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Let a be an almost complete intersection ideal of a commutative Noetherian local ring R
and r be the number of elements of a minimal generating set of a. Suppose that the ith
local cohomology module Hi

a(R) is finitely generated for all i < r. We show that there
exists a sequence x = x1, . . . , xr of elements in a which is both an a-filter regular and
u.s.d-sequence on R and

Ωr−1
R (Hr−1

a (R)) � Ωr+1
R (R/(x))

where, for an R-module M, Ωi
R(M) is the ith syzygy of M.

1. I n t r o d u c t i o n

Let R be a commutative ring and M be an R-module. For an ideal a of R, we denote
the ith local cohomology functor with respect to a by Hi

a(−). Also, for a minimal free
resolution F of M, we set the ith syzygy of M by Ωi

R(M), that is Coker∂F
i+1.

There have been some works on the study of the syzygies of different modules.
But there are not many papers concerning the syzygies of local cohomology mod-
ules. In this paper, under certain circumstances, we obtain some syzygies of local
cohomology modules of ideal generated by u.s.d-sequence x1, . . . , xn, in terms of the
syzygies of R/(x1, . . . , xn). Clearly, if R is a d-dimensional Cohen-Macaulay local
ring and x = x1, . . . , xd is a system of parameters for R, a minimal free resolution
R/(x) is determined by a Koszul complex of d elements. Recently, in [8], Rahmati
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proved that if R is a d-dimensional local ring with maximal ideal m, d − depthR ≤ 1
and Hd−1

m (R) is finitely generated, then there exists an integer n such that for every
system of parameters x for R contained in mn,

Ωd−1
R (Hd−1

m (R)) � Ωd+1
R (R/(x)).

In this paper, by using natural generalizations of regular sequence which are called
d-sequence and filter regular sequence, we show the following theorem.

Theorem: Let a be an ideal of a local ring R such that grade(a,R) � r − 1 where r
is the number of elements of a minimal generating set of a. Also, suppose that Hi

a(R)
is finitely generated for all i < r. Then there exists a sequence x = x1, . . . , xr of
elements in a which is both an a-filter regular and u.s.d-sequence on R and

Ωr−1
R (Hr−1

a (R)) � Ωr+1
R (R/(x)).

So our result provides some information about the minimal free resolution of
Hr−1
a (R). Our original goal of this paper is to show that an u.s.d-sequence in awhich is

an a-filter regular sequence is an excellent analogue of standard system of parameters
and can be used for studying the syzygies of certain modules.

Throughout this paper, R will denote a commutative Noetherian ring with non-
zero identity and a an ideal of R. We shall use N0 (respectively N) to denote the set of
non-negative (respectively positive) integers. Also M will denote a finitely generated
R-module. Our terminology follows the textbook [1] on local cohomology.

2. T h e R e s u l t s

Recall that a sequence x1, . . . , xn of elements of R is called a d-sequence on M if,
for each i = 0, 1, . . . , n − 1, the equality

(Σi
j=1Rxj)M :M xi+1xk = (Σi

j=1Rxj)M :M xk

holds for all k � i + 1 (this is actually a slight weakening of Huneke’s definition in
[5]); it is an unconditioned strong d-sequence (u.s.d-sequence) on M if xα1

1 , . . . , x
αn
n is

d-sequence on M in any order for all α1, . . . , αn ∈ N.
Also, we need another natural generalization of regular sequences which is called

filter regular sequences. We say that a sequence x1, . . . , xn of elements of a is an
a-filter regular sequence on M, if

SuppR

(
(x1, . . . , xi−1)M :M xi

(x1, . . . , xi−1)M

)
⊆ V(a)

for all i = 1, . . . , n, where V(a) denotes the set of prime ideals of R containing a.
The concept of an a-filter regular sequence on M is a generalization of the one of a
filter regular sequence which has been studied in [11], [12], [6] and has led to some
interesting results. Both concepts coincide if a is an m-primary ideal of a local ring
with maximal ideal m. Note that x1, . . . , xn is a weak M-sequence if and only if it is
an R-filter regular sequence on M. It is easy to see that the analogue of [12, Appendix
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2(ii)] holds true whenever R is Noetherian, M is finitely generated and m replaced by
a; so that, if x1, . . . , xn is an a-filter regular sequence on M, then there is an element
y ∈ a such that x1, . . . , xn, y is an a-filter regular sequence on M. Thus, for a positive
integer n, there exists an a-filter regular sequence on M of length n.

Lemma 2.1 (See [6,Proposition 1.2].) Let x = x1, . . . , xn (n > 0) be an a-filter
regular sequence on M. Then there are the following isomorphisms

Hi
a(M) �

{
Hi

(x)(M) for 0 � i < n,
Hi−n
a (Hn

(x)(M)) for n � i.

Remarks 2.2 Let x = x1, . . . , xn be an u.s.d-sequence on M.
(i) It is easy to see that any permutation of x1, . . . , xn is an (x)-filter regular se-

quence on M.
(ii) Moreover, x2, . . . , xn form an u.s.d-sequence on M/x1M.

Let a be an ideal of R such that aM � M. We denote the maximum length of all
regular M-sequences in a by grade(a,M). It is well-known that grade(a,M) is the
least integer i such that Hi

a(M) � 0. Recall that the finiteness dimension fa(M) of M
relative to a is defined as follows.

fa(M) := inf{i ∈ N | Hi
a(M) is not finitely generated}

In [7], the present author with Salarian showed that for an ideal a of R, fa(M) = �
if and only if there exists a sequence x1, . . . , x� in a such that x1, . . . , x� is both a-filter
regular and u.s.d-sequence on M.

Now, let x = x1, . . . , xs be a sequence of elements of R and let K(xt,M) denote
the Koszul complex on xt := xt

1, . . . , x
t
s with coefficients in M. Then, by [1, Theorem

5.2.9], one has
Hi

(x)(M) = lim
−→

t∈N
Hs−i(K(xt,M)) for all i ∈ N0.

Set Hi(xt; M) = H−i(HomR(K(xt,R),M)). Then, in view of [2, Theorem 3.5.6],

Hi
(x)(M) = lim

−→
t∈N

Hi(xt; M) for all i ∈ N0.

Hence, for all t ∈ N, there exists a canonical map

λxt;M : Hi(xt; M) −→ Hi
(x)(M).

In the following proposition, we study the canonical map λx;M in the case that x is an
u.s.d-sequence on M.

Proposition 2.3 Let x = x1, . . . , xs be an u.s.d-sequence on M such that grade((x),
M) � s − 1. Then the canonical map

λx;M : Hs−1(x; M) −→ Hs−1
(x) (M)

is an isomorphism.
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Proof. We use induction on s, the length of the sequence. In the case when s = 1,
since x1 is a d-sequence on M, we have that

H0
(x)(M) = H0

(x1)(M) = ∪t∈N(0 :M xt
1) = 0 :M x1 = H0(x; M).

Now, suppose inductively that s > 1 and the result has been proved for smaller values
of s. By Remarks 2.2(i), x1, . . . , xs is an (x)-filter regular sequence on M and so,
in view of Lemma 2.1, H0

(x)(M) � H0
(x1)(M). Also, since grade((x),M) > 0, by [1,

Theorem 6.2.7], H0
(x)(M) = 0. Hence x1 is a non-zerodivisor on M. Moreover, since

x is both (x)-filter regular sequence and u.s.d-sequence on M, by [7, Theorem A],
Hi

(x)(M) is finitely generated for i < s. Hence, in view of [3, Satz 1] and [6, Theorem
(5)], there exists a positive integer � such that

x�1Hs−1
(x) (M) = 0 = x�1Hs−1(x; M).

Set N := M/x�1M and y = x�1, . . . , xs.
Then, by Remarks 2.2(ii), x2, . . . , xs is an u.s.d-sequence on N. Now, consider the

exact sequence

0 −→ M
x�1−→ M −→ N −→ 0

to obtain the commutative diagram

Hs−2
(x) (M) � Hs−2

(y) (M) −→ Hs−2
(x2 ,...,xs)(N) � Hs−2

(x) (N) −→ Hs−1
(x) (M) � Hs−1

(y) (M)
x�1−→ 0

↑ λx2 ,...,xs ;N ↑ λy;M

Hs−2(x2, . . . , xs; N) � Hs−2(y; N) −→ Hs−1(y; M)
x�1−→ 0

in which the upper and lower rows are exact and by inductive hypothesis, the map
λx2,...,xs;N is an isomorphism. Since grade((x),M) � s − 1, by [1, Theorem 6.2.7],
Hs−2

(x) (M) = 0. Therefore λx;M is an isomorphism and the result now follows by
induction. �

Let (R,m) be a local ring and M be a non-zero finitely generated R-module of
dimension d > 0. We say that M is a generalized Cohen-Macaulay R-module pre-
cisely when Hi

m(M) is finitely generated for all i � d. (Such modules were called
‘quasi-Cohen-Macaulay module’ by Schenzel in [9, p.238].) Hence M is general-
ized Cohen-Macaulay if fm(M) = d. On the other hand, a system of parameters
x := x1, . . . , xd for M is said to be standard if

(x)Hi
m(M/(x1, . . . , x j)M) = 0,

for all i, j ∈ N0 with i+ j < d (cf. [10, Definition 3.1]). It follows from [13, Theorem
2.1 and Proposition 3.1] and [11, (3.7)] that M is generalized Cohen-Macaulay if and
only if there exists a positive integer n such that every system of parameters of M in
mn is standard.

Let (R,m) be an n-dimensional local ring and x = x1, . . . , xn be a standard system
of parameters for R. Then, by [10, Theorem A], x is an u.s.d-sequence on R. Suppose
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that cmdR � 1 where cmdR is the Cohen-Macaulay defect of R, that is cmdR =
= dimR− depthR. Hence grade((x),R) � µ((x))− 1 = n− 1 where, for an ideal a µ(a)
is the number of elements of a minimal generating set of a. Recall that an ideal a is
an almost complete intersection if grade(a,R) � µ(a) − 1. Now, by using Proposition
2.3 in conjunction with Lemma 1.5 in [8], we have the following corollary.

Corollary 2.4 ([8,Theorem 3.1(i)].) Let (R,m) be an n-dimensional local ring and
cmdR � 1. Let x be an standard system of parameters for R. Then

Ωn−1
R (Hn−1

m (R)) � Ωn+1
R (R/(x)).

As we mentioned in the introduction, in the next theorem, we want to show that an
u.s.d-sequence in a which is an a-filter regular sequence is an excellent analogue of
standard system of parameters.

Theorem 2.5 Let a be an almost complete intersection ideal of a local ring R and
r be the number of elements of a minimal generating set of a. Suppose that Hi

a(R) is
finitely generated for all i < r. Then there exists a sequence x = x1, . . . , xr of elements
in a which is both an a-filter regular and u.s.d-sequence on R and

Ωr−1
R (Hr−1

a (R)) � Ωr+1
R (R/(x)).

Proof. Since r is the number of elements of a minimal generating set of a, by [1,
Corollary 3.3.3], Hi

a(R) = 0 for all i > r. Hence, in view of [14, Proposition 3.1] in
conjunction with [4, Remark 2.5], Hr

a(R) is not finitely generated and so r = fa(R).
Therefore, by [7, Theorem A], there exists a sequence x = x1, . . . , xr of elements in a
which is both an a-filter regular and u.s.d-sequence on R. So, by Lemma 2.1,

Hi
a(R) � Hi

(x)(R) for all i < r. (∗)
Since a is an almost complete intersection, grade(a,R) � r−1. It follows from (∗) and
[1, Theorem 6.2.7] that (x) is an almost complete intersection ideal of R. Therefore,
by [8, Lemma 1.5], Proposition 2.3 and (∗),

Ωr+1
R (R/(x)) � Ωr−1

R (Hr−1(x; R))

� Ωr−1
R (Hr−1

(x) (R))

� Ωr−1
R (Hr−1

a (R)).

�
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