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ON SOME CONSEQUENCES OF A GENERALIZED
CONTINUITY

Pratulananda Das and Ekrem Savas

Abstract. In normed linear space settings, modifying the sequential definition
of continuity of an operator by replacing the usual limit "lim" with arbitrary
linear regular summability methods G we consider the notion of a generalized
continuity ((G1,G2)-continuity) and examine some of its consequences in
respect of usual continuity and linearity of the operators between two normed
linear spaces.

1. Introduction

One of the most fundamental and useful properties of a linear mapping on a
normed linear space is that the continuity of the mapping on the whole space
follows from the continuity of the mapping at one point. Generally non-linear
mappings do not have this property. In this note we show that the above result
can be actually obtained for non-linear mappings under certain conditions if we
modify the sequential definition of continuity. For this purpose we introduce the
notion of a generalized continuity (called (G1,G2)-continuity), whose inspiration
comes from [10]. We also investigate when (G1,G2)-continuity implies linearity of
the mapping.

n classical analysis, such an approach started from an American Mathematical
Monthly problem by Robbins [16] in 1946. As an answer, Buck [5] in 1948 showed
that if one replaces the usual convergence in the sequential definition of real
functions by Cesaro summability, then the function (called Cesaro continuous) has
to be linear, i.e. of the form ax + b and so is also continuous on the whole of R.
The linearity and continuity actually follows if the function is Cesaro continuous
at one point only. Subsequently general results in this direction were obtained
in [1]–[4, 12, 17]–[19] where impacts on continuity and linearity of real functions
were studied by replacing usual convergence by different summability methods
like convergence in arithmatic mean, A-summability (convergence by a regular
summability matrix A), strong matrix summability, almost convergence (using the
notion of Banach limits), statistical convergence, µ-statistical convergence. The
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whole spectrum of definitions and results and many relevant references can be
seen from the beautifully written paper by Connor and Grosse-Erdmann [10]. In
particular in [10], the authors introduced a very general approach by replacing
usual convergence by an arbitrary linear functional G defined on a suitable class
of sequences and named the corresponding notion of continuity as G-continuity.
However it should be noted that all the above mentioned work was done for
real functions and results were proved by using the intrinsic properties of real
number system. Very recently a lot of work has been done using an arbitrary
linear functional G in [6]–[8] where applications to continuity, compactness and
connectedness were studied.

2. Main results

Before we can begin, it is necessary to introduce some definitions and notations.
By X we will mean a normed linear space. We will use boldface letters x,y, z . . .
for sequences x = {xn}n∈N . . . in X. If f : X → X is a mapping then we define
f(x) = {f(xn)}n∈N. By a method of sequential convergence, or briefly a method, we
mean a linear mapping G from a set cG of X-valued sequences to X. A sequence
x = {xn}n∈N is said to be G-convergent to u ∈ X if x ∈ cG and G(x) = u.
In particular, lim denotes the limit mapping lim x = lim

n
xn on the set c of all

convergent sequences. A method G is called regular if every convergent sequence
x in X is also G-convergent with G(x) = lim x. It should be noted that all
the summability methods stated above including statistical convergence, ideal
convergence and Cesaro summability are regular sequential methods. We are now
ready to introduce our main definition.

Definition 2.1. Let X and Y be two normed linear spaces and let f : X → Y be
a mapping. Let G1 and G2 be regular linear summability methods on X and Y
respectively. Then f will be called (G1,G2)-continuous at u ∈ Xprovided that
whenever any sequence x= {xn}n∈N in X is G1-convergent to u ∈ X, f(x)=
{f(xn)}n∈N is G2-convergent to f(u) (which we briefly express as G2(f(x))=
f(G1(x)).

Clearly any linear mapping f : X → Y is (G1,G2)-continuous on whole X if it
is so at a point.

We first construct an example to show that (G1,G2)-continuity is independent
of the notion of continuity as well as linearity.

Example 2.2. Let X be a normed space. There exists a regular method G and a
nonlinear mapping f : X → X which is (G,G)-continuous at θ but not continuous
at θ where θ is the null element of X.

Proof. This example is modeled after Example 3 in [10]. Choose a non-zero element
v0 of X with ‖v0‖ = 1. Now construct a sequence {vn}n∈N where vn = (n+ 1)vn−1
∀n = 1, 2, 3, . . . . Then ‖vn‖ ≥ n+1∀n and so ‖vn‖ → ∞ as n→∞. We now define
cG and G. Let Y be the set of sequences y = {yn}n∈N with yn ∈ {θ}∪{vk : k ∈ N}
for each n such that the non-zero yn’s have ‖yn‖ → ∞ as n→∞. Let W be the
linear span of Y . We now define cG = c +W where c is the set of all convergent
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sequences in X and G : cG → X by G(x) = lim z if x = z + w with z ∈ c and
w ∈W.

We first need to show that G is well-defined. For this it is sufficient to prove
that cG is the direct sum of c and W which will immediately follow if we can
show that cG ∩W = {{θ}n∈N} sequence consisting of the zero element θ only. For
this we now show that if w ∈W does not consist of θ only then the norm of the

non-zero elements of w tends to infinity. Let w =
M∑
p=1

apyp 6= {θ}n∈N with ap ∈ R

and yp ∈ Y. Let B = max
p
|ap| and let

b = min
{∣∣∣∑
p∈H

ap

∣∣∣ : H ⊂ {1, 2, . . . ,M},
∑
p∈H

ap 6= 0
}
.

Clearly b > 0. Now from the construction of Y , we can choose a sequence Kn of
positive integers with Kn →∞ such that for p = 1, 2, . . . ,M and n ∈ N,

ypn = θ or ‖ypn‖ ≥ ‖vKn‖ .
Now for n ∈ N, we can write

wn =
∞∑
j=1

( ∑
ypn=vj

ap

)
vj

where only finitely many terms are non-zero. If wn 6= θ, we must have∑
ypn=vj

ap 6= 0

for some j. Then if R = R(n) be the largest such j clearly we must have R ≥ Kn.
Hence

‖wn‖ =
∥∥∥( ∑
ypn=vR

ap

)
vR −

∑
ypn 6=vR

apy
p
n

∥∥∥
≥ b · ‖vR‖ −B ·M · ‖vR−1‖

=
(
b · ‖vR‖
‖vR−1‖

−B ·M
)
‖vR−1‖

= (b · (R+ 1)−B ·M)‖vR−1‖

≥ (b · (Kn + 1)−B ·M)‖vKn−1‖ −→ ∞ as n −→∞ .

From above we can conclude that cG = c + W is the direct sum of c and W
and so G is well-defined. Evidently G is also regular and linear.

Now we define f : X → X by

f(u) = vk if u = v0

k
= θ otherwise.

Since v0
k → θ whereas f

(
v0
k

)
is not a convergent sequence (since it is unbounded),

so f can not be continuous at θ. We show that f is (G,G)-continuous at θ. For
this let x = z + w ∈ cG with G(x) = lim z = θ. Now f(xn) ∈ {θ} ∪ {vk : k ∈ N}∀n.
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Further f(xn) 6= θ only if xn = zn + wn ∈
{
v0
k : k ∈ N

}
which for sufficiently large

n implies that wn = θ and zn ∈
{
v0
k : k ∈ N

}
. Hence f(x) either has finitely many

non-zero elements or if it has infinitely many non-zero elements their norm tend
to infinity. In any case we have f(x) ∈ cG and G(x) = θ. This shows that f is
(G,G)-continuous at θ. It is easy to verify that the mapping f defined above is
not linear. �

In the remaining part of this note we try to establish certain sufficient conditions
under which (G1,G2)-continuity of a function at a point will ensure its continuity
on the whole space and even its linearity.

We now introduce the following property of a method G which will again be
needed for linearity.

(NL1) There is a sequence t = {tn}n∈N consisting of 0 and 2 such that for any
u ∈ X the sequence tu = {tnu}n∈N is G-convergent with G(tu) = u.

We also assume that f : X → Y is a mapping such that

(∗) for every point u0 of discontinuity of f , there is a α 6= θ and two sequences x
and y with xn → u0, yn → u0 and f(xn)− f(yn) = α∀n.

Theorem 2.3. Let G1 and G2 be regular linear methods satisfying the property
(NL1) with respect to the same sequence t = {tn}n∈N on X and Y respectively.
Then every mapping f : X → Y satisfying the above property (∗) and for which
f(2u) = 2f(u)∀u ∈ X, (G1,G2)-continuity at one point of X implies continuity
in the usual sense on whole of X.

Proof. Suppose that f is (G1,G2)-continuous at v0 ∈ X. Let u0 ∈ X be any
arbitrary point. We primarily show that for all sequences x = {xn}n∈N with
xn → u0 the sequences f(x) are G2-convergent to a fixed element of Y . By (NL1)
there is a sequence t = {tn}n∈N consisting of 0 and 2 such that for any u ∈ X
the sequence tu = {tnu}n∈N is G1-convergent with G1(tu) = u. We construct the
sequences y, y′ as follows.

yn = tna0 + (2− tn)xn

and

y′n = tnxn + (2− tn)b0 ,

where a0 = b0 = (v0−u0). Now observe that {tnxn−tnu0}n∈N is actually convergent
to θ. Hence by linearity and regularity of G1 this sequence is also G1-convergent to
θ which consequently implies that G1(tnxn) = G1(tu0) = u0. So we can conclude
that y and y′ are also G1-convergent with

G1(y) = a0 + 2u0 − u0 = v0

G1(y′) = u0 + 2b0 − b0 = v0 .

Let us define the sequences w and w′ by
wn = tnf(a0) + (2− tn)f(xn) ,
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and

w′n = tnf(xn) + (2− tn)f(b0) .

Note that f(yn) = f(2a0) = 2f(a0) = wn when tn = 2 and also f(yn) = f(2xn) =
2f(xn) = wn when tn = 0. Thus wn = f(yn) for all n ∈ N. Similar arguments show
that w′n = f(y′n) for all n ∈ N. Since both y and y′ are G1-convergent to v0 so
(G1,G2)-continuity of f at v0 implies that both w and w′ are G2-convergent to
f(v0). Hence the sequence w + w′ is G2-convergent to 2f(v0) by the regularity of
G2. But

wn + w′n = 2f(xn) + tnf(a0) + (2− tn)f(b0)

= 2f(xn) + y′′n (say).

Observe that the sequence y′′ = {y′′n}n∈N where y′′n = tnf(a0) + (2 − tn)f(b0) is
G2-convergent to f(a0)+f(b0). Hence 2f(x) = (2f(xn)) must also be G2-convergent
with

(1) G2(2f(x)) = 2f(v0)− f(a0)− f(b0) .

Note that this value is same for all sequences x with xn → u0. Further it should
be noted that linearity of the method G2 ensures that G2(f(x)) = 1

2 G2(2f(x))
exists.

Now if f is not continuous at u0 then u0 is a point of discontinuity of f and so
by (∗) there exists a α 6= θ and two sequences x and y with xn → u0, yn → u0
and f(xn) − f(yn) = α∀n. But using the regularity and linearity of G2, we can
conclude that G2(2f(x))−G2(2f(bfy)) = 2α 6= θ which contradicts (1). Thus f
can not have any discontinuity and so f must be continuous on whole of X. �

Remark 2.4. Note that in the above theorem f was not assumed to be linear. It
is easy to give examples of methods G satisfying the condition (NL1). For example
if G is the Cesaro summability then the sequence (2, 0, 2, 0, 2, 0, . . . ) is the required
sequence t = {tn}n∈N with which G satisfies (NL1). Also one may check that
taking a more general version of the condition (NL1) where G(tu) = u is replaced
by G(tu) = βu, 0 < β < 2, one can prove the result in the same way by taking
a0 = (v0 − (2− β)u0)/β and b0 = (v0 − βu0)/(2− β).

Remark 2.5. We would also like to point out that in the definition of the condi-
tion (NL1) if the number 2 is replaced by a positive integer k then it seems that
Theorem 2.3 will work for mappings f : X → Y satisfying the condition that
f(ku) = kf(u) for all u ∈ X. In particular for k = 1 the condition (NL1) can be
rewritten as

(NL1) There is a sequence t = {tn}n∈N consisting of 0 and 1 such that for any
u ∈ X the sequence tu = {tnu}n∈N is G-convergent with G(tu) = βu, 0 < β < 1
which is same as condition (L1) of [10] and one can easily verify that Theorem 2.3
will work for any mapping f : X → Y without any additional assumption.
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Theorem 2.6. Let G1 and G2 be regular linear methods satisfying the property
(NL1) with respect to the same sequence t = {tn}n∈N on X and Y respectively. Then
every homogeneous mapping f : X → Y that is (G1,G2)-continuous is additive
and so linear.

Proof. Let f : X → Y be a homogeneous (G1,G2)-continuous mapping and let
u, v ∈ X. By (NL1) there is a sequence t = {tn}n∈N consisting of 0 and 2 such that
for any x ∈ X the sequence tx = {tnx}n∈N is G1-convergent with G1(tx) = x. We
define w = {wn}n∈N where

wn = tnu+ (2− tn)v ,

which then is either 2u or 2v according as tn = 2 or 0. Since G1 is linear and
regular, so the sequence {wn}n∈N is G1-convergent with G1(w) = u + v. Again
f(wn) is equal to f(2u) = 2f(u) if tn = 2 and equal to f(2v) = 2f(v) if tn = 0.
Hence f(wn) = tnf(u) + (2− tn)f(v) and so we have

G2
(
f(w)

)
= f(u) + f(v) .

Since f is (G1,G2)-continuous, we must have

f(u+ v) = f
(
G1(w)

)
= G2

(
f(w)

)
= f(u) + f(v) .

This proves that f is additive and so is linear. �

Example 2.7. We now show that there exist methods G which do not satisfy
the condition (NL1) but for which homogeneous (G,G)-continuous mappings
f : X → X are additive and so linear.

Let t = (1, 0,−1, 1, 0,−1, . . . ) and let cG = c + {tu : u ∈ X} where we define
G(x) = limn x3n+2 for any x ∈ cG. Then it is easy to verify that G is a linear
regular method which does not satisfy the condition (NL1).

Let f : X → X be a homogeneous (G,G)-continuous mapping. Let u, v ∈ X.
Construct a sequence of the form x = y + tu−v2 where y = {yn}n∈N is such
that limn yn = u+ v. Now proceeding as in Example 2 in [10] we can prove that
f(u+ v) = f(u) + f(v).

In the next result we show that if we strengthen the condition (NL1) further then
we can obtain the linearity of homogeneous mappings from the (G1,G2)-continuity
on the whole space. For this we now introduce the following condition.

(NL2) There are disjoint sequences t = {tn}n∈N and l = {ln}n∈N consisting
of 0 and 2 (i.e. their supports are disjoint) such that for any z ∈ X the sequence
tz = {tnz}n∈N is G-convergent with G(tz) = z and the sequence lz = {lnz}n∈N is
G-convergent with G(lz) = βz where 0 < β and 1 + β 6= 2.

Theorem 2.8. Let G1 and G2 be regular linear methods satisfying property (NL2)
with respect to same sequences t = {tn}n∈N and l = {ln}n∈N on X and Y respecti-
vely. Then every homogeneous mapping f : X → Y that is (G1,G2)-continuous at
θ is linear.
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Proof. Since f is homogeneous, f(θ) = θ. By (NL2) there are disjoint sequences
t = {tn}n∈N and l = {ln}n∈N consisting of 0 and 2 with the above property.
Define mn = 2− tn − ln. Then m = {mn}n∈N is a sequence of 0 and 2 such that
for any z ∈ X the sequence mz = {mnz}n∈N is G1-convergent with G1(mz) =
(2− β − 1)z = σz (say). Clearly t, l and m have disjoint supports and σ 6= 0. Let
u, v ∈ X. Now construct the sequence x = {xn}n∈N,

xn = −tnσu− ln(σ/β)v +mn(u+ v) .
Then x is G1-convergent with G1(x) = θ. By (G1,G2)-continuity of f at θ we then
must have G2(f(x)) = f(θ) = θ. As f(xn) = tnf(−σu)+lnf((σ/β)v)+mnf(u+v),
it follows that
(3) θ = G2

(
f(x)

)
= f(−σu) + βf

(
(−σ/β)v

)
+ σf(u+ v) .

Putting u = θ and then v = θ we get from (3), f(−σu) = −σf(u) and βf((−σ/β)v) =
−σf(v). Substituting these values in (3) and dividing by σ we finally obtain

f(u+ v) = f(u) + f(v) .
This completes the proof of the theorem. �

Remark 2.9. It is easy to verify that there exist methods G satisfying condition
(NL2). For example if G is the method of Cesaro summability then (2, 0, 2, 0, 2, 0, . . . )
and (0, 2, 0, 0, 0, 2, 0, 0, 0, 2, . . . ) are two such sequences t and l with which G sa-
tisfies condition (NL2). Also it can be noted that the condition (NL2) can be
generalized in the same way as observed in Remark 2.4. Also as pointed out in
Remark 2.5, the definition of condition (NL2) can also be given in terms of any
positive integer k with necessary modifications and Theorem 2.8 can be proved
similarly.

Concluding Remark and an Open Problem. It can be noted that summability
methods like Cesaro summability, statistical (ideal) convergence (see [14], [13]) and
more can be defined in topological spaces and so in general normed linear spaces.
As most of these summability methods give rise to regular methods considered
here, so the above modification of the notion of continuity to generalized continuity
seems very natural. It seems to be a very interesting open problem as to find
the necessary and sufficient condition (or at least the least possible condition)
under which non-linear mappings will be continuous on the whole space if they are
continuous at one point.
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