reurings [11] extended the Banach contraction principle in partially or-

dered sets with some applications to linear and nonlinear matrix equations, while

Nieto and Rodríguez-López [10] extended their result and applied their main the-

orems to obtain a unique solution for a first order ordinary differential equation

with periodic boundary conditions. Bhaskar and Lakshmikantham [2] introduced

the concept of mixed monotone mappings and obtained some coupled fixed point

results. Also, they applied their results to a first order differential equation with

periodic boundary conditions. Recently, many researchers have obtained fixed point
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and common fixed point results in metric spaces and partially ordered metric spaces.

The purpose of this paper is to establish some common fixed point results for a ra-

tional type contraction mappings in metric spaces endowed with a partial order.

First, we recall some basic definitions.

LetM be a nonempty subset of a metric space (X, d), a point x ∈M is a common

fixed (coincidence) point of f and T if x = fx = Tx (fx = Tx). The set of

fixed points (respectively, coincidence points) of f and T is denoted by F (f, T )

(respectively, C(f, T )). The mappings T, f : M →M are called commuting if Tfx =

fTx for all x ∈M ; compatible if lim d(Tfxn, fTxn) = 0 whenever {xn} is a sequence

such that limTxn = lim fxn = t for some t inM ; weakly compatible if they commute

at their coincidence points, i.e., if fTx = Tfx whenever fx = Tx.

Suppose (X,6) is a partially ordered set and T, f : X → X . T is said to be

monotone f -nondecreasing if for all x, y ∈ X ,

(1.1) fx 6 fy implies Tx 6 Ty.

If f is the identity mapping, then T is monotone nondecreasing.

A subset W of a partially ordered set X is said to be well ordered if every two

elements of W are comparable.

2. Main results

Theorem 2.1. Let (X,6) be a partially ordered set and suppose that there exists

a metric d on X such that (X, d) is a complete metric space. Suppose that T and f

are continuous self-mappings on X , T (X) ⊆ f(X), T is a monotone f -nondecreasing

mapping and

(2.1) d(Tx, T y) 6 α
(d(fx, Tx)d(fy, T y)

d(fx, fy)

)

+ β(d(fx, fy))

for all x, y ∈ X for which f(x) and f(y) are comparable, and for some α, β ∈ [0, 1)

with α+ β < 1.

If there exists x0 ∈ X such that f(x0) 6 T (x0) and T and f are compatible, then

T and f have a coincidence point.

P r o o f. Let x0 ∈ X be such that f(x0) 6 T (x0). Since T (X) ⊆ f(X), we can

choose x1 ∈ X so that fx1 = Tx0. Since Tx1 ∈ f(X), there exists x2 ∈ X such

that fx2 = Tx1. By induction, we can construct a sequence {xn} in X such that

fxn+1 = Txn for every n > 0.
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Since f(x0) 6 T (x0) = f(x1), T is a monotone f -nondecreasing mapping, T (x0) 6

T (x1). Similarly, since f(x1) 6 f(x2), we have T (x1) 6 T (x2), and f(x2) 6 f(x3).

Continuing, we obtain

T (x0) 6 T (x1) 6 T (x2) 6 . . . 6 T (xn) 6 T (xn+1) 6 . . . .

We suppose that d(T (xn), T (xn+1)) > 0 for all n. If not then T (xn+1) = T (xn)

for some n, T (xn+1) = f(xn+1), i.e. T and f have a coincidence point xn+1, and so

we have the result.

Consider

(2.2) d(Txn+1, Txn) 6 α
(d(fxn+1, Txn+1)d(fxn, Txn)

d(fxn+1, fxn)

)

+ β(d(fxn+1, fxn))

= α(d(Txn, Txn+1)) + β(d(Txn, Txn−1)),

which implies that

(2.3) d(Txn+1, Txn) 6
β

1 − α
d(Txn, Txn−1).

Using mathematical induction we have

(2.4) d(Txn+1, Txn) 6

( β

1 − α

)n

d(Tx1, Tx0).

Put k = β/(1 − α) < 1. Now, we shall prove that {Txn} is a Cauchy sequence. For

m > n, we have

(2.5) d(Txm, Txn) 6 d(Txm, Txm−1) + d(Txm−1, Txm−2) + . . .+ d(Txn+1, Txn)

6 (km−1 + km−2 + . . .+ kn)d(Tx1, Tx0)

6

( kn

1 − k

)

d(Tx1, Tx0),

which implies that d(Txm, Txn) → 0 as m,n → ∞. Thus {Txn} is a Cauchy

sequence in a complete metric space X . Therefore there exits u ∈ X such that

limTxn = u. By the continuity of T , we have lim
n→∞

T (Txn) = Tu. Since fxn+1 =

Txn → u and the pair (T, f) is compatible, we have lim
n→∞

d(f(Txn), T (fxn)) = 0.

By the triangular inequality, we have

d(Tu, fu) 6 d(Tu, T (fxn)) + d(T (fxn), f(Txn)) + d(f(Txn), fu).

Letting n→ ∞ and using the fact that T and f are continuous, we get d(Tu, fu) = 0,

i.e. Tu = fu and u is a coincidence point of T and f . �

If β = 0, we have the following result.
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Corollary 2.2. Let (X,6) be a partially ordered set and suppose that there exists

a metric d on X such that (X, d) is a complete metric space. Suppose that T and f

are continuous self-mappings on X , T (X) ⊆ f(X), T is a monotone f -nondecreasing

mapping and

(2.6) d(Tx, T y) 6 α
(d(fx, Tx)d(fy, T y)

d(fx, fy)

)

for all x, y ∈ X for which f(x) and f(y) are comparable, and for some α < 1.

If there exists x0 ∈ X such that f(x0) 6 T (x0) and T and f are compatible, then

T and f have a coincidence point.

In what follows, we prove that Theorem 2.1 is still valid for T not necessarily

continuous, assuming the following hypothesis in X :

If {xn} is a non-decreasing sequence in X such that xn → x, then xn 6 x for all n.

Theorem 2.3. Let (X,6) be a partially ordered set and suppose that there

exists a metric d on X such that (X, d) is a metric space. Suppose that T and f are

self-mappings on X , T (X) ⊆ f(X), T is a monotone f -nondecreasing mapping and

(2.7) d(Tx, T y) 6 α
(d(fx, Tx)d(fy, T y)

d(fx, fy)

)

+ β(d(fx, fy))

for all x, y ∈ X for which f(x) and f(y) are comparable, and for some α, β ∈ [0, 1)

with α+ β < 1.

Assume that there exists x0 ∈ X such that f(x0) 6 T (x0) and {xn} is a non-

decreasing sequence in X such that xn → x. Then xn 6 x for all n ∈ N.

If f(X) is a complete subspace of X , then T and f have a coincidence point.

Further, if T and f are weakly compatible, then T and f have a common fixed

point. Moreover, the set of common fixed points of T and f is well ordered if and

only if T and f have one and only one common fixed point.

P r o o f. Following the proof of Theorem 2.1, we have that {Txn} is a Cauchy

sequence. As fxn+1 = Txn, so {fxn} is a Cauchy sequence in (f(X), d). Since

f(X) is complete, there is fu ∈ f(X) such that lim
n→∞

T (xn) = lim
n→∞

f(xn) = f(u).

Notice that the sequences {T (xn)} and {f(xn)} are nondecreasing. Then from our

assumptions we have T (xn) 6 f(u) and f(xn) 6 f(u) for all n. Keeping in mind

that T is montone f -nondecreasing we get T (xn) 6 T (u) for all n. Letting n tend to

∞ we obtain f(u) 6 T (u).

Suppose f(u) < T (u) (otherwise we are done). Construct a sequence {un} as

u0 = u and fun+1 = Tun for all n. An argument similar to that in the proof
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of Theorem 2.1 yields that {fun} is a nondecreasing sequence and lim
n→∞

f(un) =

lim
n→∞

T (un) = f(v) for some v ∈ X. From our assumptions it follows that sup
n

f(un) 6

f(v) and sup
n
T (un) 6 f(v).

Notice that

f(xn) 6 f(u) < f(u1) 6 . . . 6 f(un) 6 . . . 6 f(v).

Now, if there is n0 > 1 with f(xn0) = f(un0), then f(xn0) = f(u) = f(un0) =

f(u1) = T (u).

Suppose that f(un) 6= f(xn) for all n > 1. Then from the contraction assumption

we obtain

d(fxn+1, fun+1) = d(Txn, Tun)

6 α
(d(fxn, Txn)d(fun, Tun)

d(fxn, fun)

)

+ βd(fxn, fun).

Letting n tend to ∞ we get d(fu, fv) 6 (β)d(fu, fv), which implies that f(u) =

f(v) since β < 1. This implies f(u) = f(v) = f(u1) = Tu. Hence we conclude that u

is a coincidence point of T and f .

Now suppose that T and f are weakly compatible. Let w = T (z) = f(z). Then

T (w) = T (f(z)) = f(T (z)) = f(w). Consider

d(T (z), T (w)) 6 α
(d(fz, T z)d(fw, Tw)

d(fz, fw)

)

+ βd(fz, fw) 6 βd(Tz, Tw).

This implies that d(Tz, Tw) = 0, as β < 1. Therefore, T (w) = f(w) = w.

Now suppose that the set of common fixed points of T and f is well ordered. We

claim that the common fixed point of T and f is unique. Assume on the contrary

that Tu = fu = u and Tv = fv = v but u 6= v. Consider

d(u, v) = d(Tu, T v) 6 α
(d(fu, Tu)d(fv, T v)

d(fu, fv)

)

+ βd(fu, fv) 6 βd(u, v).

This implies that d(u, v) = 0, as β < 1. Hence u = v. Conversely, if T and f have

only one common fixed point then the set of common fixed points of f and T being

a singleton is well ordered. �

If β = 0, we have the following result.
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Corollary 2.4. Let (X,6) be a partially ordered set and suppose that there

exists a metric d on X such that (X, d) is a metric space. Suppose that T and f are

self-mappings on X , T (X) ⊆ f(X), T is a monotone f -nondecreasing mapping and

(2.8) d(Tx, T y) 6 α
(d(fx, Tx)d(fy, T y)

d(fx, fy)

)

for all x, y ∈ X for which f(x) and f(y) are comparable, and for some α < 1.

Assume that there exists x0 ∈ X such that f(x0) 6 T (x0) and {xn} is a non-

decreasing sequence in X such that xn → x. Then xn 6 x.

If fX is a complete subspace of X , then T and f have a coincidence point.

Further, if T and f are weakly compatible, then T and f have a common fixed

point. Moreover, the set of common fixed points of T and f is well ordered if and

only if T and f have one and only one common fixed point.

R em a r k 2.1. If f = I (identity mapping) in Theorems 2.1 and 2.3, then we

have Theorems 2.2 and 2.3 of Harjani, Lopez and Sadarangani [8].

Other consequences of our results for the mappings involving contractions of inte-

gral type are the following.

Denote by Λ the set of functions µ : [0,∞) → [0,∞) satisfying the following

hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact subset of [0,∞);

(h2) for any ε > 0 we have
∫ ε

0
µ(t) dt > 0.

Corollary 2.5. Let (X,6) be a partially ordered set and suppose that there exists

a metric d on X such that (X, d) is a complete metric space. Suppose that T and f

are continuous self-mappings on X , T (X) ⊆ f(X), T is a monotone f -nondecreasing

mapping and

(2.9)

∫ d(Tx,Ty)

0

ψ(t) dt 6 α

∫

d(fx,T x)d(fy,T y)
d(fx,fy)

0

ψ(t) dt+ β

∫ d(fx,fy)

0

ψ(t) dt

for all x, y ∈ X for which f(x) and f(y) are comparable, ψ ∈ Λ, and for some

α, β ∈ [0, 1) with α+ β < 1.

If there exists x0 ∈ X such that f(x0) 6 T (x0) and T and f are compatible, then

T and f have a coincidence point.

A c k n ow l e d g em e n t. The author is thankful to the learned referee for very

valuable suggestions.
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