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Data sets in economics and finance have often the form of time series. The article is
devoted to an application of simple univariate and multivariate autoregressive models to
a two-dimensional collection of exchange rates. Parameter estimates obtained using spe-
cial methods constructed for non-negative time series are compared with the outputs of
standard estimation procedures implemented in commonly used software products. Later
on, the attention is paid to the predictive capability of our models.

1. I n t r o d u c t i o n

In economics and finance, we often observe time series, i.e. ordered sequences
of records of a variable. Different models are available to describe such data and
to predict their future development. Simple linear models such as the first order
autoregression are frequently applied and implemented in commonly used statistical
software packages.

Some special procedures for parameter estimation in non-negative autoregressive
models were proposed in last decades [4,1,2,3]. Their small sample behaviour was
investigated in simulation studies which confirmed satisfactory convergence proper-
ties. The aim of this article is to study the forecasting quality on real data sets and to
compare selected univariate and multivariate models estimated using the mentioned
approach with models analyzed by means of standard methods. Some series of ex-
change rates were used for this purpose.
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2. A u t o r e g r e s s i v e m o d e l s

There are many books containing a detailed description of autoregressive models,
e.g. [5,6]. Let us briefly recall basic definitions and notations. The autoregressive
process of first order AR(1) satisfies the equation

Xt = bXt−1 + et, (1)

where Xt is the value at time t and the error sequence et, t = 1, 2, . . . called white
noise is created by uncorrelated random variables with constant mean and variance
and with a distribution function F. The parameter −1 < b < 1 is usually estimated by
the maximum likelihood method or by the least squares method.

Bell and Smith investigated in [4] the AR(1) with non-negative white noise and
F(d) − F(c) < 1 for all 0 < c < d < ∞. They proposed a simple estimate

b∗ = min
(

X2

X1
,

X3

X2
, . . . ,

Xn

Xn−1

)
(2)

of the parameter 0 < b < 1 based on an observed non-negative series Xt of length n.
The white noise et is e.g. the exponentially distributed one with mean λ studied by
Anděl in [1]. He showed that b∗ can be obtained by maximizing the conditional
likelihood function of the variables X2, X3, . . . , Xn having fixed X1 = x1 which is
given by

L = λ−n+1 exp

−
n∑

t=2

Xt − bXt−1

λ

 (3)

under the conditions
Xt − bXt−1 ≥ 0, t = 2, 3, . . . , n. (4)

Later on, this result was generalized in [2] to the second order autoregression

Xt = b1Xt−1 + b2Xt−2 + et,

and in [3] to the multivariate AR(1) in which a vector time series is described using
the model of type (1) with a matrix parameter.

3. D a t a s e t s

Results for two series of exchange rates, CZK/EUR and CZK/USD, are presented
in the following text. Both data sets contain 86 monthly average exchange rates
recorded from January 1999, when EURO was introduced, to February 2006 and pub-
lished by Czech National Bank (web pages, June 2010: http://www.cnb.cz/cnb
/STAT.ARADY_PKG.SESTAVY_DZDROJE?p_zdrojid=KURZY&p_lang=EN). The means
are 32.884 for CZK/EUR and 31.502 for CZK/USD. The data were subjected to log-
arithmic transformation. In our case, the variance was reduced and the nonnegativity
of the series was conserved. The mean of transformed CZK/EUR is 3.490, in the case
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F 1. Log of monthly exchange rates CZK/EUR and CZK/USD

of transformed CZK/USD we get 3.433. Figure 1 shows the logarithmic transforma-
tions of our exchange rate series. The time values on the horizontal axis are numbers
of months 1,2, . . .

Univariate models were analyzed by means of the statistical software product
NCSS calculating maximum likelihood parameter estimates (see [5]). The library
Time Series Pack of the software system Mathematica (see [7]) was chosen as a use-
ful tool for working with multivariate models. The Hannan-Rissanen procedure is
used there to find an adequate model for a given data collection. Parameter estimates
can be then constructed by conditional maximum likelihood method. The approach
by Bell and Smith in the univariate AR(1), further denoted as BS method, and its gen-
eralization to multivariate AR(1) were applied and the results were compared with the
outputs of NCSS and Mathematica.

The quality of forecasting an unknown future was checked in selected models.
The series were shortened to comprise only observations from January 1999 to Feb-
ruary 2005. In the estimated models based on the reduced series, forecasts were
constructed for the time horizon from March 2005 to February 2006 using the short-
ened data. The comparison of these 12 forecasts with the observed values enables us
to see the ability of each method with respect to forecasting the unknown future.

4. U n i v a r i a t e A R ( 1 ) m o d e l

The estimates of the parameter b in the model (1) for both mentioned data sets were
calculated from the logarithmic series of length 86 using the procedures described
above. Future forecasts were constructed from the shortened series being compared
with the observed development of exchange rates.
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F 2. ACF and PACF of logarithmic monthly exchange rates CZK/EUR

BS method

The formula (2) gave the following estimates of the parameter b :b∗EUR=0.9903 for
the series CZK/EUR and b∗US D = 0.9783 for the series CZK/USD. The stationarity
condition for the AR(1) process is |b| < 1 (see [6], p. 33) so that, in accordance
with the graphs of the logarithmic series showing a decreasing trend, we get almost
nonstationary estimated AR(1) models for both currencies.

Analysis in NCSS

The autocorrelation (ACF) and partial autocorrelation (PACF) functions of the log-
arithmic series CZK/EUR are outlined in figure 2. The ACF and PACF of logarithmic
exchange rates CZK/USD behave in the same way. Slowly decreasing ACF and PACF
which cuts off after time lag 1 indicate an almost nonstationary AR(1) (see [6], p. 33).
The maximum likelihood parameter estimates are similar to those calculated by the
BS method: b̂EUR = 0.9994 and b̂US D = 0.9993.

Denote the forecasted series by X̂t. We have residuals Xt− X̂t, t = 1, 2, . . . , 86
as the estimates of the white noise values. The average of the squared residuals
and its square root RMS are measures of forecasting quality in the time horizon in
which we observed the values of the time series. We obtained RMS EUR = 0.013
and RMS US D = 0.029 in the analysis of the logarithmic series. We can consider the
residuals Xt − X̂t to be uncorrelated in the case of CZK/EUR. It was confirmed by a
significance test performed in NCSS and we can see it in the graph of the autocorre-
lation function of the residuals in figure 3. In the logarithmic series CZK/USD, only
the first autocorrelation value 0.243 is higher than the lower bound of the significance
test 0.216 so that the residuals seem to follow a MA(1) model (see [6], p. 47). We
present graphs of the ACF of both series.

F 3. ACF of AR(1) residuals – CZK/EUR (left) and CZK/USD (right)

F 4. Data and forecasts in univariate AR(1) – CZK/EUR and CZK/USD

Since the estimates by the BS method and by NCSS are very similar, only the mod-
els estimated by NCSS were used to forecast the future behaviour of the series in one
year from the reduced data. Figure 4 shows 74 observations and 12 forecasts for the
original series CZK/EUR and CZK/USD. Figure 5 presents the observed series from
March 2005 to February 2006 (line), the forecasts for the same time horizon based on
the observations till February 2005 (triangles) and 95 percent prediction limits (cir-
cles). We can see from the values of RMS and from the pictures that the forecasting
quality is very good in the case of CZK/EUR and satisfactory for CZK/USD even if
the logarithmic transformation led to almost nonstationary AR(1) model.
Remark: Slowly decreasing ACF of logarithmic series indicates the possibility of
using the transformation of first differences. Having done this, we ascertained that all
values of both ACF and PACF of the differenced logarithmic CZK/EUR can be con-
sidered equal to zero which corresponds to the parameter estimate close to one. The
differences represent a sequence of uncorrelated random variables. The differences of
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F 5. Forecasts and actual development – CZK/EUR and CZK/USD

the observations of the original series have the same property. In the original and log-
arithmically transformed series CZK/USD, ACF and PACF of first differences have
only the value at time lag one slightly exceeding the lower bound of the significance
test.

5. M u l t i v a r i a t e A R ( 1 ) m o d e l

The multivariate AR(1) model is defined by the equation

Xt = UXt−1 + et.

We suppose the parameter matrix U with elements ui j ≥ 0, i, j = 1, 2, . . . , d and
all eigenvalues inside the unit circle. As our data are two-dimensional, d = 2. The
theory of multivariate autoregressions, their properties and stationarity conditions can
be found in [6].

Let the white noise vectors et, t = 1, 2, . . . be non-negative, independent and identi-
cally distributed having a continuous distribution with finite second moments. Under
some technical assumptions concerning the distribution function of the white noise
(see [3]), a simple generalization of the formula (2) follows to the estimates of the
elements of U based on a realization X1, X2, . . . , Xn of the process Xt in the form

u+i j = min
2≤t≤n

Xt,i

Xt−1, j
(5)

which was introduced and studied in [3]. The estimate (2) in the univariate AR(1) can
be obtained by solving the maximization problem (3), (4) based on the exponential
white noise assumption. Simulation studies showed that its convergence to the true
parameter value is sufficiently fast even in the cases of other white noise distributions.
Therefore Anděl in [3] proposed a construction of the estimate U∗ of U by solving

the maximization of

u11
1
n

n∑
t=1

Xt,1 + u12
1
n

n∑
t=1

Xt,2,

u21
1
n

n∑
t=1

Xt,1 + u22
1
n

n∑
t=1

Xt,2 (6)

under the conditions

Xt1 − u11Xt−1,1 − u12Xt−1,2 ≥ 0,
Xt2 − u21Xt−1,1 − u22Xt−1,2 ≥ 0,
ui j ≥ 0, i, j = 1, 2. (7)

This approach was derived assuming exponential distribution of the independent
components of the bivariate white noise et and maximizing the conditional likeli-
hood function as in univariate AR(1). Nevertheless, the estimation procedures (5)
and (6), (7) are not equivalent in the multivariate model. Both lead to estimates which
are strongly consistent, this means they have good convergence properties in large
samples, but small sample convergence is faster in the case of the estimates obtained
by solving (6), (7) which we call A1 method in the following text. It was applied
to the two-dimensional series containing logarithmic transformations of the monthly
averages of exchange rates CZK/EUR and CZK/USD. The estimation algorithm im-
plemented in Time Series Pack of the software system Mathematica was also used to
estimate the parameter matrix and the received results were compared.

A1 method

Having solved the optimization problem in the logarithmic series of length 86 we
got this estimate of the parameter matrix U:

U∗ =
(

0.9903 0
0 0.9783

)
.

We can see immediately that AR(1) models were estimated for both components of
the vector process (CZK/EUR, CZK/USD) with the same parameter values as in the
application of the BS method to the univariate series.

Analysis in Time Series Pack

First order autoregression was recommended as an appropriate model for our data
by the Hannan-Rissanen optimization algorithm ([7], p. 95). Conditional maximum
likelihood estimate of the parameter matrix calculated from the same series as above
is

Û =
(

1.0097 −0.0107
0.0238 0.9750

)
.
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F 6. Data and forecasts in multivariate AR(1) – CZK/EUR and CZK/USD

F 7. Forecasts and actual development – CZK/EUR and CZK/USD

The eigenvalues of the above matrix are 0.9992 and 0.9855, which means that the
stationarity condition of the model is satisfied (see [6], pp. 339–340). The residuals
of the model showed a satisfactory correlation structure.

Both estimation procedures gave parameter matrices with nonsignificant elements
outside the diagonal and eigenvalues close to one, this means almost nonstationary
models corresponding with the results in the univariate AR(1).

The quality of future forecasting was checked in the model estimated by Time
Series Pack. The series were shortened in order to have 74 observations and the fore-
casts for the remaining 12 values were calculated. We show the observed 74 values
followed by 12 predicted values in both series in figure 6.

Figure 7 presents the detail of the development of the exchange rates from March
2005 to February 2006 (line) and the predicted values for this time period (squares).

Finally, let us compare the quality of forecasting an unknown future in the uni-
variate and multivariate AR(1) model. The following table shows the values of root

T 1. RMS in univariate and multivariate AR(1)

Data Univariate AR(1) Multivariate AR(1)

CZK/EUR 0.430 0.630

CZK/USD 1.649 0.949

F 8. Forecasts and actual development – CZK/EUR and CZK/USD

mean square (RMS) of residuals calculated as differences of observed and forecasted
values of the original data from March 2005 to February 2006.

Figure 8 shows the observed data from March 2005 to February 2006 (line), the
forecasts are represented by triangles in univariate AR(1) and by squares in multivari-
ate AR(1).

We can see from the values of RMS and from the pictures that the quality of future
forecasts in both univariate and multivariate model is similar for the series CZK/EUR.
In the case of CZK/USD, the multivariate AR(1) model seems to have better capa-
bility of predicting the unknown future. It can be noticed that the univariate model
predicted for CZK/USD the globally decreasing trend whereas the multivariate one
predicted the possibility of local increasing phases which corresponds to the actual
development of the series from March 2005.
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