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HEXAVALENT (G, s)-TRANSITIVE GRAPHS
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Abstract. Let X be a finite simple undirected graph with a subgroup G of the full
automorphism group Aut(X). Then X is said to be (G, s)-transitive for a positive integer
s, if G is transitive on s-arcs but not on (s + 1)-arcs, and s-transitive if it is (Aut(X), s)-
transitive. Let Gv be a stabilizer of a vertex v ∈ V (X) in G. Up to now, the structures
of vertex stabilizers Gv of cubic, tetravalent or pentavalent (G, s)-transitive graphs are
known. Thus, in this paper, we give the structure of the vertex stabilizers Gv of connected
hexavalent (G, s)-transitive graphs.
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1. Introduction

Throughout this paper, we consider undirected finite graphs without loops or

multiple edges. For a graph X , we use V (X), E(X) and Aut(X) to denote its vertex

set, edge set, and its full automorphism group, respectively. An s-arc in a graph

X is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices of X such that vi−1

is adjacent to vi for 1 6 i 6 s, and vi−1 6= vi+1 for 1 6 i 6 s − 1. A 1-arc is

called an arc for short and a 0-arc is a vertex. For a subgroup G 6 Aut(X), X

is said to be (G, s)-arc-transitive and (G, s)-regular if G is transitive and regular

on the set of s-arcs in X , respectively. (G, s)-arc-transitive is simply called G-

symmetric. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if the graph

is not (G, s + 1)-arc-transitive. A graph X is called s-arc-transitive, s-regular and
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s-transitive if it is (Aut(X), s)-arc-transitive, (Aut(X), s)-regular and (Aut(X), s)-

transitive, respectively. In particular, X is said to be vertex-transitive and symmetric

if it is (Aut(X), 0)-arc-transitive and (Aut(X), 1)-arc-transitive, respectively.

Let X be a connected (G, s)-transitive graph for some s > 1 and let Gv be the

stabilizer of v ∈ V (X) in G. It is well known that s 6 7 and s 6= 6, which is due to

several authors. In 1947 Tutte [13] showed that if X is cubic then (G, s)-transitive

means (G, s)-regular and 1 6 s 6 5. Gardiner in [5], [6], [7] obtained that s 6 7 and

s 6= 6 for valency p + 1 with p an odd prime. Until 1981, Weiss [17] extended this

result to general valency, and showed that if s > 4 then X has valency pn + 1 with

p a prime and n a positive integer.

As we all know a graph is G-symmetric if and only if G is vertex-transitive and Gv

is transitive on the neighborhood of v. Thus, to investigate G-symmetric graphs, we

need the information about the vertex stabilizers of such graphs. Gardiner [5], [6], [7]

characterized the structure of Gv for valency p+1 with p an odd prime. For valency

5, Weiss [14], [15] obtained an upper bound of the order |Gv|, which is 217 · 32 · 5.

After that, Weiss [18] conjectured that, for a finite vertex-transitive locally-primitive

graph X , the order of the vertex stabilizer is bounded above by some function of the

valency of X . Although many results about the vertex stabilizers of arc-transitive

graphs have been achieved, this conjecture is still unsettled. For example, Weiss [18]

described the structure of Gv for s > 4. Weiss [16] showed that if X has prime

valency p > 5 and Gv is solvable, then the order |Gv|
∣

∣ p(p − 1)2. Up to now, we

have already known the exact structure of Gv with valency 3, 4 or 5: see [4] for

valency 3; [10, Theorem 4] and [19, Theorem 1.1] for valency 4 and s > 2; and [8,

Theorem 1.1] for valency 5. For the case of valency 4 and s = 1, this is particularly

difficult because the action of the vertex stabilizer on the neighborhood may not be

primitive. In this case Gv is a 2-group and has no upper bound. Potočnik, Spiga and

Verret [11] constructed two families of tetravalent 1-transitive graphs with arbitrarily

large vertex stabilizers. In this paper, we determine the structure of Gv when X is

of valency 6.

2. Preliminaries

In this section we collect some notation and preliminary results which will be used

later in the paper. In view of [20, Proposition 4.4], we have the following proposition.

Proposition 2.1. Let G be an abelian transitive group on Ω. Then G is self-

centralizing in the symmetric group SΩ.

For a graph X , let G 6 Aut(X) and let S be a subset of V (X). Denote by

G(S) the subgroup of G fixing S pointwise. In particular, for u, v, w ∈ V (X), write

924



Gu = G({u}), Guv = G({u,v}) and Guvw = G({u,v,w}). For u , v ∈ V (X), {u, v} is the

edge incident to u and v in X , and N(v) is the neighborhood of v in X . The next

proposition is from [21, Lemma 2.7].

Proposition 2.2. Let X be a connected symmetric graph and let e = {u, v} ∈

E(X). Suppose thatH 6 Aut(X) is transitive onN(v) andK 6 Aut(X) is transitive

on N(u). Then the group 〈H, K〉 6 Aut(X) is transitive on E(X).

Let G be a transitive permutation group on a set Ω and let α ∈ Ω. If the stabilizer

Gα is transitive on Ω \ {α} then G is called 2-transitive on Ω. The following propo-

sition is about sufficient and necessary conditions for symmetric graphs. Its proof is

straightforward and left to the reader.

Proposition 2.3. Let X be a graph and G 6 Aut(X). Then we have:

(1) X isG-arc-transitive if and only ifG is vertex-transitive and the vertex stabilizer

Gv is transitive on N(v) for each v ∈ V (X).

(2) X is (G, 2)-arc-transitive if and only if G is vertex-transitive and Gv is 2-

transitive on N(v) for each v ∈ V (X).

For two groups M and N , N ⋊ M stands for a semidirect product of N by M .

Let X be a graph with G 6 Aut(X) and {u, v} ∈ E(X). Write G∗
v = G({v}∪N(v))

and G∗
uv = G({u,v}∪N(v)∪N(u)).

Lemma 2.4. Let X be a connected hexavalent (G, s)-transitive graph with G 6

Aut(X) and v ∈ V (X). Then s 6 4 and

(1) if s = 3 then G∗
uv = 1;

(2) if s = 4 then Gv
∼= AGL(2, 5).

P r o o f. Since X is hexavalent, by [17, Theorem] we have s 6 4, and by [5,

Lemma 3.3] and [6, Section 1: Theorem] we can easily deduce that if s = 3 then

G∗
uv = 1.

Finally, let s = 4. Then by [5, Lemma 3.7] and [7, Lemma 4.3 (i)], G∗
v has a normal

Sylow 5-subgroup Z2
5, and by [7, Corollary 3.6], SL(2, 5) 6 Gv/Z2

5 6 GL(2, 5). Since

Gv = Z
2
5 · H is a split extension by [7, Lemma 4.7], we have Z

2
5 ⋊ SL(2, 5) 6 Gv 6

Z
2
5 ⋊ GL(2, 5), and since H acts irreducibly on Z

2
5 by [7, Lemma 4.11], we have

ASL(2, 5) 6 Gv 6 AGL(2, 5). Finally, by [7, Lemma 4.8], Gv/G∗
v = PGL(2, 5),

which forces that Gv = AGL(2, 5). �
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3. Main result

In this section, we give the main result of the paper. Let p be a prime and n

a positive integer. We denote by Zn the cyclic group of order n, by Z
n
p the elementary

abelian group of order pn, byD2n the dihedral group of order 2n, by Fn the Frobenius

group of order n, and by An and Sn the alternating group and the symmetric group

of degree n.

Theorem 3.1. Let X be a connected hexavalent (G, s)-transitive graph for some

G 6 Aut(X) and s > 1. Let v ∈ V (X). Then s 6 4 and one of the following

statements holds:

(1) For s = 1, Gv is a {2, 3}-group.

(2) For s = 2, Gv
∼= PSL(2, 5), PGL(2, 5), A6 or S6.

(3) For s = 3, Gv
∼= D10 × PSL(2, 5), F20 × PGL(2, 5), A5 × A6, S5 × S6, (D10 ×

PSL(2, 5)) · Z2 with D10 · Z2 = F20 and PSL(2, 5) · Z2 = PGL(2, 5), or (A5 ×

A6) ⋊ Z2 with A5 ⋊ Z2 = S5 and A6 ⋊ Z2 = S6.

(4) For s = 4, Gv
∼= Z

2
5 ⋊ GL(2, 5) = AGL(2, 5).

P r o o f. Clearly, s 6 4 and (4) holds by Lemma 2.4. Thus, we only need to prove

(1), (2) and (3). In what follows we may assume that s 6 3. Denote by G
N(v)
v the

constituent of Gv on N(v), that is, the permutation group induced by Gv on N(v).

Since X is hexavalent, we have G
N(v)
v = Gv/G∗

v 6 S6.

Let s = 1. Then by Proposition 2.3, G
N(v)
v is a transitive, but not a 2-transitive

permutation group of degree 6, which implies that 6
∣

∣ |G
N(v)
v | and Gv is not a {2}-

group. Let p be a prime factor of order |Gv|. Then there exists an element g of

order p in Gv. Suppose that p > 5. Then g fixes each vertex in N(v) and g ∈ G∗
v,

that is, for any vertex u ∈ N(v) we have g ∈ Gu. Again g fixes each vertex in N(u)

because p > 5. By the connectivity of X , g fixes each vertex in V (X) and hence

g = 1, a contradiction. Suppose that p = 5. Then if g fixes each vertex in N(u) for

any u ∈ V (X) then g = 1, a contradiction. Thus, there exists a vertex w ∈ V (X)

such that g has an orbit of length 5 because g has order o(g) = 5. It follows that

Gw is 2-transitive on X1(w), and hence Gv is 2-transitive on N(v), contrary to our

assumption. Thus, p 6 3. This implies that Gv is a {2, 3}-group and (1) holds.

Let s > 2. Then by Proposition 2.3, G
N(v)
v is a 2-transitive permutation group

of degree 6 and hence 5 · 6
∣

∣ |G
N(v)
v |. Since X has valency 6, we have G

N(v)
v =

Gv/G∗
v 6 S6. By Atlas [2], G

N(v)
v = PSL(2, 5), PGL(2, 5), A6 or S6. It follows that

G
N(v)\{u}
uv = D10, F20, A5 or S5. Note that each non-trivial normal subgroup of D10,

F20, A5 or S5 is transitive on N(v) \ {u} and G∗
u E Guv. Thus, G

∗
u acts trivially or

transitively on N(v) \ {u}.
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Suppose that G∗
u acts trivially on N(v) \ {u}. Then G∗

u 6 G∗
v and hence G∗

u = G∗
v

because the transitivity of G on V (X) implies |G∗
u| = |G∗

v|. Since G∗
v E Gv and

G∗
u E Gu, we have G∗

v E 〈Gu, Gv〉. By Proposition 2.2, 〈Gu, Gv〉 is transitive on

E(X). Since G∗
v fixes the edge {u, v}, it is easy to see that G∗

v fixes each edge in

X , forcing that G∗
v = 1. Thus, Gv = PSL(2, 5), PGL(2, 5), A6 or S6. Let u and w

be two distinct vertices in N(v). Then Guvw = Z2, Z4, A4 or S4, and hence Guvw

cannot act transitively on Nu \ {v} because |Nu \ {v}| = 5. It follows that G is not

3-arc-transitive. Therefore, s = 2 and (2) holds.

Suppose that G∗
u acts transitively on N(v) \ {u}. Then by the symmetry of X ,

G∗
v acts transitively on N(u) \ {v}, and by [6, Section 1: Theorem], |G∗

uv| = 1.

In particular, G∗
u 6= G∗

v. This implies that (N(u) \ {v}) ∩ (N(v) \ {u}) = ∅, that

is, X has no 3-cycles. Let (v0, v1, v2, v3) and (u0, u1, u2, u3) be two 3-arcs in X .

Then (v0, v1, v2, v3) and (u0, u1, u2, u3) are not 3-cycles. Since s > 2, there exists

an element g ∈ G such that (v0, v1, v2)
g = (u0, u1, u2). Clearly, (v0, v1, v2, v3)

g =

(u0, u1, u2, v
g
3) is a 3-arc. Note that G∗

u1
fixes u0, u1 and u2, and acts on N(u2)\{u1}

transitively. Thus, there exists an element h ∈ G∗
u1
such that vgh

3 = u3, that is,

(v0, v1, v2, v3)
gh = (u0, u1, u2, u3). It follows that X is (G, 3)-arc-transitive. Recall

that we assume s 6 3. Thus, in this case s = 3.

Note that the kernel of the action of G∗
u acting on N(v) \ {u} equals G∗

u ∩ G∗
v =

G∗
uv = 1. Thus, G∗

u acts faithfully and transitively on N(v) \ {u}. Set H = 〈G∗
z ; z ∈

N(v)〉. Since all of the G∗
z (z ∈ N(v)) are conjugate to each other in Gv, H E Gv,

and since for each z ∈ N(v), G∗
z is transitive on N(v)\{z}, we haveH is transitive on

N(v). Recall thatG
N(v)
v = PSL(2, 5), PGL(2, 5), A6 or S6. Thus,H

N(v) = PSL(2, 5),

PGL(2, 5), A6 or S6. Let α ∈ G∗
v and β ∈ G∗

z . Then for each x ∈ N(v), we

have xα−1β−1αβ = xβ−1αβ = (xβ−1

)αβ = (xβ−1

)β = x and also this is true for any

x ∈ X1(z) because xα−1

∈ N(z). Thus, α−1β−1αβ ∈ [G∗
v, G∗

z] 6 G∗
vz = 1 and hence

[G∗
v, H ] = 1. It follows that H ∩ G∗

v 6 Z(G∗
v), the center of G∗

v. Since G∗
v E Guv,

we have 1 6= G∗
v
∼= G∗

v/G∗
uv

∼= G∗
vG∗

u/G∗
u E G

N(u)
uv . Note that G

N(u)
uv = D10, F20,

A5 or S5. Thus, G∗
v = Z5, D10, F20, A5 or S5. Take h ∈ H such that h fixes

u with two 2-cycles on N(v) and has order 2-power. Then h fixes some vertex

y ∈ N(u) with y 6= v. Note that G∗
v is transitive on N(u) \ {v} with a regular

subgroup Z5 and h commutes with every element in G∗
v. If h acts on N(u) \ {v}

non-trivially, then h induces a 5-cycle that lies in Z5 by Proposition 2.1. This is

impossible because h fixes y ∈ N(u) \ {v} and the order of h has 2-power. Thus,

h ∈ G∗
u and 2

∣

∣ |G∗
u|. It follows that G∗

v = D10, F20, A5 or S5 and H ∩ G∗
v 6

Z(G∗
v) = 1. This implies that G∗

vH = G∗
v × H and H acts faithfully on N(v),

that is, H = HN(v) = PSL(2, 5), PGL(2, 5), A6 or S6. By the definition of H ,

we have G∗
u 6 Hu for u ∈ N(v). If Hu 6= G∗

u then 1 6= Hu/G∗
u is a permutation

group on N(u) \ {v}. It follows that there exists an element g ∈ Hu such that g
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acts on N(u) \ {v} non-trivially. Since G∗
vH = G∗

v × H , we have that g commutes

with G∗
v. Recall that G∗

v acting on N(u) \ {v} has a regular subgroup Z5. Thus, g

centralizes Z5, which is impossible by Proposition 2.1. Thus, Hu = G∗
u and hence

|H | = 6 · |Hu| = 6 · |G∗
u| = 6 · |G∗

v|. It forces that if G
∗
v = D10 then H = PSL(2, 5);

if G∗
v = F20 then H = PGL(2, 5); if G∗

v = A5 then H = A6; if G∗
v = S5 then

H = S6.

Assume that G∗
v = D10. Then H = PSL(2, 5). Recall that Gv/G∗

v = PSL(2, 5),

PGL(2, 5), A6 or S6. Since H ∼= G∗
vH/G∗

v E Gv/G∗
v, we have Gv/G∗

v = PSL(2, 5) or

PGL(2, 5). If Gv/G∗
v = PSL(2, 5) then G∗

vH/G∗
v = Gv/G∗

v. It follows that G∗
vH =

Gv and hence Gv = D10 × PSL(2, 5).

If Gv/G∗
v = PGL(2, 5) then |Gv : G∗

vH | = 2 and G
N(v)\{u}
uv = F20. Thus, there

exists a 2-element g ∈ Guv such that g induces a 4-cycle on N(v)\{u}. Since g is a 2-

element, g induces the identity, a transposition, two 2-cycles or a 4-cycle on N(u) \

{v}. If g induces the identity on N(u)\{v} then g ∈ G∗
u, which is impossible because

G∗
u = D10 acts faithfully on N(v). If g induces a transposition on N(u) \ {v} then

gG∗
u ∈ Gu/G∗

u
∼= PGL(2, 5), which is impossible because a primitive permutation

group of degree 6 containing a transposition must be S6 (see [3, Theorem 3.3A]).

If g induces two 2-cycles on N(u) \ {v} then g induces an even permutation on

N(u)\{v}. Note that G
N(v)\{u}
uv = F20 and G∗

v = D10 acts faithfully and transitively

on N(u) \ {v}. It forces that g ∈ G∗
v, which is impossible because g induces a 4-cycle

on N(v). Thus, g induces a 4-cycle on N(u)\{v}. It follows that g4 ∈ G∗
uv = 1, that

is, g has order 4. Since g2 induces two 2-cycles on both N(u) \ {v} and N(v) \ {u},

we have g2 ∈ G∗
v ×H , and since G∗

v < G∗
v · 〈g〉 = G∗

v ·Z2 6 G
N(u)\{v}
uv = F20, we have

G∗
v · 〈g〉 = F20. Thus, we have Gv = (D10 × PSL(2, 5)) · 〈g〉 = (D10 × PSL(2, 5)) · Z2

with D10 · Z2 = F20 and PSL(2, 5) · Z2 = PGL(2, 5).

Assume that G∗
v = F20. Then H = PGL(2, 5). Since HG∗/G∗

v E Gv/G∗
v, we have

Gv/G∗
v = PGL(2, 5) and hence Gv = G∗

vH = F20 × PGL(2, 5).

Assume that G∗
v = A5. Then H = A6. Since H ∼= G∗

vH/G∗
v E Gv/G∗

v 6 S6, we

have Gv/G∗
v = A6 or S6. If Gv/G∗

v = A6 then Gv = G∗
vH = A5 × A6.

If Gv/G∗
v = S6 then |Gv : G∗

vH | = 2. Clearly, G∗
vH = A5 × A6 ⊳ Gv, G∗

v ⊳ Gv

and H ⊳ Gv. Since G
N(v)
v = Gv/G∗

v = S6, there exists an element g1 ∈ Guv such

that g1 induces a transposition on N(v). Since G∗
v = A5 and G∗

v acts faithfully

on N(u), there exists an element g2 ∈ G∗
v such that g1g2 induces the identity or

a transposition on N(u) \ {v}. For the former, g1g2 ∈ G∗
u and g1g2 induces the same

transposition as g1 on N(v), contrary to the fact that G∗
u = A5, acting faithfully

on N(v). Set g = g1g2. Thus, g ∈ Guv induces a transposition on both N(u) and

N(v). Furthermore, g2 ∈ G∗
uv = 1 and hence g is an involution. It follows that

H〈g〉 = S6 and G∗
v〈g〉 = S5 because G∗

v ⊳ Gv and H ⊳ Gv. Thus, (A5 × A6) ⋊ Z2

with Gv = A5 ⋊ Z2 = S5 and A6 ⋊ Z2 = S6.
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Assume that G∗
v = S5. Then H = S6. Since S6 6 G∗

vH/G∗
v 6 Gv/G∗

v 6 S6, we

have Gv = G∗
vH and hence Gv = G∗

vH = S5 × S6. Thus, (3) holds. �

4. Examples

Let X be a connected hexavalent (G, s)-transitive graph and let v ∈ V (X). In

this section, we show that each type of Gv in Theorem 3.1 can be realized. Let n be

a positive integer. Denote by Cn, Kn and Kn,n the cycle of order n, the complete

graph of order n and the complete bipartite graph of order 2n, respectively. The first

example is a connected hexavalent (G, 1)-transitive graph with Gv a {2, 3}-group and

the order |Gv| having no upper bound.

Example 4.1. The lexicographic product Cn[3K1] is defined as the graph with

vertex set V (Cn)×V (3K1) such that for any two vertices u = (x1, y1) and v = (x2, y2)

in V (Cn[3K1]), u is adjacent to v in Cn[3K1] if and only if {x1, x2} ∈ E(Cn).

Then Cn[3K1] is a connected hexavalent 1-transitive graph with Aut(Cn[3K1]) =

Sn
3 ⋊D2n and a vertex stabilizer Aut(Cn[3K1])v of v ∈ V (Cn[3K1]) in Aut(Cn[3K1])

isomorphic to (Sn−1
3 · Z2) ⋊ Z2.

Next we give a connected hexavalent (G, 2)-transitive graph with Gv isomorphic

to A6 or S6.

Example 4.2. Let X = K7. Then A = Aut(X) = S7. Clearly, A has an arc-

transitive subgroup B isomorphic to A7. Thus, the vertex stabilizers Av and Bv of

v ∈ V (K7) in A and B are isomorphic to S6 and A6, respectively.

The following example is a connected hexavalent G-arc-transitive graph with Gv

isomorphic to PSL(2, 5), PGL(2, 5), D10 × PSL(2, 5), F20 × PGL(2, 5), A5 × A6,

S5 × S6, (D10 × PSL(2, 5)) · Z2 with D10 · Z2 = F20 and PSL(2, 5) · Z2 = PGL(2, 5),

or (A5 × A6) ⋊ Z2 with A5 ⋊ Z2 = S5 and A6 ⋊ Z2 = S6.

Example 4.3. Let X = K6,6 with bipartite sets {1, 3, 5, 7, 9, 11} and {2, 4,

6, 8, 10, 12}. Then A = Aut(X) ∼= S6 ≀ S2 and A1 = S5 × S6. Clearly, A has

a 3-transitive subgroup B ∼= A6 ≀ S2 and B1 = A5 × A6. Let C = 〈B, (1, 3)(2, 12)〉.

Then C is 3-transitive and C1 = (A5×A6)⋊Z2 with A5⋊Z2 = S5 and A6⋊Z2 = S6.

Take the following elements in A:

a = (2, 4, 6, 8, 12), b = (1, 12)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11),

c = (2, 8)(10, 12), d = (2, 4)(6, 8)(10, 12),

e = (1, 11)(2, 4)(3, 5)(6, 8)(7, 9)(10, 12).
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Then by Magma [1], G = 〈a, b, c〉 = PSL(2, 5) ≀ S2, H = 〈B, d〉 = PGL(2, 5) ≀ S2

and K = 〈a, b, e〉 are 3-transitive. Furthermore, G1 = D10 × PSL(2, 5), H1 = F20 ×

PGL(2, 5) and K1 = (D10 ×PSL(2, 5)) ·Z2 with D10 ·Z2 = F20 and PSL(2, 5) ·Z2 =

PGL(2, 5).

Take the following elements in A:

w = (1, 9, 7, 3, 5)(2, 6, 4, 8, 12), x = (1, 2)(3, 4)(5, 6)(7, 8)(9, 12)(10, 11),

y = (1, 3)(4, 12)(6, 10)(9, 11), z = (1, 5, 11)(3, 7, 9)(6, 10, 12),

g = (1, 9)(2, 12)(3, 7)(5, 11).

LetM = 〈w, x, y, z〉 and N = 〈M, g〉. Then by Magma [1],M and N are 2-transitive

with M1 = PSL(2, 5) and N1 = PGL(2, 5).

Let G be a finite group, H a subgroup of G and D = D−1 a union of several

double-cosets of the form HgH with g /∈ H . The coset graph X = Cos(G, H, D) of

G with respect to H and D is defined to have vertex set V (X) = [G : H ], the set of

the right cosets of H in G, and edge set E(X) = {{Hg, Hdg}; g ∈ G, d ∈ D}. Then

X is well defined and has valency |D|/|H |. Furthermore, X is connected if and only

if D generates G. Note that G acts on V (X) by right multiplication and so we can

view G/HG as a subgroup of Aut(X), where HG is the largest normal subgroup of

G contained in H . It is easy to see that G is transitive on the arcs of X if and only

if D = HgH for some g ∈ G \ H . Denote by 51+2
+ the unique non-abelian group of

order 125 with exponent 5. The following example is extracted from [9, Section 2]

(also see [12]).

Example 4.4. Let G = Ru. Then G has a maximal subgroup H = AGL(2, 5).

Let p be a Sylow 5-subgroup of H . Then by Atlas [2], L = NH(P ) = 51+2
+ . (Z4 · Z4)

and NG(P ) = 51+2
+ . (Z4 · S4). Let M be a {2, 5}-subgroup of NG(P ) such that

L 6 M . Then |M : L| = 2 and there exists a 2-element g ∈ M \ L such g2 ∈ L and

Lg = L. It follows that L = H ∩ Hg, HgH = Hg−1H and |H : H ∩ Hg| = 6. Since

H is maximal in G, we have 〈H, g〉 = G. Thus, the coset graph Cos(G, H, HgH) is

connected, hexavalent and (G, 4)-transitive withH = AGL(2, 5) as a vertex stabilizer

in G.
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