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Method of infinite ascent applied on

−(2p · A6) + B3 = C2

Susil Kumar Jena

Abstract. In this paper, the author shows a technique of generating an in-
finite number of coprime integral solutions for (A,B,C) of the Diophantine
equation −(2p · A6) + B3 = C2 for any positive integral values of p when
p ≡ 1 (mod 6) or p ≡ 2 (mod 6). For doing this, we will be using a pub-
lished result of this author in The Mathematics Student, a periodical of the
Indian Mathematical Society.

1 Introduction
Many people, viz., Lebesgue [14], Ljunggren [15], Nagell [19], [20], Chao [8],
Cohn [10], Mignotte & de Weger [18], Bugeaud, Mignotte & Siksek [7] have in-
vestigated on the solution of the Diophantine equation x2 + C = yn with x ≥ 1,
y ≥ 1, n ≥ 3 and C is any integer, positive or negative for different values of
|C| ≤ 100. Le [13], Luca [16]; Arif & Muriefah [1] have considered a different form
of the equation x2 + C = yn, when C is no longer a fixed integer but the power of
one or two fixed primes.

For other related results concerning equation x2+C = yn see [2], [3], [4], [5], [9],
[11], [17], [21], [22], [23], [24]. For a survey relating equation x2 + C = yn see [6].
Allowing C to be the product of some power of 2 and an integral sixth power,
Theorem 3 and Theorem 4 give the main results of this paper. From a paper of
Jena [12], we reproduce two useful Theorems relating to the Diophantine equation

mA6 + nB3 = C2 (1)

for any pair of integers (m,n) and the integral variables (A,B,C). Basing on these
two theorems we obtain the main results of this paper.
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Theorem 1 (Jena [12]). For any integer m, p and q,

m(2pq)6 + (mp6 − q2)(9mp6 − q2)3 = (27m2p12 − 18mp6q2 − q4)2. (2)

Proof. The proof is got by expanding the terms of both the LHS and RHS of (2)
and noting their equality. �

Theorem 2 (Jena [12]). If (At, Bt, Ct) is a solution of the Diophantine equation
mA6 + nB3 = C2 with m, n, A, B and C as integers then (At+1 , Bt+1 , Ct+1) is
also a solution of the same equation such that

(At+1, Bt+1, Ct+1)

=
{

(2AtCt),−Bt(9mA6
t − C2

t ), (27m2A12
t − 18mA6

tC
2
t − C4

t )
}

(3)

and if mAt, nBt and Ct are pairwise coprime where nBt is an odd integer and 3
is not a factor of Ct then mAt+1, nBt+1 and Ct+1 are also pairwise coprime where
nBt+1 is an odd integer and 3 is not a factor of Ct+1; in addition to this, mAt+1

will be always an even integer and Ct+1 always an odd integer.

Proof. We can get details of the proof in paper [12]. �

Now, let us proceed to the next section to note the principal results of this paper.

2 Results
In this paper, we prove that for any positive integer p, when p ≡ 1 (mod 6) or
p ≡ 2 (mod 6) the Diophantine equation −(2p · A6) + B3 = C2 has infinitely
many coprime integral solutions for (A,B,C). This is equivalent to proving the
statements of Theorem 3 and Theorem 4.

Theorem 3. For any positive integer q ≥ 1, the Diophantine equation

− (26q−5 ·A6) + B3 = C2 (4)

has infinitely many coprime integral solutions for (A,B,C).

Proof. We will prove Theorem 3 in three steps. Firstly, we have to establish that
equation (4) has infinitely many coprime integral solutions for (A,B,C) when
q = 1. Secondly, we will see how to use these coprime solutions of first step to
find the initial coprime solutions for (A,B,C) of equation (4) for other values of
q > 1. Next, we will show that the conditions of generating infinite number of
coprime integral solutions, as proposed by Theorem 2, are applicable to (4) for
each value of q.

Step I. Putting q = 1 in (4) we get

− (21 ·A6) + B3 = C2. (5)

We will denote the ith solution for (A,B,C) of equation (4) when q = j as
(Ai, Bi, Ci)q=j , where i and j take positive integral values. Now, we know that

− 2 · 16 + 33 = 52. (6)



Method of infinite ascent applied on −(2p ·A6) + B3 = C2 175

Using the result of (6), we get the starting solution for (A,B,C) of equation (4) as

(A1, B1, C1)q=1 = (1, 3, 5). (7)

Comparing (5) with (1) we get m = −2 and n = 1. The conditions of generating
an infinite number of coprime integral solutions as proposed by Theorem 2 are
applicable for equation (5), because the three terms mA1, nB1 and C1 take values
−2, 3 and 5 respectively, and are pairwise coprime; nB1 is an odd integer and 3 is
not a factor of C1. Thus, Theorem 2 can be used repeatedly to generate an infinite
number of coprime integral solutions for (A,B,C). Using (3) we have

(A2, B2, C2)q=1 =
{

(2A1C1) ,−B1(9mA6
1 − C2

1 ),

(27m2A12
1 − 18mA6

1C
2
1 − C4

1 )
}

=
{

(2 · 1 · 5) ,−3 · (9 · (−2) · 16 − 52),

(27 · (−2)2 · 112 − 18 · (−2) · 16 · 52 − 54)
}

= (21 · 5, 129, 383). (8)

Using equation (3), we calculate the kth solution of (5) as

(Ak, Bk, Ck) = (2k−1 ·A′k, Bk, Ck)

where the integer k > 1, Ak = 2k−1A′k and all three terms A′k, Bk and Ck are
odd. By repeated use of equation (3) one can find any number of coprime integral
solutions for (A,B,C) of equation (5).

Step II. The first solution for (A,B,C) of equation (5) is (1, 3, 5). Using these
values for (A,B,C) in (5) we have

−2 · 16 + 33 = 52.

Or − 2 · 20 · 16 + 33 = 52.
(9)

The second solution for (A,B,C) of equation (5) is (21 · 5, 129, 383). Using these
values for (A,B,C) in (5) we get

−2 · 26 · 56 + 1293 = 3832.

Or − 27 · 56 + 1293 = 3832.
(10)

The kth solution for (A,B,C) of equation (5) is (2k−1 · A′k, Bk, Ck). Using these
values for (A,B,C) in (5) we obtain

− (26k−5 ·A′6k ) + B3
k = C2

k . (11)

When q = 1, from (9) we get the starting solution for (A,B,C) of equation (4) as
(20 · 1, 3, 5).
When q = 2, from (10) we get the starting solution for (A,B,C) of equation (4) as
(5, 129, 383).
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When q = k, from (11) we get the starting solution for (A,B,C) of equation (4)
as (A′k, Bk, Ck).

Step III. In Step I, we have already proved the validity of the statement of The-
orem 3 for q = 1. Putting q = 2 in (4) we get

− (27 ·A6) + B3 = C2. (12)

Now, for each integral value of q > 1, there is a starting solution for (A,B,C) for
equation (4) as we showed in Step II. Since the values of B and C in these starting
solutions are the same values which are generated by the subsequent solutions of
equation (4), they should be coprime; B and C are odd integers; and 3 is not a
factor of C. Hence, for any integer q > 1, the statement of Theorem 3 is valid,
because the conditions of generating infinite number of coprime integral solutions
as proposed by Theorem 2 are satisfied.

Thus, combining these three steps, we complete the proof of Theorem 3. �

Theorem 4. For any positive integer q ≥ 1, the Diophantine equation

− (26q−4 ·A6) + B3 = C2 (13)

has infinitely many coprime integral solutions for (A,B,C).

Proof. Since −(22 · 16) + 53 = 112, we get the first coprime solution for (A,B,C)
of the Diophantine equation (13) when q = 1 as

(A1, B1, C1)q=1 = (1, 5, 11) . (14)

Using Theorem 2 we obtain

(A2, B2, C2)q=1 = (21 · 11, 785,−5497) = (21 · 11, 785, 5497) . (15)

We can use (15) to get the first coprime solution for (A,B,C) of the Diophantine
equation (13) when q = 2 as

(A1, B1, C1)q=2 = (11, 785, 5497) .

Steps similar to the proof of Theorem 3 should be followed in establishing the
statement of Theorem 4. �

3 Conclusion
The proof of Theorem 3 and Theorem 4 establishes the infinitude characteristics
of the Diophantine equation

−(2p ·A6) + B3 = C2

for any positive integral values of p when p ≡ 1 (mod 6) or, p ≡ 2 (mod 6). But,
what about the status of this equation when p ≡ 0, 3, 4, or 5 (mod 6)? Well, we
don’t have the answer, because an initial starting coprime solution for (A,B,C) in
each of these cases is not available with us. It needs further investigation.
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