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Ondřej VENCÁLEK
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Abstract

In the present paper we investigate performance of the k-depth-nearest
classifier. This classifier, proposed recently by Vencálek, uses the concept
of data depth to improve the classification method known as the k-nearest
neighbour. Simulation study which is presented here deals with the two-
class classification problem in which the considered distributions belong
to the family of skewed normal distributions.
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1 Introduction

Concept of data depth provides one possible approach to a nonparametric anal-
ysis of multivariate data. The concept and its possible aplications was discussed
in detail at the ODAM 2011 conference followed by the paper [7] which provides
a review of possible applications of the data depth concept. Let us recall that a
depth function is basically any function which provides an ordering (or rather
quasiordering) of points in multidimensional real space Rd with respect to some
probability distribution P on this space. Several depth functions have been
proposed since 1970s, for example halfspace depth, simplicial depth, projection
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depth, L1-depth, zonoid depth or Mahalanobis depth (for more details see [8]).
Great variety of ad hoc proposed depth functions led to the general definition
of the depth function stated by Zuo and Serfling in 2000 [10].
One possible application of the data depth concept is in classification. Sev-

eral classifiers based on data depth have been proposed in the last ten years.
The present paper is intended to study properties of the classifier proposed
by Vencálek in 2013 [9]. The classifier can be shortly described as a two step
procedure—an application of a well known k-nearest neighbour method on DD-
plot. The procedure, called k-depth-nearest neighbour, is described in detail in
the Section 2 of the present paper. Main results are included in the Section 3
(Simulation study) and they are commented in the Section 4.
Before describing the k-depth-nearest neighbour procedure let us recall the

classification problem and introduce the notation used in this paper. For sim-
plicity we consider two-class classification problem. We consider two groups of
objects. Each object can be characterized by d numerical (real) values. We as-
sume that the distribution P1 of these characteristics in group 1 differs from the
distribution of these characteristics in group 2 (P2). Both distributions are as-
sumed to be continuous. The training set—random sample X1, . . . ,Xn1

from
P1 and random sample Xn1+1, . . . ,Xn1+n2

from P2—is available. Empirical
distributions based on the training set are denoted P̂1, P̂2, respectively.

2 k-depth-nearest neighbor method

Recently, Vencálek [9] proposed a classifier which combines the concept of data
depth with the well known classification procedure of k-nearest neighbour.
Newly proposed procedure, called k-depth-nearest neighbour, is based on the
idea that points with similar location with respect to the two considered dis-
tributions have similar depths w.r.t. these distributions. The k-depth-nearest
neighbor procedure is a two step procedure with the following steps:
step 1: reduction of dimension = computing depths = construction of the

DD-plot,
step 2: classification = using classical kNN procedure on the DD-plot.
In the first step we compute the depth of all points in the training set w.r.t.

P̂1 and the depth of all points in the training set w.r.t. P̂2. Any point Xi

(i ∈ {1, . . . , n1 + n2}) of the training set is thus characterized by the pair od
depths [D(Xi; P̂1), D(Xi; P̂2)]. A two-dimensional graph displaying pairs of
depths for all points in the training set is known as the DD-plot (Depth-versus-
Depth plot). Any point x ∈ R

d corresponds to a point in DD-plot whose first
(horizontal) coordinate is equal to D(x; P̂1) and its second (vertical) coordinate
is equal to D(x; P̂2). We use different colours or different symbols in the DD-
plot to visualize the goup membership of points from the training set. The first
step is basically nothing else than the reduction of dimension. Points from the
d-dimensional real space are projected to the DD-plot: subspace of R2.
In the second step, the classification is performed on the DD-plot. Any

classifier can be used in the DD-plot. We use the kNN and benefit from its
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local nature. The procedure thus combines global nature of depth (used in the
first step) with localal nature of the kNN (used in the second step). Thus, the
procedure should be efficient as well as flexible.
Let us make note that a similar classifier was proposed by Li et al [5]. Their

classifier separates points in DD-plot by line or a higher degree polynomial
function. Such an approach would be more efficient in some cases (for example
in the case of two elliptically symmetric distributions that differ in location
only), on the other hand our approach should be more flexible.
Vencálek [9] presented results of a simulation study in which performance of

the k-depth-nearest neighbour classifier (kDepthNN) was studied for the case of
multivariate normal distributions. More precisely P1 and P2 were assumed to
be two- or five- or ten-dimensional normal distributions which differ in location
and/or scatter. kDepthNN procedure was compared to the classical kNN pro-
cedure with the folowing results: kDepthNN outperforms classical kNN in the
case of different scatters (regardless of the presence or absence of the location
shift). Differences in misclassification rates increase with increasing dimension—
whereas kNN deteriorates dramatically with increasing dimension, the misclas-
sification rate of the kDepthNN remains close to the Bayes optimal rate.

3 Simulation study

Results recalled above are promising, however simulations presented in [9] were
performed only for multivariate normal distributions. Of course, the classifica-
tion in the case of normal distributions is not challenging since LDA or QDA are
known to be appropriate in this case. In the current paper we present results
of a simulation study which deals with more challenging problem. We assume
P1 and P2 be members of the family of skewed normal distributions.
The family of skewed normal distributions, introduced by Azzalini and Della

Valle (see [1]), includes normal distributions and some others, that are derived
from normal distribution by its “skewing”. The formal definition follows:

Definition 1 A d-dimensional random vector X has a central-skewed-normal
distribution with variance matrix Σ0 and skewness-regulating parameter α ∈
R

d, if its density function is of form

f(x) = 2φd(x,Σ0)Φ(α
Tx),

where φd(·,Σ0) is a density function of d-dimensional normal distribution with
zero mean and variance matrix Σ0; Φ(·) is the cumulative distribution function
of standard normal distribution. We write X ∼ SNd(0,Σ0,α).
A d-dimensional random vector Y has a skewed-normal distribution with

mean μ, variance matrix Σ and skewness-regulating parameter α ∈ R
d if

Y = μ+ ωTX,

where X ∼ SNd(0,Σ0,α), and Σ = ωTΣ0ω. We write Y ∼ SNd(μ,Σ,α).
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In our simulation study, we consider three two-dimensional examples and
three ten-dimensional examples. Parameters of the considered two-dimensional
skewed normal distributions are presented in Tab. 9. Levelsets of density of these
distributions are plotted in Fig. 2. Optimal (Bayes) classifiers, i.e. classifiers
with the minimal average misclassification rates, are also sketched in Fig. 2.

Example P1 P2

1 μ (1, 2) (0,−1)
Σ diag(1, 7) diag(1, 5)
α (−2,−5) (1, 5)

2 μ (0,−2) (0, 2)
Σ diag(1, 5) diag(2, 14)
α (1, 5) (−2,−5)

3 μ (0.4,−0.7) (−1, 0)
Σ diag(1, 1) diag(2.25, 2.25)
α (0, 2) (2, 0)

Table 9: Parameters of two-dimensional skewed normal distributions considered
in the simulation study.
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Figure 1: Comparison of levelsets of density (left) and levelsets of depth in the
Example 1.

Parameters of the considered ten-dimensional skewed normal distributions
are presented in Table 10.
In the simulation study, we generated 100 training sets, each consisting of

exactly 100 points from P1 and 100 points from P2 (equal priors are considered).
Four different classifiers are used to classify points from the training set: clas-
sical kNN, kDepthNN which is in the centre of our interest, linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA). The performance
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Example 1 − levelsets of density
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Example 1 − Bayes classifier
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Example 2 − levelsets of density
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Example 2 − Bayes classifier
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Example 3 − levelsets of density
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Example 3 − Bayes classifier
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Figure 2: Levelsets of density (left) and Bayes optimal classifiers (right) for
Examples 1, 2 and 3.
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Example P1 P2

4 μ (0, 0, 0, 0, 0, 1, 1, 1, 1, 1) (0, 0, 1, 1, 2, 2, 1, 1, 0, 0)
Σ diag(1, 3, 5, 3, 7, 7, 3, 5, 3, 1) 2 · diag(1, 3, 5, 3, 7, 7, 3, 5, 3, 1)
α (1, 2, 3, 4, 5, 5, 4, 3, 2, 1) −(1, 2, 3, 4, 5, 5, 4, 3, 2, 1)

5 μ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Σ diag(1, 7, 3, 2, 7, 1, 7, 3, 2, 7) diag(1, 2, 3, 2, 1, 1, 2, 3, 2, 1)
α (2, 5, 1, 5, 3, 2, 5, 5, 1, 5, 3) (3, 4, 2, 1, 1, 3, 4, 2, 1, 1)

6 μ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0.5, 1, 1, 2, 2, 1, 1, 0.5, 0)
Σ diag(1, 3, 5, 3, 7, 7, 3, 5, 3, 1) diag(1, 3, 5, 3, 7, 7, 3, 5, 3, 1)
α (1, 2, 3, 4, 5, 5, 4, 3, 2, 1) −(1, 2, 3, 4, 5, 5, 4, 3, 2, 1)

Table 10: Parameters of ten-dimensional skewed normal distributions considered
in the simulation study.

of classifiers is measured by average misclassification rate—percentage of incor-
rectly classified points. Number of considered nearest neighbors in the classical
kNN and the kDepthNN procedures is chosen in such a way that it minimizes
the number of incorrecly classified points.
We use the L1-depth (also known as the spatial depth) in the simulations.

Its main advantage is computational simplicity. The classification of 100 times
200 points takes about one minute on personal computer. Use of this depth
function also prevents ties and ambiguity in classification. Let us recall that the
L1-depth of a point x ∈ R

d w.r.t. a distribution P is defined as

D(x;P ) = 1−
∥∥∥∥EP

x−X

‖x−X‖
∥∥∥∥ .

For more details see [8, Section 1.2.3].
The simulation was done using statistical software R. Particularly we use

the package sn [2] which includes functions for manipulating skew-normal and
skew-t probability distributions.

Results: Table 11 displays average misclassification rates for examples 1, 2
and 3 (two-dimensional distributions). The first row of the table includes infor-
mation on the Bayes risks—minimal possible average misclassification rates—for
the considered examples. In the first example kNN is the best classifier, in the
second and the third example the QDA is the best procedure. In all three ex-
amples the kDepthNN is worse than the classical kNN. A possible explanation
of such a disappointing result is suggested in the next section.
Average misclassification rates in the ten-dimensional case are summarized in

Tab. 12. The first row of the table again includes information on the Bayes risks.
In the Example 4 the kDepthNN outperforms clearly the classical kNN and it is
the best classifier (of the four considered classifiers). QDA is comparable to the
kDepthNN in this case. The kDepthNN classifier outperforms the classical kNN
also in the Example 5. However, in this case QDA is much better. Finally in the
Example 6 all four classifiers deteriorate considerably from the Bayes optimal
classifier.
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Method Average misclassification rate
Example 1 Example 2 Example 3

Bayes 32.3 29.6 30.9
kNN 36.4 34.0 34.1

kDepthNN 42.8 35.8 35.9
LDA 38.4 40.3 43.1
QDA 39.5 32.9 31.8

Table 11: Average misclassification rates of the considered classifiers for three
two-dimensional examples.

Method Average misclassification rate
Example 4 Example 5 Example 6

Bayes 17.7 11.5 34.0
kNN 39.3 26.5 49.2

kDepthNN 26.1 22.4 49.3
LDA 38.9 38.9 47.7
QDA 26.3 15.5 49.5

Table 12: Average misclassification rates of the considered classifiers for three
ten-dimensional examples.

4 Comment on the results of the simulation study

Results of the simulation study are rather disappointing. Considering skewed
normal distributions the kDepthNN method seems to be worse than the classical
kNN method in two-dimensional case. In ten-dimensional case its performance
is unclear—sometimes it gives good results, but sometimes not. Typically if it
outperforms the classical kNN method its performance is at best as good as the
performance of QDA.
Let us suggest a possible explanation of such a poor performance. The notion

of data depth is designed to generalize the notions “median” and “quantiles” of
a univariate distribution and define “median” and “quantiles” of a multivariate
distribution (see [3]). The deepest point thus corresponds to the multivariate
median. Unfortunatelly for the skewed distributions the median does not cor-
respond to the modus—the point with the highest density. The classification
based on data depth (median and quantiles) is thus inappropriate in the case of
skewed distributions.
Let us come back to the example 1 for a while. The difference between

levelsets of density (with modus as the point with maximal density) and levelsets
of depth (with multivariate median as the point with maximal depth) can be
seen in Fig. 1. It can be seen that the modus of P1 is above the median of
P1 (vertical shift) whereas the modus of P2 (distribution that is rather left) is
under the median of P2 (again vertical shift can be observed). As the Bayes
classifier is based on the density functions, the discrepancy between levelsets of
density and levelsets of depth causes problems in classification.
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Let us conclude this section with several suggestions how to overcome the
previously described problem. These ideas might become a subject of further
investigations:

• It is well known that the performance of kNNmethods strongly depends on
the used metric. Here we used the Euclidean metric. However, it is worthy
to note that the transformation Rd → R

2 which forms the DD-plot is quite
peculiar. Thus it can be useful to study this transformation in detail and
propose another metric which would lead to lower misclassification rate.

• The shape of levelsets of depth strongly depends on the used depth func-
tion. We used L1-depth here. However, it can be useful to use another
depth function. Particularly useful might be the projection depth corre-
sponding to so called adjusted outlyingness (see [4]). Adjusted outlying-
ness measures outlyingness of points (hence also their centrality) w.r.t.
some distribution; the adjustment is made with respect to the skewness
of the distribution.

5 Conclusion

The present simulation study has uncovered inadequacy of the k-depth-nearest
neigbour procedure in the case of classification problem for two skewed normal
distributions. The classifier performs sometimes surprisingly well in higher di-
mensions, but we did not discover the class of problems for which it gives better
results than its competitors. Suggestions for further research were presented at
the end of the article.
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