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Abstract. In the current work, a new notion of n-weak amenability of Banach algebras
using homomorphisms, namely (ϕ,ψ)-n-weak amenability is introduced. Among many
other things, some relations between (ϕ,ψ)-n-weak amenability of a Banach algebra A and
Mm(A), the Banach algebra of m × m matrices with entries from A, are studied. Also,
the relation of this new concept of amenability of a Banach algebra and its unitization is
investigated. As an example, it is shown that the group algebra L1(G) is (ϕ,ψ)-n-weakly
amenable for any bounded homomorphisms ϕ and ψ on L1(G).
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1. Introduction

The notion of amenability for Banach algebras was introduced by Johnson in [7].

A Banach algebra A is amenable if H1(A, X∗) = {0} for every Banach A-module

X , where H1(A, X∗) is the first Hochschild cohomology group of A with coefficients

in X∗. One of the fundamental results of Johnson [7] was that the group algebra

L1(G) is an amenable Banach algebra if and only if G is an amenable locally compact

group. Dales et al. introduced the notion of n-weak amenability of Banach algebras

in [4]. A Banach algebra A is n-weakly amenable if H1(A,A(n)) = {0}, where A(n) is

the n-th dual space of A (1-weak amenability is called weak amenability). A Banach

algebra is called permanently weakly amenable if it is n-weakly amenable for each

positive integer n. It is well known that for any locally compact group G, L1(G)

is permanently weakly amenable (see [3], [4] and [8]). Then n-weak amenability of

some Banach algebras is investigated in [6].

In [1], Bodaghi et al. generalized the concept of weak amenability of a Banach

algebra A to that of (ϕ, ψ)-weak amenability, where ϕ and ψ are continuous homo-
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morphisms on A (the case of amenability has been earlier developed by Moslehian

and Motlagh in [12]). They determined the relations between weak amenability

and (ϕ, ψ)-weak amenability of a Banach algebra A. In [5], Eshaghi and Jabbari

showed that for a locally compact group G, L1(G) is (ϕ, ψ)-weakly amenable for all

continuous homomorphisms ϕ and ψ from L1(G) into L1(G).

In this paper, we shall extend the concept of n-weak amenability to that of (ϕ, ψ)-

n-weak amenability of Banach algebras which is somewhat different from the notion

(ϕ)-n-weak amenability introduced in [11]. We investigate some relations between

(ϕ, ψ)-n-weak amenability of a Banach algebra A and Mm(A), the Banach algebra

of m×m matrices with entries from A. Among other examples, we show that L1(G)

is (ϕ, ψ)-n-weakly amenable for all bounded homomorphisms ϕ and ψ on L1(G).

2. (ϕ, ψ)-n-weak amenability

Let A and B be Banach algebras. We denote by Hom(A,B) the space of all

bounded homomorphisms from A into B, with the operator norm, and denote

Hom(A,A) by Hom(A). Throughout the paper, by continuity we mean that a ho-

momorphism or derivation is continuous in norm topology.

Let A be a Banach algebra and let ϕ and ψ be in Hom(A). We consider the

following module actions on A:

a · x = ϕ(a) · x, x · a = x · ψ(a) ∀a, x ∈ A.

We denote the above A-module by A(ϕ,ψ). Let n ∈ N. The natural A-module actions

on (A(ϕ,ψ))
(n)(the n-th dual of A) are as follows:

a · a(2n) = ϕ(a) · a(2n), a(2n) · a = a(2n) · ψ(a) ∀a ∈ A, a(2n) ∈ (A(ϕ,ψ))
(2n).

a · a(2n−1) = ψ(a) · a(2n−1), a(2n−1) · a = a(2n−1) · ϕ(a)

∀a ∈ A, a(2n−1) ∈ (A(ϕ,ψ))
(2n−1).

A bounded linear mapD : A → (A(ϕ,ψ))
(2n) is called a (ϕ, ψ)-derivation ifD(ab) =

D(a) · ψ(b) + ϕ(a) ·D(b), for all a, b ∈ A. For the odd case, a bounded linear map

D : A → (A(ϕ,ψ))
(2n−1) is a (ϕ, ψ)-derivation if D(ab) = D(a) · ϕ(b) + ψ(a) · D(b)

for all a, b ∈ A. A bounded linear map D : A → (A(ϕ,ψ))
(2n) is called (ϕ, ψ)-inner

if there exists x ∈ (A(ϕ,ψ))
(2n) such that D(a) := δa(a) = ϕ(a) · x − x · ψ(a), for all

a ∈ A. Also D : A → (A(ϕ,ψ))
(2n−1) is (ϕ, ψ)-inner if there exists x ∈ (A(ϕ,ψ))

(2n−1)

such that D(a) = x · ϕ(a) − ψ(a) · x for all a ∈ A. The Banach algebra A is called

(ϕ, ψ)-n-weakly amenable if every (ϕ, ψ)-derivation D : A → (A(ϕ,ψ))
(n) is (ϕ, ψ)-

inner.
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The following proposition is analogous to Proposition 1.2 from [4] in a more general

setting. Since the proof is similar, it is omitted.

Proposition 2.1. Let A be a Banach algebra and let n ∈ N. If A is (ϕ, ψ)-

(n+ 2)-weakly amenable, then A is (ϕ, ψ)-n-weakly amenable.

For a Banach algebra A, we put A2 = span{ab : a, b ∈ A}. The next proposition

is proved in [1, Proposition 2.1].

Proposition 2.2. Let A be Banach algebra and let ϕ, ψ ∈ Hom(A) such that

ϕ(a)b = aψ(b) for all a, b ∈ A. If A is (ϕ, ψ)-weakly amenable, then A2 = A, where

A2 is the closure of A2 in A.

Let A be a non-unital Banach algebra. Then A# = A⊕Ce, the unitization of A,

is a unital Banach algebra with the following product:

(a, α)(b, β) = (ab + αb+ βa, αβ) ∀a, b ∈ A, α, β ∈ C.

Define e∗ ∈ A#∗ by requiring 〈e∗, e〉 = 1 and 〈e∗, a〉 = 0 for all a ∈ A. Then we have

the following identification:

A#(2n) = A(2n) ⊕ Ce ∀n ∈ N,

A#(2n+1) = A(2n+1) ⊕ Ce∗ ∀n ∈ Z
+.

Let ϕ, ψ ∈ Hom(A). Define the map ϕ̂ : A# → A# via ϕ̂(a, α) = (ϕ(a), α). It is

easy to see that ϕ̂ ∈ Hom(A#). The A#-module actions on (A(ϕ,ψ))
#(2n+1) are

given by

(a+ αe) · (a(2n+1) + βe∗) = ψ(a) · a(2n+1) + αa(2n+1) + (αβ + 〈a(2n+1), a〉)e∗,

(a(2n+1) + βe∗) · (a+ αe) = a(2n+1) · ϕ(a) + αa(2n+1) + (αβ + 〈a(2n+1), a〉)e∗.

The following result is analogous to [4, Proposition 1.4], but we include the proof

for the sake of completeness.

Theorem 2.1. Let A be a non-unital Banach algebra and let ϕ, ψ ∈ Hom(A),

n ∈ N.

(i) Suppose that A# is (ϕ̂, ψ̂)-2n-weakly amenable. Then A is (ϕ, ψ)-2n-weakly

amenable;

(ii) Suppose ϕ(a)b = aψ(b) for all a, b ∈ A. If A is (ϕ, ψ)-(2n−1)-weakly amenable,

then A# is (ϕ̂, ψ̂)-(2n− 1)-weakly amenable.

101



P r o o f. (i) Assume that D : A → (A(ϕ,ψ))
(n) is a bounded (ϕ, ψ)-derivation.

Consider A#-module actions on (A(ϕ,ψ))
(2n) as follows:

(a, α) · a(2n) = ϕ(a)a(2n) + αa(2n), a(2n) · (a, α) = a(2n) · ψ(a) + αa(2n),

for all a ∈ A, a(2n) ∈ A(2n) and α ∈ C. Define the map D̂ : A# → A#(2n) by

D̂((a, α)) = D(a), for all a ∈ A. One can check that D̂ is a (ϕ̂, ψ̂)-derivation. This

shows that A is (ϕ, ψ)-2n-weakly amenable.

(ii) Since A# is unital, without loss of generality, we may assume that

D : A# → (A(ϕ̂,ψ̂))
#(2n−1); a 7→ 〈a∗, a〉 e∗ + D̂(a)

is a continuous (ϕ̂, ψ̂)-derivation in which a∗ ∈ A∗. It is easy to see that D̂ : A →

(A(ϕ,ψ))
(2n−1) is a continuous (ϕ, ψ)-derivation. Thus there exists a

(2n−1)
0 ∈ A(2n−1)

such that D̂(a) = a
(2n−1)
0 ·ϕ(a)−ψ(a) ·a

(2n−1)
0 for all a ∈ A. Given a, b ∈ A we have

〈a∗, ab〉 = 〈D̂(b), a〉+ 〈D̂(a), b〉

= 〈a
(2n−1)
0 · ϕ(b)− ψ(b) · a

(2n−1)
0 , a〉+ 〈a

(2n−1)
0 · ϕ(a)− ψ(a) · a

(2n−1)
0 , b〉

= 〈a
(2n−1)
0 , ϕ(b)a− aψ(b)〉+ 〈a

(2n−1)
0 , ϕ(a)b− bψ(a)〉 = 0.

Therefore a∗|A2 = 0. By Proposition 2.1, A is (ϕ, ψ)-weakly amenable. Now, Propo-

sition 2.2 shows thatA2 is dense in A. Hence a∗ = 0 and thusD = D̂ is a (ϕ, ψ)-inner

derivation. �

Theorem 2.2. Let A be a Banach algebra and ψ, ϕ, λ ∈ Hom(A). If ϕ is an

epimorphism and A is (ψ ◦ ϕ, λ ◦ ϕ)-n-weakly amenable, then A is (ψ, λ)-n-weakly

amenable. The converse is true if ϕ2 is an identity map.

P r o o f. We show the proof for the even case. The odd case is similar. Let

D : A → (A(ψ,λ))
(2n) be a continuous (ψ, λ)-derivation and D̃ = D ◦ ϕ. For each

a, b, c ∈ A, we have

D̃(ab) = (D ◦ ϕ)(ab) = D(ϕ(a)ϕ(b))

= D(ϕ(a)) · λ(ϕ(b)) + ψ(ϕ(a)) ·D(ϕ(b))

= D̃(a) · (λ ◦ ϕ)(b) + (ψ ◦ ϕ)(a) · D̃(b).

Thus D̃ is an (ψ ◦ϕ, λ◦ϕ)-derivation. So there exists Φ ∈ (A(ψ◦ϕ,λ◦ϕ))
(2n) such that

for each a ∈ A, D̃(a) = (ψ ◦ ϕ)(a) · Φ− Φ · (λ ◦ ϕ)(a). Let b ∈ A. Then there exists

a ∈ A such that ϕ(a) = b and so

D(b) = D(ϕ(a)) = D̃(a) = ψ(ϕ(a)) · Φ− Φ · λ(ϕ(a)) · Φ = ψ(b) · Φ− Φ · λ(b).

Therefore D is an (ψ, λ)-inner derivation.
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Conversely, suppose that D : A → (A(ψ◦ϕ,λ◦ϕ))
(2n) is a (ψ ◦ ϕ, λ ◦ ϕ)-derivation

and let D̃ = D ◦ ϕ−1. For every a, b ∈ A, we get

D̃(ab) = D ◦ ϕ−1(ab) = D(ϕ−1(a)ϕ−1(b))

= D(ϕ−1(a)) · λ ◦ ϕ(ϕ−1(b)) + ψ ◦ ϕ(ϕ−1(a)) ·D(ϕ−1(b))

= D(ϕ−1(a)) · λ(b) + ψ(a) ·D(ϕ−1(b))

= D̃(a) · λ(b) + ψ(a) · D̃(b).

Due to (ψ, λ)-n-weak amenability of A, there exists an Ψ ∈ (A(ψ,λ))
(2n) such that

for all a ∈ A, D̃(a) = ψ(a) · Ψ − Ψ · λ(a) and thus we have D(a) = D(ϕ−1(ϕ(a)) =

D̃(ϕ(a)) = ψ(ϕ(a)) ·Ψ−Ψ ·λ(ϕ(a)). Therefore D is an (ψ◦ϕ, λ◦ϕ)-inner derivation.

�

Corollary 2.1. Let A be a Banach algebra and let ϕ ∈ Hom(A). Then the

following statements hold:

(i) If ϕ is an epimorphism and A is (ϕm, ϕm)-n-weakly amenable for some m ∈ N,

then A is n-weakly amenable;

(ii) If A is n-weakly amenable such that ϕ2 = 1A, then A is (ϕ2, ϕ2)-n-weakly

amenable.

Let � and ♦ be the first and second Arens products on the second dual space A∗∗,

then A∗∗ is a Banach algebra with respect to both of these products. Similar to [11,

Proposition 4.4], we have the following result:

Proposition 2.3. Let A be a Banach algebra, ϕ, ψ ∈ Hom(A) and let X be

a Banach A-bimodule. Suppose D : A → X is a continuous (ϕ, ψ)-derivation. Then

D′′ : (A∗∗,�) → X∗∗ is a continuous (ϕ′′, ψ′′)-derivation.

Proposition 2.4. Let A be a Banach algebra with a bounded approximate iden-

tity and let X be a Banach A-bimodule. If ϕ, ψ ∈ Hom(A), D : A → X∗ is a con-

tinuous (ϕ, ψ)-derivation and there exists σ ∈ X∗ such that

〈D(a), ϕ(b) · x · ψ(c)〉 = 〈ψ(a) · σ − σ · ϕ(a), ϕ(b) · x · ψ(c)〉,

for all a, b, c ∈ A and x ∈ X , then D is (ϕ, ψ)-inner.

P r o o f. Replacing D with D − δσ, we may suppose that

〈D(a), ϕ(b) · x · ψ(c)〉 = 0 ∀a, b, c ∈ A, x ∈ X.
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The above equality shows that

(2.1) ψ(c) ·D(a) · ϕ(b) = 0

for all a, b, c ∈ A. Assume that (ej) ⊆ A is a bounded approximate identity for which

the iterated weak*-limit σ0 = lim
j

lim
k
(ψ(ej) ·D(ek)−D(ek) · ϕ(ej)) exists. For each

b ∈ A and x ∈ X , by applying (2.1) we get

〈D(b), x〉 = lim
j

lim
k
〈D(ejbek), x〉

= lim
j

lim
k
〈D(ej) · ϕ(b)ϕ(ek) + ψ(ej) ·D(bek), x〉

= lim
j

lim
k
〈D(ej) · ϕ(b)ϕ(ek) + ψ(ej) ·D(b) · ϕ(ek) + ψ(ej)ψ(b) ·D(ek), x〉

= lim
k
〈D(ek) · ϕ(b) + ψ(b) ·D(ek), x〉

= lim
j

lim
k
〈ψ(b) · [ψ(ej) ·D(ek)−D(ek) · ϕ(ej)], x〉

− lim
j

lim
k
〈[ψ(ej) ·D(ek)−D(ek) · ϕ(ej)] · ϕ(b), x〉

= 〈ψ(b) · σ0 − σ0 · ϕ(b), x〉.

Consequently, D is a (ϕ, ψ)-inner derivation. �

Letm,n ∈ N and letA be a Banach algebra. The set ofm×mmatrices with entries

from A, denoted by Mm(A), is a Banach algebra with product in the obvious way

and ℓ1-norm. Supposing that ϕ, ψ ∈ Hom(A), we consider Mm(A(ϕ,ψ)) as a Banach

Mm(A)-module as follows:

(a · x)ij =

m∑

k=1

ϕ(aik) · xkj , (x · a)ij =

m∑

k=1

xikψ(akj),

where a = (aij) ∈ Mm(A), x = (xij) ∈ Mm(A(ϕ,ψ)). We identify Mm(A(ϕ,ψ))
(n)

with Mm((A(ϕ,ψ))
(n)) as Banach A-modules and thus

(a · x(2n))ij =

m∑

k=1

ϕ(ajk) · x
(2n)
ik , (x(2n) · a)ij =

m∑

k=1

x
(2n)
kj · ψ(aki)(2.2)

(a · x(2n−1))ij =
m∑

k=1

ψ(ajk) · x
(2n−1)
ik , (x(2n−1) · a)ij =

m∑

k=1

x
(2n−1)
kj · ψ(aki)(2.3)

where a = (aij) ∈ Mm(A) and x(n) = (x
(n)
ij ) ∈ Mm((A(ϕ,ψ))

(n)). For a ∈ A and

i, j ∈ N, we put (a)ij = a⊗ εij ∈Mm(A), where εij is the matrix whose entries is 1

if i = j, and zero otherwise.
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Theorem 2.3. Let A be a Banach algebra with identity, ϕ, ψ ∈ Hom(A) and let

I : Mm(A) →Mm(A) be the identity map. Then

(i) A is (ϕ, ψ)-2n-weakly amenable if and only ifMm(A) is (ϕ⊗I, ψ⊗I)-2n-weakly

amenable;

(ii) A is (ϕ, ψ)-(2n − 1)-weakly amenable if and only if Mm(A) is (ϕ ⊗ I, ψ ⊗ I)-

(2n− 1)-weakly amenable.

P r o o f. (i) Suppose A is (ϕ, ψ)-2n-weakly amenable and D : Mm(A) →

Mm((A(ϕ,ψ))
2n) is a (ϕ ⊗ I, ψ ⊗ I)-derivation. We are regarding Mm, the Ba-

nach algebra of m × m matrices with entries from C, as a subalgebra Mm(A).

Since Mm is amenable, there exists x
(2n) = (x

(2n)
ij ) ∈ Mm((A(ϕ,ψ))

2n) such that

D|Mm
= δx(2n) |Mm

. Replacing D − δx(2n) by D, we may suppose D|Mm
= 0. For

a ∈ A and r, s ∈ N, set D((a)rs) = (dr,sij : i, j ∈ Nm) ∈ Mm((A(ϕ,ψ))
2n) and

d
(1,1)
11 = d(a). We have D((a)rs) = D(εr1(a)11ε1s) = εr1 · D((a)11) · ε1s, since

D(εr1) = D(ε1s) = 0. According to (2.2), we have d
(r,s)
ij = 0 unless (i, j) = (r, s),

and in this case set d
(r,s)
rs = d(a). It is easy to see that d : A → A(2n) is a (ϕ, ψ)-

derivation. By assumption there exists a(2n) ∈ A(2n) such that

(2.4) d(a) = ϕ(a) · a(2n) − a(2n) · ψ(a) ∀a ∈ A.

Take X ∈Mm((A(ϕ,ψ))
2n) to be the matrix that has a(2n) in each diagonal position

and zero elsewhere. By (2.2) and (2.4), we have

D((a)ij) = (ϕ(a))ij ·X −X · (ψ(a))ij = (ϕ ⊗ I)(a⊗ εij) ·X − (ψ ⊗ I)(a⊗ εij).

On the other hand,

D((aij)) = (ϕ⊗ I)((aij)) ·X −X · (ψ ⊗ I)((aij)).

The above equalities show that Mm((A(ϕ,ψ))
(2n)) is (ϕ ⊗ I, ψ ⊗ I)-2n-weakly

amenable.

Conversely, assume thatMm((A(ϕ,ψ))
(2n)) is (ϕ⊗I, ψ⊗I)-2n-weakly amenable and

D : A → (A(ϕ,ψ))
(2n) is a (ϕ, ψ)-derivation. It is easy to check thatD⊗I : A⊗Mm →

(A(ϕ,ψ))
(2n) ⊗Mm is a (ϕ⊗ I, ψ⊗ I)-derivation. We identify Mm((A(ϕ,ψ))

(2n)) with

(A(ϕ,ψ))
(2n) ⊗Mm. By assumption there exists x ∈ (A(ϕ,ψ))

(2n) ⊗Mm such that

x =
m∑

i,j=1

x
(2n)
ij ⊗ εij and D ⊗ I = δx. For each a ∈ A, we have

D ⊗ I(a⊗ ε11) = D(a)⊗ ε11 = (a⊗ ε11) · x− x · (a⊗ ε11)

= (ϕ(a)⊗ ε11) · x− x · (ψ(a)⊗ ε11)

=

m∑

i=1

(ϕ(a) · x
(2n)
i1 )⊗ εi1 −

m∑

j=1

(x
(2n)
1j · ψ(a))⊗ ε1j .

105



The above equalities imply that D(a) = ϕ(a) · x
(2n)
11 − x

(2n)
11 ·ψ(a), so A is (ϕ, ψ)-2n-

weakly amenable.

(ii) The proof is similar to (i). �

Let A and B be Banach algebras, n ∈ N and θ : A → B is a continuous homo-

morphism. Then B(n) (the n-th dual of B) can be regarded as A-module under the

module actions

a · b(n) = θ(a) · b(n), b(n) · a = b(n) · θ(a) ∀a ∈ A, b(n) ∈ B(n).

Let n ∈ N. Then, the n-th adjoint map of θ is A-module homomorphism.

Theorem 2.4. Let A and B be Banach algebras and let ϕ, ψ ∈ Hom(B). Let

θ1 ∈ Hom(A,B) and θ2 ∈ Hom(B,A) such that θ1 ◦ θ2 = IB, n ∈ N. Then the maps

ϕ̃ = θ2 ◦ ϕ ◦ θ1 and ψ̃ = θ2 ◦ ψ ◦ θ1 are in Hom(A) and

(i) If A is (ϕ̃, ψ̃)-2n-weakly amenable, then B is (ϕ, ψ)-2n-weakly amenable;

(ii) If A is (ϕ̃, ψ̃)-(2n− 1)-weakly amenable, then B is (ϕ, ψ)-(2n− 1)-weakly

amenable.

P r o o f. Obviously ϕ̃, ψ̃ ∈ Hom(A).

(i) Suppose A is (ϕ̃, ψ̃)-2n-weakly amenable and D : B → (B(ϕ,ψ))
(2n) is a (ϕ, ψ)-

derivation. The map D̃ = θ
(2n)
2 ◦D ◦ θ

1
: A → (A(ϕ,ψ))

(2n) is a bounded linear map.

For each a1, a2 ∈ A, we have

D̃(a1a2) = θ
(2n)
2 ◦D ◦ θ

1
(a1a2) = θ

(2n)
2 (D(θ1(a1)θ1(a2)))

= θ
(2n)
2 (D(θ1(a1)) · ψ(θ1(a2)) + ϕ(θ1(a1)) ·D(θ1(a2)))

= θ
(2n)
2 ◦D ◦ θ1(a1) · θ2(ψ(θ1(a2))) + θ2(ϕ(ϕ(a1))) · θ

(2n)
2 ◦D ◦ θ1(a2)

= θ
(2n)
2 ◦D ◦ θ1(a1) · ψ̃(a2) + ϕ̃(a1) · θ

(2n)
2 ◦D ◦ θ1(a2).

Then D̃ is a (ϕ̃, ψ̃)-derivation, hence there exists x ∈ (Aϕ,ψ)
(2n) such that

(2.5) D̃(a) = ϕ̃(a) · x− x · ψ̃(a) ∀a ∈ A.

It is easy to check that θ
(2n)
1 (ϕ̃(θ2(b)) · x) = ϕ(b) · θ

(2n)
1 (x) and θ

(2n)
1 (x · ψ̃(θ2)) =

θ
(2n)
1 (x) · ψ(b) for b ∈ B. Also, θ

(2n)
1 ◦ θ

(2n)
2 = IB(2n) . By (2.5), we obtain

D(b) = θ
(2n)
1 ◦ θ

(2n)
2 ◦D ◦ θ1 ◦ θ2(b)

= θ
(2n)
1 (θ

(2n)
2 ◦D ◦ θ1 ◦ θ2(b))

= θ
(2n)
1 (ϕ̃(θ2(b)) · x− x · ψ̃(θ2(b)))

= ϕ(b) · θ
(2n)
1 (x) − θ

(2n)
1 (x) · ψ(b),

for all b ∈ B and θ
(2n)
1 (x) ∈ (B(ϕ,ψ))

(2n). Therefore B is (ϕ, ψ)-2n-weakly amenable.

(ii) The proof is similar to (i). �
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In the case when ϕ and ψ are identity maps, we see that the homomorphic image

of an n-weakly amenable Banach algebra is again n-weakly amenable.

Corollary 2.2. Let ϕ, ψ ∈ Hom(B), n ∈ N. Let A be a Banach algebra such that

A = B ⊕ I for a closed subalgebra B and closed ideal I. If A is (ι ◦ ϕ ◦ P, ι ◦ ψ ◦ P )-

n-weakly amenable, then B is (ϕ, ψ)-n-weakly amenable, where P : A → B is the

natural projection and ι : B → A is the inclusion map.

3. Examples

For any Banach space X , we will say that a net (mα) ⊆ X∗ converges weak≈

to m ∈ X∗ if mα → m in weak∗ topology and ‖mα‖ → ‖m‖. This notion was

introduced by Lau and Loy in [9]. In particular, if µ ∈ M(G), assume that ν ∈

L∞(G)∗ is a norm preserving extension of µ. Then there exists a net (ϕj) ⊆ L1(G)

with ‖ϕj‖ 6 ‖µ‖ and ϕj → ν. Passing to a suitable subnet we may assume that

‖ϕj‖ → ‖µ‖. Hence, we have ϕj → µ in weak≈ topology. If ϕ ∈ Hom(L1(G)), the

we can extend ϕ to a homomorphism ϕ̂ onM(G). Now, we need the following result

which is analogous to [5, Theorem 2.4]. Since the proof is similar, it is omitted.

Theorem 3.1. Let G be a locally compact group and let ϕ, ψ ∈ Hom(L1(G)). Let

L1(G) be a M(G)-bimodule by module actions µ · f = ϕ̂(µ) ∗ f and f · µ = f ∗ ψ̂(µ)

for each f ∈ L1(G) and µ ∈ M(G). Then every (ϕ, ψ)-derivation D : L1(G) →

L1(G)(2n) extends to a unique (ϕ̂, ψ̂)-derivation M(G) into L1(G)(2n).

Let G be a locally compact group, ϕ, ψ ∈ Hom(L1(G)) and let X be a Banach

space. Suppose that G acts onX from left (right), i.e., we have a continuous mapping

(g, x) 7→ g ·x ((x, g) 7→ x·g) from G×X intoX in which g ·x = ϕ(g)·x (x·g = x·ψ(g)).

A map d : G→ X is called a (ϕ, ψ)-derivation if

d(gh) = d(g) · ϕ(h) + ψ(g) · d(h) ∀g, h ∈ G.

The (ϕ, ψ)-derivation d is called (ϕ, ψ)-inner if there exists x ∈ X such that d(g) =

x ·ϕ(g)−ψ(g) ·x, for every g ∈ G. In this case we write d = adx. A map T : G→ X

is called a (ϕ, ψ)-crossed homomorphism if

T (gh) = ψ(g) · T (h) · ϕ(g)−1 + T (g),

for every g, h ∈ G, and T is called (ϕ, ψ)-principal if there exists x ∈ X such that

T (s) = ψ(g) · x · ϕ(g)−1 − x, for every g ∈ G. Let d : G → X be a (ϕ, ψ)-derivation
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and set T (g) = d(g) · ϕ(g)−1, for g ∈ G. Then T is a crossed homomorphism and

T is principal if d is (ϕ, ψ)-inner. Conversely, let T : G → X be a (ϕ, ψ)-crossed

homomorphism. Set d(g) = T (g) · ϕ(g) for g ∈ G. Then d is a (ϕ, ψ)-derivation

and d is (ϕ, ψ)-inner if T is principal. Let D : ℓ1(G) → X∗ be continuous (ϕ, ψ)-

derivation. Set d(g) = D(δg) for every g ∈ G. Then d is a (ϕ, ψ)-derivation and it is

clear that if D is an (ϕ, ψ)-inner derivation then so is d. Similar to [10, Theorem 1.1],

we have the following result:

Theorem 3.2. Let G be a (discrete) group and X a locally compact space on

which G has a 2-sided action as above. Then any bounded (ϕ, ψ)-derivation D : G→

M(X) is (ϕ, ψ)-inner.

In the following example, we use techniques of the proofs from [3] and [4, Theo-

rem 4.1] to show that L1(G) is (ϕ, ψ)-n-weakly amenable for all n ∈ N and ϕ, ψ ∈

Hom(L1(G)).

E x am p l e 3.1. Let G be a locally compact group and ϕ, ψ ∈ Hom(L1(G)) be

nonzero (for the cases where ϕ or ψ is zero homomorphism, refer to Example 3.2).

It is known that L1(G) has a bounded approximate identity (eα) with ‖eα‖ 6 1 for

all α. By [2, Proposition 28.7], there exists E ∈ L1(G)∗∗ such that ‖E‖ = 1 and E

is a right identity for (L1(G)∗∗,�). Since L1(G) is a closed ideal of measure algebra

M(G), the Banach algebra (L1(G)∗∗,�) is a closed ideal in (M(G)∗∗,�). Hence, the

map T : M(G) → (L1(G)∗∗,�) defined by T (µ) = E � µ is an isometric embedding.

We write Eg for E � δg, where g ∈ G. Obviously, Egh = Eg � Eh for all g, h ∈ G.

Let X = L1(G)(2k+2) and D : L1(G) → X be a (ϕ, ψ)-derivation. Then D′′ :

(A∗∗,�) → X∗∗ is a bounded (ϕ′′, ψ′′)-derivation by Proposition 2.3. For any g, h ∈

G, we have

D′′(Egh) = D′′(Eg) · ϕ
′′(Eh) + ψ′′(Eg) ·D

′′(Eh)

and thus

(3.1) ψ′′(E(gh)−1 ) ·D′′(Egh) = ψ′′(Eh−1) · (ψ′′(Eg−1 ) ·D′′(Eg)) · ϕ
′′(Eh)

+ ψ′′(Eh−1) ·D′′(Eh).

Since X∗ is the underling space of a commutative von Neumann algebra, it is an L∞-

space. Thus the real-valued functions in X∗ form the space X∗
R
which is a complete

lattice, that is, every non-empty bounded subset of X∗
R
has a supremum. Easily, we

can see that

(3.2) Re(ψ′′(Eg) · Φ) = ψ′′(Eg) · (Re Φ) ∀g ∈ G, Φ ∈ X∗.
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Similar to the proof of [4, Theorem 4.1], we can prove that

(3.3) ψ′′(E) · sup{ψ′′(Eg) · Φ: Φ ∈ Y } = ψ′′(Eg) · sup{ψ
′′(E) · Φ: Φ ∈ Y }

and

(3.4) sup{ψ′′(Eg) · Φ: Φ ∈ Y } · ψ′′(E) = sup{ψ′′(E) · Φ: Φ ∈ Y } · ψ′′(Eg)

for all g ∈ G, where Y is an arbitrary bounded subset of X∗
R
. Put

S = sup{ψ′′(Eg−1) ·ReD′′(Eg) : g ∈ G};

the supremum being taken in the complete lattice X∗
R
. It follows from (3.1)–(3.4)

that

ψ′′(E) · S · ψ′′(E) = ψ′′(Eh−1) · S · ψ′′(Eh) + ψ′′(Eh−1) ·ReD′′(Eh) · ψ
′′(E).

If ψ′′(Eh) acts from the left on the above equality, we get

(3.5) ψ′′(E) · ReD′′(Eh) · ϕ
′′(E) = ψ′′(Eh) · S · ϕ′′(E)− ψ′′(E) · S · ϕ′′(Eh).

Similarly for the imaginary part of D′′(Eh), there exists an element T such that

(3.6) ψ′′(E) · ImD′′(Eh) · ϕ
′′(E) = ψ′′(Eh) · T · ϕ′′(E)− ψ′′(E) · T · ϕ′′(Eh).

Taking Ψ = S + iT ∈ X∗∗∗ and using (3.5) and (3.6), we deduce that

ψ′′(E) ·D′′(Eh) · ϕ
′′(E) = ψ′′(Eh) ·Ψ · ϕ′′(E)− ψ′′(E) ·Ψ · ϕ′′(Eh).

Therefore for each discrete measure ζ ∈ ℓ1(G), we have

ψ′′(E) ·D′′(E � ζ) · ϕ′′(E) = ψ′′(E � ζ) ·Ψ · ϕ′′(E)− ψ′′(E) ·Ψ · ϕ′′(ζ) · ϕ′′(E).

Now, assume that f, g ∈ L1(G), then

(3.7) ψ(f) ·D′′(E � ζ) · ϕ(g) = ψ(f ∗ ζ) ·Ψ · ϕ(g)− ψ(f) ·Ψ · ϕ(ζ ∗ g).

Given h ∈ L1(G), there is a net (ζj) of discrete measure such that ζj → h in the strong

operator topology on L1(G). So lim
j
ϕ(ζj ∗ f) = ϕ(h ∗ f) and lim

j
ϕ(f ∗ ζj) = ϕ(f ∗ h)

for all f ∈ L1(G). Similarly, we have the same for ψ.
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For each f, g ∈ L1(G), we have

lim
j
ψ(f) ·D′′(E � ζj) · ϕ(g) = lim

j
(D′′(f ∗ ζj) · ϕ(g)−D′′(f) · ϕ(ζj ∗ g))

= D′′(f ∗ h) · ϕ(g)−D′′(f) · ϕ(h ∗ g)

= D′′(f) · ϕ(h ∗ g) + ψ(f) ·D′′(h) · ϕ(g)−D′′(f) · ϕ(h ∗ g)

= ψ(f) ·D′′(h) · ϕ(g).

On the other hand,

ψ(f) ·D′′(h) · ϕ(g) = ψ(f ∗ h) ·Ψ · ϕ(g)− ψ(f) ·Ψ · ϕ(h ∗ g)

= ψ(f) · (ψ(h) ·Ψ−Ψ · ϕ(h)) · ϕ(g).

Note that in the above equalities we have used the relation (3.7). Let P : X∗∗∗ → X∗

be the natural projection such that P is an L1(G)-bimodule morphism. We have

D = P ◦D′′. Put Ψ0 = P (Ψ). Then

ψ(f) ·D(h) · ϕ(g) = ψ(f) · (ψ(h) ·Ψ0 −Ψ0 · ϕ(h)) · ϕ(g) ∀f, g, h ∈ L1(G)

and thus

〈D(h), ϕ(g) · x · ψ(f)〉 = 〈ψ(h) ·Ψ0 −Ψ0 · ϕ(h), ϕ(g) · x · ψ(f)〉

for all f, g, h ∈ L1(G) and x ∈ X . Now, Proposition 2.4 shows thatD is a (ϕ, ψ)-inner

derivation and so L1(G) is (ϕ, ψ)-(2k + 1)-weakly amenable.

Let D : L1(G) → L1(G)(2k) be a continuous (ϕ, ψ)-derivation. By similar tech-

niques as those of Theorem 3.1, we can extend D to a derivation D : M(G) →

L1(G)(2k), where the measure algebra M(G) acts on L1(G)(2k) through dualizations

of the actions on L1(G) defined in Theorem 3.1. Hence L1(G)(2k) is isomorphic, as

anM(G)-bimodule, toM(X) for some compact space X . The action of point masses

on M(X) is as follows:

δg · Ω = ϕ(δg) · Ω, Ω · δg = Ω · ψ(δg) ∀g ∈ G, Ω ∈M(X).

These actions are equivalent to actions of G on M(X) and g 7→ D̂(δg) is a bounded

(ϕ, ψ)-derivation from G into M(X). By Theorem 3.2, this derivation is (ϕ, ψ)-

inner and this suffices to conclude that D : M(G) → L1(G)(2k) is inner, by weak∗

continuity of D. Therefore L1(G) is (ϕ, ψ)-(2k)-weakly amenable.
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E x am p l e 3.2. Let A be a Banach algebra with a bounded approximate iden-

tity. It is proved in [1, Example 4.2] that A is (0, ψ)-weakly amenable and (ϕ, 0)-

weakly amenable. The same process can be applied to show that A is (0, ψ)-n-weakly

amenable and (ϕ, 0)-n-weakly amenable for all n ∈ N. Therefore every group algebra

and C∗-algebra is (ϕ, 0) and (0, ψ)-n-weakly amenable for all n ∈ N.

E x am p l e 3.3. Suppose that X is an infinite set and x0 is a fixed element in X .

Define an algebra product in l1(X) via ab := a(x0)b for all a, b ∈ l1(X). This Banach

algebra has been introduced by Yong Zang in [13]. For every ϕ, ψ ∈ Hom(A), we

wish to show that A is (ϕ, ψ)-(2n− 1)-weakly amenable for all n ∈ N. This Banach

algebra has a left identity e0 defined by

e0(x) =

{
1 if x = x0,

0 if x 6= x0.

The l1(X)-bimodule actions on the dual module l1(X)∗ = l∞(X) are in fact formu-

lated as follows:

f · a = a(x0)f a · f = f(a)e∗0 ∀a ∈ l1(X), f ∈ l∞(X).

where e∗0 is the element of l
∞(X) satisfying e∗0(x0) = 1 and e∗0(x) = 0 for x 6= x0.

Let ϕ : l∞(X) → l∞(X) be a non-zero homomorphism. Then

a(x0)ϕ(b) = ϕ(a(x0)b) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(a)(x0)ϕ(b).

Hence, ϕ(b)(ϕ(a)(x0)− a(x0)) for all a, b ∈ l1(X). Since ϕ is non-zero,

(3.8) ϕ(a)(x0) = a(x0) ∀a ∈ l1(X).

Now, suppose that ϕ, ψ ∈ Hom(l1(X)) and D : l1(X) → (l1(X)(ϕ,ψ))
(2n−1) is

a bounded (ϕ, ψ)-derivation. For each a, b ∈ l1(X), we have

a(x0)D(b) = D(a(x0)b) = D(ab)

= D(a) · ϕ(b) + ψ(a) ·D(b)

= ϕ(b)(x0)D(a) + ψ(a) ·D(b).

Letting b = a in the above equalities and using (3.8), we get ψ(a) · D(a) = 0 for

all a ∈ l1(X). The last equality implies that ψ(a) · D(b) = −ψ(b) · D(a) for all

a, b ∈ l1(X). Thus

D(a) = D(e0a) = D(e0) · ϕ(a) + ψ(e0) ·D(a)

= D(e0) · ϕ(a)− ψ(a) ·D(e0)

for all a ∈ l1(X). Therefore A is (ϕ, ψ)-(2n−1)-weakly amenable for all n ∈ N. Since

A does not have a bounded right approximate identity [13], A can not be amenable.
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