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Asymptotic distribution of local polynomial M-smoothers depends on some unknown
quantities. However, a knowledge of this distribution is crucial for a hypotheses testing
problem in a change-point model. Instead of using some plug-in techniques, which pro-
vide a poor approximation, a bootstrap algorithm is proposed to approximate the unknown
distribution and a proper justification of this algorithm is given. Finally, some results are
illustrated through a proposed simulation study.

1. M o t i v a t i o n a n d t h e m o d e l

Let {(Xi, Yi); i = 1, . . . ,N ∈ N} be a finite two-dimensional random sample given
from some unknown distribution function F(X,Y)(x, y). We want to investigate a de-
pendence of the random variable Y given the value of a random variable X in sense
of a classical nonparametric regression based on a conditional expectation function
m(x) = E[Y |X = x]. However, in our approach we would like to adopt methods that
would allow us to model the unknown regression function in a less restricted way
specifically, we would like to weaken some distributional assumptions (to admit also
heavy tailed distributions) and some smoothness assumptions (to account for some
discontinuity points). In general, we will assume the model

Yi = m(Xi) + σ(Xi) · εi, εi ∼ G, i.i.d., i = 1, . . . ,N, (1)

where i.i.d. stands for independent and identically distributed random errors, with
a symmetric continuous distribution function G (i.e. G(e) +G(−e) = 1 for all e ∈ R).
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We also assume that G(1) − G(−1) = 1
2 which is to define a scale of random errors,

rather than specifying a unit variance as we want to stay free of any finite moment
assumptions. One can easily simplify this heteroscedastic model into a model with
a simpler, homoscedastic variance structure however, the results will be derived and
proved for model (1) only.

Local polynomial M-smoothers are used to estimate the unknown regression func-
tion m(·) under the assumptions below and the main statistical results derived for this
method are briefly summarized in Section 2. In Section 3 a model with change-points
is described as a generalization of the model considered in [1] and in Section 4 a new
bootstrap algorithm based on [8] will be introduced in order to obtain critical values
needed to make a decision related to a hypothesis testing problem about a change-
point occurrence at some given point from the domain of interest. A proper justifi-
cation of this algorithm is given also in Section 4. Finally, in Section 5 a simulation
study is proposed in order to see a performance of the proposed bootstrap algorithm.

2. M - s m o o t h e r s

Under the model (1) we are interested in function m(·) which is to be estimated at
some given point of interest. By adopting a local polynomial approach one will get
not only an estimate for the regression function itself but also for its derivatives. Local
polynomial M-smoother estimate is defined by the following minimization problem

β̂(x) =
Argmin

(β0 , . . . , βp)� ∈ Rp+1

N∑
i=1

ρ

Yi −
p∑

j=0

β j(Xi − x) j

 · KhN

(
Xi − x

hN

)
, (2)

where β̂(x) = (̂β0(x), β̂1(x), . . . , β̂p(x))� is a (p + 1)-dimensional vector of parameter
estimates at the given point x ∈ (0, 1), where the interval (0, 1) is the domain of in-
terest for model (1) and p ∈ N is the degree of a local polynomial approximation.
Function KhN (·) stands for a classical kernel function related to nonparametric regres-
sion approaches with an appropriate bandwidth parameter hN and function ρ(·) is a
general loss function which is assumed to be symmetric, Lipschitz, convex and such
that its derivative exists (one-sided derivatives at least) and it holds that ρ′ = ψ almost
everywhere (a.e.).

Under some mild assumptions one can get from the minimization problem (2)
to a set of normal equations however, in case of local polynomial M-smoothers the
solution to the set of these equations is not given in an explicit form. This also in-
volves some issues related to a bandwidth parameter selection as the Asymptotic
Mean Squared Error term (AMSE) which is used to determine an asymptotically op-
timal bandwidth parameter is not expressible in an explicit form either. Therefore,
one has to implement iterative procedures or other methods in order to get close to
the solution. For more details we refer to [2] or [6].
Let us now introduce the following notation:

µ =

(∫
u 0K(u)du, . . . ,

∫
upK(u)du

)�
, HN = diag{1, h−1

N , . . . , h
−p
N },

S1 =

(∫ 1

−1
u j+lK(u)du

)
j = 0 . . . p;
l = 0 . . . p;

, S2 =

(∫ 1

−1
u j+lK2(u)du

)
j = 0 . . . p;
l = 0 . . . p;

,

where K(·) is a kernel function with a support [−1, 1] and

λG(t, v) = −
∫ ∞
−∞
ψ(v ε1 − t)dG(ε1), t ∈ R, v > 0, and eν = (0, . . . , 0︸��︷︷��︸

ν times

, 1, 0, . . . , 0︸��︷︷��︸
(p−ν) times

)�.

Theorem 1 (Asymptotic normality for M-smoothers)
Under the model (1) and the assumptions A1 – A8 stated above it holds:

√
NhN ·

[
m̂(ν)(x) − m(ν)(x)

] D−→
N → ∞

N

0,
E
[
ψ2(σ(x)ε1)

]
ν!2

[λ′G(0, σ(x))]2 f (x)
e�ν HNS−1

1 S2S−1
1 HNeν



where m̂(ν)(x) = ν!̂βν(x), for ν ∈ {0, 1, . . . , p} and β̂ν(x) being the elements of the
vector of estimates β̂(x) defined in (2). Moreover, the expectation E

[
ψ2(σ(x)ε1)

]
=

=
∫
ψ2(σ(x)ε1)dG(ε1), and λ′G(0, σ(x)) = ∂

∂tλG(t, σ(x))
∣∣∣
t=0 for given x ∈ (0, 1).

In case of a model with homoscedastic variance structure the result gets slightly sim-
pler as the scale function σ(x) will not appear in the argument of function ψ and func-
tion λ′G(t, σ(x)) in a denominator of the variance term will also become independent of
x ∈ (0, 1) implemented via the scale function σ(·).

Proof of Theorem 1. The proof of this theorem follows as a straightforward general-
ization of the proof for a homoscedastic model given in [7]. One just has to adopt slightly
more computational effort in order to deal with function λG(t, σ(x)) which is a function
of two different arguments in this case. However, the proof goes along the same lines as
those in [7] therefore, it will be omitted here in this paper. �

2.1 Assumptions/conditions

For sake of completeness let us state the assumptions required for model (1) in order
to assure that the formulated results hold:

A1 The density function f (·) of the random variable X is absolutely continuous, pos-
itive and bounded on [0, 1] which is the support of X;

A2 Random errors ε1, . . . , εN , are assumed to be i.i.d., mutually independent of Xi,
for i = 1, . . . ,N, with a symmetric distribution given by a continuous distribution
function G such that G(1) −G(−1) = 1

2 ;
A3 The regression function m(·) is assumed to be (p + 1)-times Lipschitz at some

neighbourhood of x ∈ (0, 1), where p ∈ N is a degree of a local polynomial
approximation;

A4 The scale function σ(·) is Lipschitz and positive on [0,1];
A5 The loss function ρ is symmetric, convex and Lipschitz, its derivative exists (or

at least one-sided derivatives exist) and ρ′ = ψ a.e.;
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For sake of completeness let us state the assumptions required for model (1) in order
to assure that the formulated results hold:
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at least one-sided derivatives exist) and ρ′ = ψ a.e.;
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A6 We assume that function λG(t, v) = −
∫
ψ(vε1 − t)dG(ε1) is Lipschitz in both

arguments, t ∈ R and v > 0. We assume, that the partial derivative λ′G(t, v) =
= ∂
∂tλG(t, v) exists and

∫
ψ2(vε1− t)dG(ε1) is finite, both at some neighbourhoods

of t = 0 and v = σ(x), for x ∈ (0, 1). Moreover, we need the following equality
to be satisfied: λ′G(0, σ(x)) = ∂

∂t λG(t, σ(x))|t=0 � 0, for the given point x ∈ (0, 1);
A7 Let KhN (·) = 1

hN
K(·) where K(·) is a symmetric density function with common

support on [−1, 1], such that
∫ 1
−1 u jK(u)du < ∞ and

∫ 1
−1 u jK2(u)du < ∞, for

j = 0, . . . , 2p;
A8 The bandwidth parameter hN satisfies: hN

N → ∞−→ 0, NhN
N → ∞−→ ∞, more precisely

hN ∈ (N ι−1,N−ι−
1
2 ), where ι > 0 is small enough.

3. C h a n g e - p o i n t s a n d b o o t s t r a p p i n g o f M - s m o o t h e r s

Let us now introduce a model where the smoothness assumption A3 is relaxed a little as
we allow a model with some discontinuity points in the regression function itself or in its
derivatives respectively. Unlike some other papers we will stay free of any assumptions
related to some ties among discontinuity points1. As the model with one change-point
only can be easily generalized into a case with multiple change-points or even into a
model with discontinuities in higher order derivatives we will discuss a model with one
discontinuity point only. Let us consider the following regression model:

Yi = m(Xi) + σ(Xi) · εi, εi ∼ G, i.i.d., i = 1, . . . ,N, (3)
where

m(Xi) = m0(Xi) + ∆ · I{Xi>x0}, for some ∆ � 0,

under the assumptions A1, A2 and A4 – A8, where x0 ∈ (0, 1) is some known point given
in advance, function m0(·) satisfies assumption A3 and I{·} is an identifier function for the
given event of interest.

We would like to perform a test now in order to decide if there is a significant change-
point occurrence at the point x0 ∈ (0, 1) or if there is not. We consider the following
statistical test

H0 : ∆ = 0

H1 : ∆ � 0

 for given x0 ∈ (0, 1)

and we propose to use the following test statistic

TN(x0) =
√

NhN · |m̂+(x0) − m̂−(x0)|, (4)

where the quantities m̂+(x0) and m̂−(x0) respectively are one-sided estimates given by
the minimization problem (2) respectively by Theorem 1 however, the original kernel
function KhN (·) is replaced here by one-sided counterparts K+hN

(·) = 2KhN (·)I{· ≥0} and

1 Some authors a priori consider a kind of hierarchy: if there is a discontinuity point in a derivative
there also has to be a discontinuity point at the same location in all lower order derivatives too. However,
this is not the case in our paper.

K−hN
(·) = 2KhN (·)I{· ≤0}. One can expect of quantities m̂+(x0) and m̂−(x0) to be nonpara-

metric estimates of corresponding theoretical values m+(x0) = limy↘x0 m(y) and m−(x0) =
= limy↗x0 m(y) therefore, such test statistics should be sensitive at a possible jump point
and one would expect it to be large if there is a change point present at the point x0 and it
should be negligible if there is not. Let us now state the main results for this test based on
statistic TN(x0).

Theorem 2 (Distribution of the test statistics under the null hypothesis) Given the
model (3) and the assumptions A1 – A8, with A3 satisfied for m0(·), under the notation
stated above and the null hypothesis H0, it holds

√
Nhn ·

∣∣∣m̂+(x0) − m̂−(x0)
∣∣∣ D−→

N → ∞
N

0,
2E
[
ψ2(σ(x)ε1)

]

[λ′G(0, σ(x))]2 f (x)
e�0 S−1

1 S2S−1
1 e0

 ,

where the matrices S1 and S2 are the same as those in Theorem 1, just the kernel function
KhN (·) is replaced by the corresponding one-sided counterpart K+hN

(·) or K−hN
(·) respectively

and e0 = (1, 0, . . . , 0)� ∈ Rp+1.

Proof of Theorem 2. Once we realize that both estimates m̂+(x0) and m̂−(x0) are in-
dependent of each other moreover, if appropriately normalized they both follow in as-
ymptotic the normal distribution given by Theorem 1 even though, the one-sided kernel
functions are not symmetric as originally assumed in A7 the result finally follows after
some computation by combining these two facts. �

Theorem 3 (Consistency)
Under the model (3) and the assumptions as in Theorem 2, given the alternative hypothesis
H1, it holds

√
NhN ·

∣∣∣m̂+(x0) − m̂−(x0)
∣∣∣ P−→

N → ∞
∞.

Proof of Theorem 3. Under the alternative hypothesis H1 it holds that |m̂+(x0) −
− m̂−(x0)| P−→ |∆| > 0 so the result holds under the assumption A8 as

√
NhN → ∞

for N → ∞. �

Once we know the limit distribution of the test statistic TN(x0) we can base our deci-
sion about the hypothesis testing problem on the appropriate critical value tx0

N (α) and to
reject the null hypothesis once TN(x0) ≥ tx0

N (α) where α ∈ (0, 1) is a level of the test and
tx0
N (α) comes from the asymptotic distribution of the test statistic TN(x0) under the null

hypothesis H0.

4. S m o o t h r e s i d u a l b o o t s t r a p a l g o r i t h m

It is easy to see that the asymptotic distribution given by Theorem 2 depends on some
unknown quantities. In real situation one will never know what is the true distribution
function G, the density function f (·) or the variability structure given by the scale function
σ(·). Applying some well-known plug-in techniques could do the work however, the
performance of such methods is rather poor and it involves quite much computational
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effort. Therefore, we introduce a new bootstrap algorithm which can be used to mimic
the unknown distribution of interest.

Bootstrap algorithm for a heteroscedastic model

B1 Compute residuals {̂εi; i = 1, . . . ,N}, where ε̂i =
Yi−m̂(Xi)
σ̂(Xi)

, where m̂(Xi) is an
estimate of m(Xi) at Xi defined by (2) and the scale function
σ̂(Xi) = median

{
|Yj − m̂(Xj)|; j = 1, . . . ,N, such that |Xj − Xi| ≤ hN

}
;

B2 Resample with replacement from the set {̂εi; i = 1, . . . ,N} in order to obtain new
residuals ε̃i, for i = 1, . . . ,N;

B3 Define new bootstrap residuals ε�i = Vi · ε̃i + aN · Zi, where
P[Vi = −1] = P[Vi = 1] = 1

2 , Zi ∼ N(0, 1) are i.i.d. standard normal random
variables and aN = o(1) is an appropriate bootstrap bandwidth parameter, such
that NhNa2

N/ log N → ∞, as N → ∞;
B4 Define a new bootstrap data sample {(Xi, Y�i ); i = 1, . . . ,N}, where Y�i = m̂(Xi)+
+ σ̂(Xi) · ε�i ;

B5 Re-estimate the unknown functions m(x0),m+(x0) and m−(x0) respectively based
on the new data sample {(Xi, Y�i ); i = 1, . . . ,N} → obtain m̂�(x0), m̂�+(x0) and
m̂�−(x0);

B6 Repeat steps 2 → 3 → 4 → 5 to get the estimates m̂�b (x0), m̂�
+b(x0) and m̂�

−b(x0),
for b = 1, . . . , B, for B sufficiently large;

B7 Use the quantities produced in step 6 to mimic the unknown distribution of inter-
est.

In order to obtain a bootstrap procedure for a model with homoscedastic variance struc-
ture one needs to slightly alter the first step of the algorithm and to consider a set of resid-
uals without standardizing them by σ̂(·). However, in order to ensure symmetric residuals
and continuous and symmetric density function of bootstrapped residuals one still has to
consider a correction step involved in B3.

Before we state the main bootstrap consistency result let us mention a notation of
a conditional weak convergence in probability which will become the main proving tool
later on.

Definition 1 (Conditional weak convergence in probability)
Let {TN ,T

′

N}∞N=1 be some random vectors. If for every real-valued and bounded continu-
ous function f holds that

E[ f (T
′

N)|SN] − E[ f (TN)]
P−→

N→∞
0,

then T′N condition on SN and TN are said to be approaching (each other) in distribution in
probability along sequences SN . In short we use the notation

T
′

N |SN
D(P)←→
N → ∞

TN .

Now we can formulate the following theorem which is the main result regarding the
proposed bootstrap consistency.

Theorem 4 (Bootstrap consistency)
Under the model (3) and assumptions A1 – A8 with A3 satisfied for m0(·) and the ad-

ditional assumption posed on the bootstrap bandwidth parameter aN in B3, the following
holds:

sup
z∈R

{
P�
[ √

NhN

(
m̂�+(x0) − m̂�−(x0)

)
≤ z
]
− P
[ √

NhN
(
m̂+(x0) − m̂−(x0)

) ≤ z
]} P−→

N→∞
0,

where P�[ · ] stands for a conditional probability given the random sequence Y = {Yi; i =
= 1, . . . ,N ∈ N}.

The result in Theorem 4 means that the bootstrap algorithm as defined in steps B1 – B7
can be used to mimic the unknown distribution of interest for the test based on statistic
TN(x0).

Proof of Theorem 4. Because of the length restriction we will not state very all details
of the proof however, we will go along all important steps of this proof. Details will be
given in author’s Ph.D. thesis.

We will start with the definition of bootstrap residuals ε�i , for i = 1, . . . ,N. It was
proved in [8] that resampling residuals as defined in B1 - B3 is in limit equivalent to a
sampling from a continuous nonparametric estimate of the distribution function of ran-
dom errors ε1, . . . , εN where the distribution is moreover symmetric. Given this fact we
can proceed along the same lines as those in the proof of Theorem 1 in [7]. Using some
notation common for robust estimation theory and the following convergence in probabil-
ity result (see e.g. [7] for more details)

sup
|t|<T

1
√

NhN

N∑
i=1

[
ψ

(
σ̂(Xi)ε�i −

t
√

NhN

)
− ψ
(
σ̂(Xi)ε�i

)
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tation where we use the matrix notation X =
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i j

, for i = 1, . . . ,N and j = 0, . . . , p,

to be an (N × (p + 1)) type matrix andW = diag{K((Xi − x)/hN)}, for i = 1, . . . ,N to be
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Theorem 4 (Bootstrap consistency)
Under the model (3) and assumptions A1 – A8 with A3 satisfied for m0(·) and the ad-

ditional assumption posed on the bootstrap bandwidth parameter aN in B3, the following
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The result in Theorem 4 means that the bootstrap algorithm as defined in steps B1 – B7
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given in author’s Ph.D. thesis.
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where dM,2(·, ·) stands for a second degree Mallow’s metric which can be used to metrisize
a convergence in distribution and σ̂(x) stands for the proper estimate of the scale function
σ(x) as defined in the bootstrap algorithm in step B1. We will take a look at the distri-
bution function G�N of bootstrapped random errors ε�i for i = 1, . . . ,N, conditioned on
sample Y and we will show that

dM,2

(
1
√

NhN
· X�Wψ(ε�) |Y , 1

√
NhN

· X�Wψ(ε)
)

P−→
N → ∞

0. (5)

Using Taylor expansion, the definition of bootstrapped random errors ε�i = Vi·ε̃i+aNZi,
for i = 1, . . . ,N, Glivenko-Cantelli theorem, and the property aN = o(1), one can show
that supy∈R |G�N(y) − G(y)| → 0, as N → ∞ which means that the distribution of boot-
strapped random errors ε�i ’s is asymptotically the same as the distribution of original
random errors εi’s. Given this fact, assumptions A1, A2 and A6, given the mutual inde-
pendence of Xi’s and ε�i ’s conditioned on Y we can apply Central limit theorem now to
achieve the convergence in (5).

Now, we can use the property of Mallow’s metric (see [5] for details) and to write the
following:
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as the matrix
(
X�WX

)−1 can be thought of as a random linear operator on an Euclidean

Rp+1 space and the norm of this operator tends in probability to ‖S−1
2 ‖2

NhN f (x) where S2 is the
matrix defined in Theorem 2 its norm is finite and f (x) � 0, both under the assumptions
A1 and A6.

Next, we need to prove the following convergence in probability
1

λ′G�N
(0, σ̂(x))

P−→
N → ∞

1
λ′G(0, σ(x))

, (6)

where G�N stands for a distribution function of bootstrapped random errors given the em-
pirical residuals ε̂1, . . . , ε̂N and σ(x) in λ′G(0, σ(x)) is replaced by an efficient estimate
σ̂(x) in λ′G�N

(0, σ̂(x)). To show this, we will prove that
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for some δ > 0 however, it easily follows that
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∣∣∣ ,

where both terms on the right hand side tends to zero in probability, as N → ∞. The first
convergence is achieved using some per-partes integration and Glivenko-Cantelli theorem

SIMULATION Loss function ρ TN (x0 = 0.3) TN (x0 = 0.8)
r e s u l t s (L2, L1 or Huber) (under the H0) (under the H1)

N
or

m
al

The value of TN (x0)
(standard error)

L2 norm 0.001 (0.301) 0.490 (0.236)
L1 norm −0.049 (0.254) 0.452 (0.209)
Huber function −0.068 (0.265) 0.415 (0.263)

95% Critical region
(based on TN (x0))

L2 norm (−0.601, 0.636) (−0.987,−0.052)
L1 norm (−0.553, 0.451) (−0.833,−0.045)
Huber function (−0.703, 0.562) (−0.906,−0.074)

C
au

ch
y

The value of TN (x0)
(standard error)

L2 norm −0.028 (3.888) 0.157 (3.303)
L1 norm −0.130 (0.288) 0.403 (0.281)
Huber function −0.136 (0.379) 0.521 (0.311)

95% Critical region
(based on TN (x0))

L2 norm (−9.741, 9.885) (−7.452, 7.061)
L1 norm (−0.706, 0.462) (−0.962, 0.109)
Huber function (−0.910, 0.607) (−1.326,−0.094)

and the second convergence follows from the continuity assumption posed on λG(t, v) in
argument v and the fact that σ̂(x) is a consistent estimate of the scale function σ(x) at
x ∈ (0, 1).

Given the assumption A6 and the convergence derived above we can write that

λ′G�N
(0, σ̂(x))

P−→
N → ∞

λ′G(0, σ(x)),

which was to be shown as the convergence in (6) follows easily. Finally, we can apply
Slutzsky’s theorem to show

1
λ′

G�N
(0,σ̂(x)) −→

1
λ′G(0,σ(x)) in probability;

dM,2(◦, •) −→ 0 in probability;


(Slutzsky)

=⇒ dM,2(�, ∗) P−→
N → ∞

0,

which was about to be proved. �

5. S i m u l a t i o n s t u d y

To see a performance of the bootstrap algorithm we present the following simulation
study: Let the regression function m(x)= x · sin(2πx) + 0.1 · I{x>0.8} has one change-point
located at the point x0 = 0.8 with a jump size ∆ = 0.1 with random errors independently
generated from normal distribution N(0, 0.1) with 10% of outlying observations generated
from distribution N(0, 0.5) for the first simulation run and from the Cauchy distribution
with scale equal to 0.1 (the same as for the normal case) in the second simulation run.

We estimate the regression function m(·) via M-smoothers approach (using L2 norm,
L1 norm, and Huber function) at two different points (x0 = 0.3 where no change occurs
and x0 = 0.8 where it does) and we apply the proposed bootstrap algorithm to mimic the
limit distribution of the test statistic under the null hypothesis in order to obtain critical
values for a statistical test to decide when the null hypothesis is true (x0 = 0.3) or when
the alternative hypothesis is true (x0 = 0.8) respectively.
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The sample size N = 400 and the number of bootstrap replicates was set to be 1000.
The bandwidth parameter hN was taken via an appropriate robust version of a GCV crite-
rion given the specified loss function (see e.g. [6] for more details). One can clearly see an
effect of Cauchy distributed random errors in case of L2 norm (large standard errors and to
long confidence intervals) while L1 norm provides slightly better results also for Cauchy
distribution. However, the null hypothesis is correctly rejected for Tuckey’s function only
in case of Cauchy distribution and x0 = 0.8. For contaminated normal distributed random
errors all three options provide quite similarly.
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The paper presents procedures for detection of changes in mean. In particular test proce-
dures based on ratio type test statistics that are functionals of partial sums of residuals are
studied. We explore the possibility of applying the bootstrap method for obtaining critical
values of the proposed test statistics and derive the limit behavior of the block bootstrap
statistic for the L2 procedure.

1. I n t r o d u c t i o n

Ratio type statistics studied in this paper are derived from non-ratio statistics based
on partial sums of residuals. They do not need to be standardized by any variance es-
timate, which makes them a suitable alternative for non-ratio statistics, most of all in
situations, when it is difficult to find a variance estimate with satisfactory properties.
Such difficulty can occur in situations with dependent random errors (see e.g. [1]).

We describe basic properties and asymptotic behavior of statistics for change de-
tection in location model with at most one abrupt change in the mean, while assum-
ing to have data obtained in ordered time points and study the null hypothesis of no
change against the alternative of a change occurring at some unknown time point. We
extend the ideas presented by Horváth et al. in [5] and Hušková in [6]. In order to
obtain critical values for the studied test statistic, we focus on the circular moving
block bootstrap method. The method was introduced by Politis and Romano in [10]
and applied in a similar situation by Kirch in [8].
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