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A dyadic view of rational convex sets

Gábor Czédli, Miklós Maróti, A.B. Romanowska

Abstract. Let F be a subfield of the field R of real numbers. Equipped with
the binary arithmetic mean operation, each convex subset C of Fn becomes a
commutative binary mode, also called idempotent commutative medial (or en-
tropic) groupoid. Let C and C′ be convex subsets of Fn. Assume that they are
of the same dimension and at least one of them is bounded, or F is the field of
all rational numbers. We prove that the corresponding idempotent commutative
medial groupoids are isomorphic iff the affine space Fn over F has an automor-

phism that maps C onto C′. We also prove a more general statement for the
case when C,C′ ⊆ Fn are barycentric algebras over a unital subring of F that is
distinct from the ring of integers. A related result, for a subring of R instead of a
subfield F , is given in Czédli G., Romanowska A.B., Generalized convexity and

closure conditions, Internat. J. Algebra Comput. 23 (2013), no. 8, 1805–1835.

Keywords: convex set; mode; barycentric algebra; commutative medial groupoid;
entropic groupoid; entropic algebra; dyadic number

Classification: Primary 08A99; Secondary 52A01

1. Introduction and motivation

Let F be a subfield of the field R of real numbers. Equipped with the arithmetic
mean operation (x, y) 7→ (x + y)/2, denoted by h (coming from “half”), Fn be-
comes a groupoid (Fn, h). This groupoid is idempotent, commutative, medial, and
cancellative. In Polish notation, which we use in the paper, these properties mean
that, for arbitrary x, y, z, t ∈ Fn, xxh = x (idempotence), xyh = yxh (commu-
tativity), xyh zth h = xzh yth h (mediality, which is a particular case of entrop-
icity), and xyh = xzh implies y = z (cancellativity). These groupoids without
assuming cancellativity are also called commutative binary modes or CB-modes ,
and they were studied in, say, [7] and [11] and [12], and Ježek and Kepka [6].

Let C be a nonempty subset of Fn. If there is a convex subset D of the
Euclidean space Rn in the usual sense such that C = D∩Fn, then C will be called
a geometric convex subset of Fn. We also say that C is a geometric convex set

over F . Later we will give an “internal” definition that does not refer to R. Note
that C above is simply called a convex subset in Romanowska and Smith [12];
however, the adjective “geometric” becomes important soon in a more general

This research was supported by the NFSR of Hungary (OTKA), grant numbers
K77432 and K83219, and by the Warsaw University of Technology under grant number
504G/1120/0054/000.
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situation. For convenience, the empty set will not be called a geometric convex
set.

Our initial problem is to characterize those pairs (C1, C2) of geometric convex
subsets of Fn for which (C1, h) and (C2, h) are isomorphic groupoids. In the
particular case when F = Q, loosely speaking we are interested in what we can
see from the “rational world” Qn if the only thing we can percept is whether a
point equals the arithmetic mean of two other points.

Similar questions were studied for some particular geometric convex subsets of
D2, where D = {x2k : x, k ∈ Z} is the ring of rational dyadic numbers . Namely,
the isomorphism problem of line segments and polygons of the rational dyadic
plane D2 were studied in Matczak, Romanowska and Smith [8]. Another problem
of deciding whether (C1, h) is isomorphic to (C2, h) is considered in [3, Ex. 2.6],
and [4] also considers a related isomorphism problem.

The isomorphism problem even for intervals of the dyadic line D is not so
evident as one may expect. This explains why our convex sets in the main result,
Theorem 2.4, are assumed to have some further properties, including that they
are geometric over a subfield of R. Further comments on the main result will be
given in Section 3.

2. Barycentric algebras over unital subrings of R and the results

Notation 2.1. The general assumptions and notations in the paper are the fol-
lowing.

(i) N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}, Z is the ring of integers, Q is the field
of rational numbers, R is the field of real numbers, and n ∈ N.

(ii) T is a subring of R such that 1 ∈ T and T ∩Q 6= Z (that is, Z ⊂ T ∩Q).
(iii) K is the subfield of R generated by T , and F is a subfield of R such that

T ⊆ F . (Clearly, T ⊆ K ⊆ F ⊆ R.)
(iv) The open and the closed unit intervals of T are denoted by Io(T ) = {x ∈

T : 0 < x < 1} and I•(T ) = {x ∈ T : 0 ≤ x ≤ 1}, respectively; Io(F ),
I•(Q), etc. are particular cases. (Notice that T can equal, say, F and
F can equal R, etc. Therefore, whatever we define for T or F in what
follows, it will automatically make sense for F or R.)

(v) With each p ∈ R we associate a binary operation symbol denoted by p.
For H ⊆ R, we let H := {p : p ∈ H}. However, we will write, say, Io(T )

instead of Io(T ). For x, y ∈ Rn, xyp is defined to be (1− p)x+ py.

If p ∈ Io(R), then p is called a barycentric operation since xyp gives the
barycenter of a two-body system with weight (1 − p) in the point x and weight
p in the point y. For any p, q in R, the operations p and q commute in Rn, that
is, xyp ztp q = xz q ytq p holds for all x, y, z, t ∈ R. This property is called the

entropic law , see [12]. As a particular case, the medial law (for h) means that h
commutes with itself. Although the present paper is more or less self-contained,
for standard general algebraic concepts the reader may want to see Burris and
Sankappanavar [1]. He may also want to see Romanowska and Smith [12] for
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additional information on modes and barycentric algebras. The visual meaning
of barycentric operations is revealed by the following lemma; the obvious proof

will be omitted. The Euclidean distance
(

(x1 − y1)
2 + · · · + (xn − yn)

2
)1/2

of
x, y ∈ Rn will be denoted by dist(x, y).

Lemma 2.2. Let y and x be distinct points in Rn, see Figure 1. Then for each

b belonging to the open line segment connecting y and x and for each p ∈ Io(R),

b = yxp ⇐⇒ x = yb1/p ⇐⇒ y = bx p/(p− 1).

Moreover, dist(y, x) = dist(y, b)/p.

Figure 1. Illustrating Lemma 2.2 in case p = 1/3

The algebra (Rn; Io(T )) and all of its subalgebras are particular members of
the variety of barycentric algebras over T , or T -barycentric algebras for short.
(However, as opposed to previous papers and monographs, T is no longer assumed
to be a field.) These particular T -barycentric algebras that we consider aremodes ,
that is, idempotent algebras in which any two operations (and therefore any two
term functions) commute. Modes and barycentric algebras have intensively been
studied in the monographs [10] and [12], see also the extensive bibliography in [3].
It is well-known, see [12], that (Fn;h) is term-equivalent to (Fn; Io(D)), whence
the same holds for its subalgebras. This allows us to translate the initial problem
to the language of D-barycentric algebras, and then it is natural to extend it to
T -barycentric algebras.

The subalgebras of (Rn; Io(T )) will be called T -convex subsets of Rn. The
empty set is not considered to be T -convex. (Notice that the adjective “T -convex”
in [4] is used only for subsets of T n.) For ∅ 6= X ⊆ Rn, the T -convex hull of X ,
denoted by CnvT (X), is the subalgebra generated by X in (Rn; Io(T )). It is
well-known, see [12], that I•(T ) is exactly the set of binary term functions of
(Fn; Io(T )). Moreover, each (1+ k)-ary term function of (Fn; Io(T )) agrees with
a function τττ : (x0, . . . , xk) 7→ ξ0x0 + · · ·+ ξkxk where ξ0, . . . , ξk ∈ I•(T ) such that
ξ0 + · · ·+ ξk = 1. This implies that, for any ∅ 6= X ⊆ Fn,

(1) CnvT (X) = {x0 · · ·xk τττ : k ∈ N0, x0, . . . , xk ∈ X and τττ is as above} .

The full idempotent reduct of the T -module TF
n is a so-called affine module over

T ; we call it an affine T -module and denote it by AffT (F
n). We often simply

write Fn instead of AffT (F
n). In the particular case T = F , the affine F -module

AffF (F
n) is an n-dimensional affine F -space, see more (well-known) details later.
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The assumption that C ⊆ Fn is a T -convex subset would be rarely sufficient
for our purposes, see also [4] for a similar analysis. There are three reasonable
ways to make a stronger assumption.

Firstly, we can assume that C is an F -convex subset , that is, a subalgebra of
(Fn, Io(F )).

Secondly, we can assume that C is the intersection of Fn with an R-convex sub-
set of Rn. (That is, with a convex subset of Rn in the usual geometric meaning.)
In this case we say that C is a geometric convex subset of Fn. In other words, we
say that C is a geometric convex set over F . Notice that the geometric convexity
of C depends on F , so we can use this concept only for subsets of Fn. (Note also
that [4] defines geometric convexity even when C ⊆ T n but in a different way,
which is equivalent to our approach for the case T = F .)

To define the third variant of convexity, let a, b ∈ Fn with a 6= b. By the T -
line generated by {a, b} we mean the subalgebra generated by {a, b} in the affine
T -module AffT (F

n). This T -line is denoted by ℓT (a, b). It is easy to see that
ℓT (a, b) = {abp : p ∈ T }. It follows from cancellativity that for each x ∈ ℓT (a, b),

there is exactly one p ∈ T such that x = abp. Let c, d ∈ ℓT (a, b). Then there
are unique p, r ∈ T such that c = abp and d = abr. For s ∈ T , we say that s is
between p and r iff p ≤ s ≤ r or r ≤ s ≤ p. Then

[c, d]ℓT (a,b) := {abs : s is between p and r}

is called a T -segment of the T -line ℓT (a, b) with endpoints c and d. As opposed to
the case when T is a field, a T -segment is usually not determined by its endpoints.
For example, 0 and 3 are the endpoints of the D-segment [0, 3]ℓD(0,1) and also of

the D-segment [0, 3]ℓD(0,3) in Q1, but 1 ∈ [0, 3]ℓD(0,1) \ [0, 3]ℓD(0,3) indicates that
these D-segments are distinct. Now, a nonempty subset C of Fn will be called
T -segment convex if for all c, d ∈ C and all T -segments S with endpoints c and
d, S ⊆ C. This definition, is quite “internal” since it does not refer to external
objects like R (besides that T is a subring of R). The relationship between the
three concepts above is clarified by the following statement, which is proved later.
A related treatment of analogous concepts is given in [4].

Proposition 2.3. Let C be a nonempty subset of Fn.

(i) If C is T -segment convex, then it is T -convex.
(ii) C is a geometric convex subset of Fn if and only if it is F -convex.
(iii) If C is F -convex, then it is T -segment convex.

(iv) If T generates F (that is, F = K), then C is F -convex if and only if it is

T -segment convex.

Besides (i), each of the conditions (ii)–(iv) above clearly implies T -convexity.
Remember that Z ⊂ T ∩Q means that Z 6= T ∩Q and Z ⊆ T ∩Q. If X ⊆ Fn and
{dist(x, y) : x, y ∈ X} is a bounded subset of R, then X is called a bounded set.
For X ⊆ Rn, the affine F -subspace spanned by X will be denoted by Spanaff

F (X).
As usual, by the affine F -dimension of X , denoted by dimaff

F (X), we mean the
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affine F -dimension of Spanaff

F (X). We are now in the position to formulate the
main result.

Theorem 2.4. Assume that n ∈ N, F is a subfield of R, T is a subring of F , and
Z ⊂ T ∩ Q. Let C and C′ be F -convex subsets (equivalently, geometric convex

subsets) of Fn. Assume also that

(a) F = Q,

or

(b) C and C′ have the same affine F -dimension and at least one of them is

bounded.

Then the following three conditions are equivalent.

(i) (C, Io(T )) and (C′, Io(T )) are isomorphic T -barycentric algebras.
(ii) The affine F -space AffF (F

n) has an automorphism ψ such that ψ(C) =
C′.

(iii) The affine real space AffR(R
n) has an automorphism ψ such that ψ(C) =

C′.

Corollary 2.5. If C and C′ are geometric convex subsets of Fn satisfying (b)
above, then (C, h) ∼= (C′, h) if and only if (ii) of Theorem 2.4 holds, which is

equivalent to (iii) of Theorem 2.4. Furthermore, if D and D′ are isomorphic

subalgebras of (Qn, h), then D is a geometric convex subset of Qn if and only if

so is D′.

3. Examples and comments

Before proving our results, we present four examples to illustrate and comment
them. The first example below is a variant of [3, Ex. 1.5]. While [3] is insufficient
to handle it, Theorem 2.4 will apply easily. Remember that h stands for 1/2.

Example 3.1. Let Ci = {(x, y) ∈ F 2 : x2 ∈ Io(F ) and |y| < 1 − |x|i}, for
i ∈ N. Are there distinct i, j ∈ N such that the groupoids (Ci, h) and (Cj , h) are
isomorphic?

The answer is negative. Suppose, for a contradiction, that (Ci, h) ∼= (Cj , h)
and 1 ≤ j < i. Then Theorem 2.4 yields an automorphism ψ of AffR(R

2) such
that ψ(Ci) = Cj . It is well-known that there exist an invertible 2-by-2 matrix M
over R and a column vector ~c ∈ R2 such that

(2) for every ~v =

(

x
y

)

∈ R2, ψ(~v) =M~v + ~c.

The usual topological closure of Ct is denoted by [Ct]
top

R , for t ∈ {i, j}. Since ψ
and ψ−1 are continuous by (2), ψ([Ci]

top

R ) = [Cj ]
top

R . Let Bt denote the boundary

[Ct]
top

R \ Ct = {(x, y) ∈ R2 : −1 ≤ x ≤ 1 and |y| = 1− |x|t}
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of Ct, for t ∈ {i, j}. Clearly, ψ(Bi) = Bj . Depending on the parity of t, Bt

consists of two or four algebraic curves. If St is a subset of one of these curves,
then we can choose the signs in ft(x, y) = ±xt ± y − 1 so that St is a subset
of V (ft) = {(x, y) ∈ R2 : ft(x, y) = 0}. We choose Si and Sj so that Si is
infinite and ψ(Si) ⊆ Sj . Since ±y − 1 is an irreducible polynomial in R[y], the
Eisenstein–Schönemann criterion (see Cox [2] for our terminology) yields that ft is
an irreducible polynomial in R[x, y]. Note that the (total) degree of ft ∈ R[x, y],
denoted by deg(ft), is t. Let gj(x, y) = fj(ψ(x, y)). It follows from (2) that
gj ∈ R[x, y] and that deg(gj) = j. Since 1 ≤ deg(gj) = j < i = deg(fi) and fi is
irreducible, the greatest common divisor of fi and gj in the unique factorization
domainR[x, y] is 1. Hence, by the classical Bézout’s theorem in algebraic geometry
(see, for example, Fulton [5]), |V (fi)∩V (gj)| ≤ ij. This is a contradiction, because
Si ⊆ V (fi) ∩ V (gj) and Si is infinite.

Example 3.2. Let n = 1, F = Q(
√
2), T = D, and let C be the least T -segment

convex subset of F = Fn that includes {0, 3}. Since [0, 3]∩Q is T -segment convex

and includes {0, 3}, we conclude that C ⊆ [0, 3]∩Q. Hence
√
2 /∈ C, and C is not

F -convex.
Thus, the assumption F = K in Proposition 2.3(iv) cannot be omitted.

Example 3.3. The rational vector spaces Q(R × {0}) and QR
2 are well-known

to be isomorphic since they have the same dimension. (Recall that any basis of

QR ∼= Q(R × {0}) is called a Hamel-basis .) Therefore C = AffQ(R× {0}) and
C′ = AffQ(R

2) are isomorphic affine Q-spaces. Thus, (C, Io(Q)) is isomorphic
to (C′, Io(Q)), and they are both R-convex subsets of AffR(R

2). However, no
automorphism of AffR(R

2) maps C onto C′.
Let F = R, and observe that dimaff

F (C) = 1 6= 2 = dimaff

F (C′) and none of C
and C′ is bounded. This motivates (without explaining fully) the assumption “C
and C′ have the same affine F -dimension and at least one of them is bounded”
in Theorem 2.4.

Example 3.4. A routine application of Hamel bases shows that the unit disc
(C1, h) := ({(x, y) : x2 + y2 < 1}, h) is isomorphic to another subalgebra (C2, h)
of (R2, h) such that both C2 and R2 \ C2 are everywhere dense in the plane; see
[3, Proof of Lemma 2.7] for details. Clearly, C2 is not R-convex. By the term
equivalence of (Ci, h) and (Ci, I

o(D)), we also have that (C1, I
o(D)) is isomorphic

to (C2, I
o(D)). However, no automorphism of AffR(R

2) maps C1 onto C2.
With T = D and F = R, this example motivates the assumption in Theorem 2.4

that C and C′ are geometric convex subsets of Fn.

This and the previous example show that Theorem 2.4 is not valid for arbi-
trary T -convex subsets of Fn, so we added some further assumptions. However, it
remains an open problem whether one could somehow relax the present assump-
tions. In particular, we do not know whether they are independent.
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4. Auxiliary statements and proofs

It is well-known that given an affine space V = AffF (V ), which is the full
idempotent reduct of the vector space FV , we can obtain the vector space struc-
ture back as follows: fix an element o ∈ V , to play the role of 0, define x + y :=
x− o+ y and, for p ∈ F , px := oxp. This explains some (also well-known) basic

facts on affine independence. Namely, a (1 + k)-element subset {a0, . . . , ak} of
AffF (V ) is called affine F -independent , if ai /∈ Spanaff

F (a0, . . . , ai−1, ai+1, . . . , ak),
for i = 0, . . . , k. In this case, each element of the affine F -subspace U :=
Spanaff

F (a0, . . . , ak) can be uniquely written in the form ξ0a0+ · · ·+ξkak where the
so-called barycentric coordinates ξ0, . . . , ξk belong to F and their sum equals 1.
Moreover, then U = AffF (U) is freely generated by {a0, . . . , ak}; that is, each
mapping {a0, . . . , ak} → U extends to an endomorphism of AffF (U).

To capture convexity, we need a similar concept: {a0, . . . , ak} ⊆ Fn will be
called Io(T )-independent if ai /∈ CnvT (a0, . . . , ai−1, ai+1, . . . , ak), for i = 0, . . . , k.
It is not hard to see (and it is stated in [9]) that if {a0, . . . , ak} ⊆ Fn is affine
K-independent, then it is a free generating set of (CnvT (a0, . . . , ak), I

o(T )) and
of (CnvK(a0, . . . , ak), I

o(K)). However, as opposed to affine K-independence,
Io(K)-independence does not imply free Io(K)-generation. For example, the ver-
tices a0, . . . , a5 of a regular hexagon in the real plane form an Io(R)-independent
subset but (CnvR(a0, . . . , a5), I

o(R)) is not freely generated since a0a3h = a1a4h.
As usual, maximal independent subsets are called bases , or point bases . If

an affine F -space V has a finite affine F -basis, then all of its bases have the
same number of elements, which is 1 plus the so-called (affine F -) dimension

dimaff

F (V ) of the space. If V is an affine F -space with dimension k, then, for any
{b0, . . . , bk} ⊆ V ,

(3) {b0, . . . , bk} spans AffF (V ) iff {b0, . . . , bk} is an affine F -basis of AffF (V ).

Lemma 4.1. Let L be a subfield of R such that F ⊆ L. Assume that X ⊆ Fn.

Then, for each d ∈ Fn ∩CnvL(X), there are a k ∈ N0, an affine L-(and therefore

affine F -) independent subset {a0, . . . , ak} of X , ξ0 ∈ I•(F ), and ξ1, . . . , ξk ∈
Io(F ) such that ξ0 + · · · + ξk = 1 and d = ξ0a0 + · · · + ξkak. (Note that ξ0 is

necessarily in Io(F ) if k ≥ 1). Consequently, CnvF (X) = Fn ∩ CnvL(X).

This lemma belongs to the folklore. For the reader’s convenience (and having
no reference at hand), we present a proof.

Proof of Lemma 4.1: Since d ∈ CnvL(X) ⊆ CnvR(X ∩Rn), we can choose an
affine R-subspace V ⊆ Rn of minimal dimension such that d ∈ CnvR(X∩V ). The
affine R-dimension of V will be denoted by k. By Carathéodory’s Fundamental
Theorem, there are a0, . . . , ak ∈ X ∩ V such that d ∈ CnvR(a0, . . . , ak). The
affine R-subspace Spanaff

R (a0, . . . , ak) is V . Otherwise a subspace with smaller
dimension would do. Hence, using (3), we conclude that {a0, . . . , ak} is an affine
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R-basis of V . Therefore, there is a unique (ξ0, . . . , ξk) ∈ R1+k such that

(4) d = ξ0a0 + · · ·+ ξkak and ξ0 + · · ·+ ξk = 1.

These uniquely determined ξi are non-negative since d ∈ CnvR(a0, . . . , ak). We
can consider (4) as a system of linear equations for (ξ0, . . . , ξk), and this system
has a unique solution. Since d, a0, . . . , ak ∈ Fn, the rudiments of linear algebra
imply that (ξ0, . . . , ξk) ∈ F 1+k. This, together with the fact that the affine
R-independence of the set {a0, . . . , ak} ⊆ Fn implies its affine L-independence,
proves the first part of the lemma. The second part is a trivial consequence of
the first part. �

Figure 2. The case k = 1 and p = u/v = 3/7

Proof of Proposition 2.3: Part (i) follows obviously from the fact that a, b ∈
C with a 6= b implies that [a, b]ℓT (a,b) ⊆ C.

If C is a geometric convex subset of Fn, then it is obviously F -convex. Con-
versely, if C is F -convex, then it is a geometric convex subset of Fn, because
Lemma 4.1 yields that C = CnvF (C) = Fn ∩ CnvR(C). This proves part (ii).

Part (iii) is evident.
In order to prove (iv), assume that C is T -segment convex. Let D := CnvK(C).

Since D is K-convex and C ⊆ D, it suffices to show that D ⊆ C. Let x be an
arbitrary element of D = CnvK(C). We obtain from Lemma 4.1 that D =
Kn ∩ CnvR(C). Hence, again by Lemma 4.1, there are a minimal k ∈ N0, an
affine R-independent subset {a0, . . . , ak} ⊆ C, and a (ξ0, . . . , ξk) ∈ (I•(K))1+k

such that

x = ξ0a0 + · · ·+ ξkak and ξ0 + · · ·+ ξk = 1.

This allows us to prove the desired containment x ∈ C by induction on k. If
k = 0, then x = a0 ∈ C is evident. Hence, k ≥ 1, and the minimality of k implies
that (ξ0, . . . , ξk) ∈ (Io(K))1+k.

Next, assume that k = 1. Then x = a0a1p where p = u/v ∈ Io(K) and
u, v ∈ T with 0 < u < v. Let z := a0a1 1/v, see Figure 2 for u/v = 3/7, and we

will rely on Lemma 2.2. Then ℓT (a0, z) contains a0 = a0z0 and a1 = a0z v since
0, v ∈ T . Hence x = a0zu ∈ [a0, a1]ℓT (a0,z), together with T -segment convexity,
implies that x ∈ C.

Finally, assume that k > 1. Observe that ξi/(1−ξ0) ∈ Io(K) for i ∈ {1, . . . , k},
and that

∑k
i=1 ξi/(1− ξ0) = 1. Let b =

∑k
i=1 ξi/(1− ξ0)ai. Then it belongs to C

by the induction hypothesis. Hence, x = ξ0a0 + (1− ξ0)b ∈ C. �
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The next lemma asserts that although (C, Io(T )) cannot be generated by an
independent set G of points in general, G satisfactorily describes C by means of
existential formulas . This fact will enable us to use some ideas taken from [8].

Lemma 4.2. Let k ∈ N0 and ξ0, . . . , ξk ∈ Q such that ξ0+· · ·+ξk = 1. Then there

exists an existential formula Φ
Io(T )
ξ0,...,ξk

(x0, . . . , xk; y) in the language of (Fn, Io(T ))
with the following property: whenever a0, . . . , ak, b ∈ Fn, then

b = ξ0a0 + · · ·+ ξkak iff Φ
Io(T )
ξ0,...,ξk

(a0, . . . , ak; b) holds in (Fn, Io(T )).

If, in addition, C is a Q-convex subset of Fn such that C is also T -convex and

{b, a0, . . . , ak} ⊆ C, then

b = ξ0a0 + · · ·+ ξkak iff Φ
Io(T )
ξ0,...,ξk

(a0, . . . , ak; b) holds in (C, Io(T )).

Figure 3. Illustrating Φ
Io(T )
−2/4, 6/4(x0, x1; y)

Proof: Let p be the smallest prime number such that 1/p ∈ T . There is such a
prime since Z ⊂ T ∩ Q. Note that i/p ∈ Io(T ) for i = 1, . . . , p− 1. We proceed

by induction on k. If k = 0, then ξ0 = 1, so we let Φ
Io(T )
1 (x0; y) to be the formula

y = x0.
Assume that k = 1. We also assume that at least one of ξ0 and ξ1 is greater

than 1. Otherwise we can let Φ
Io(T )
ξ0, ξ1

(x0, x1; y) := (y = x0x1 ξ1). (Note that

ξ1 is a projection if ξ1 ∈ {0, 1}.) Hence, we can assume that ξ1 = r/q and
ξ0 = (q−r)/q such that q, r ∈ N and p < q < r. Figure 3 illustrates the particular
case (p, q, r) = (3, 4, 6). Let A(p, r) denote the conjunction of the equations
uj+i = ujuj+p i/p for all 0 ≤ j ≤ r − p and 1 ≤ i ≤ p− 1. Clearly, the formula

Φ
Io(T )
(q−r)/q, r/q(x0, x1; y) :=

(∃u0) . . . (∃ur)
(

x0 = u0 & x1 = uq & y = ur & A(p, r)
)

does the job in (Fn, Io(T )). If C is a Q-convex subset of Fn, then {b, a0, a1} ⊆ C
implies that the ui belong to C, and the formula works in (C, Io(T )).

Next, assume that k ≥ 2 and the statement holds for smaller values. If one of
ξ0, . . . , ξk is zero, say xi = 0, then we can obviously let

Φ
Io(T )
ξ0,...,ξk

(x0, . . . , xk; y) := Φ
Io(T )
ξ0,...,ξi−1,ξi+1...,ξk

(x0, . . . , xi−1, xi+1, . . . , xk; y).

So we can assume that none of ξi is zero. We have to partition {0, 1, . . . , k}
into the union of two nonempty disjoint subsets I and J such that ξi, i ∈ I, have
the same sign, and the same holds for ξj , j ∈ J . If all the ξ0, . . . , ξk are positive,
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then any partition will do. Otherwise we can let ∅ 6= I = {i : ξi < 0}; then
J = {0, . . . , k}\I is nonempty since ξ0+· · ·+ξk = 1 > 0. To ease our notation, we
can assume, without loss of generality, that I = {0, . . . , t} and J = {t+1, . . . , k}.
Let κ0 = ξ0+ · · ·+ξt and κ1 = ξt+1+ · · ·+ξk. Then κ0 6= 0 6= κ1 and κ0+κ1 = 1.
Define ηi := ξi/κ0 for i ≤ t and τj := ξj/κ1 for j > t. Clearly, η0 + · · ·+ ηt = 1
and τt+1 + · · · + τk = 1. Moreover, all the ηi and the τj are positive, and the
identity

ξ0x0 + · · ·+ ξkxk = κ0(η0x0 + · · ·+ ηtxt) + κ1(τt+1xt+1 + · · ·+ τkxk)

clearly holds. Therefore we can let

Φ
Io(T )
ξ0,...,ξk

(x0, . . . , xk; y) : = ΦIo(T )
η0,...,ηt

(x0, . . . , xt; z0) & ΦIo(T )
τt+1,...,τk

(xt+1, . . . , xk; z1)

& ΦIo(T )
κ0,κ1

(z0, z1; y).

This formula clearly does the job in (Fn, Io(T )). It also works in (C, Io(T )),
provided that C is Q-convex, since if a0, . . . , ak, b ∈ C, then η0a0 + · · ·+ ηtat ∈ C
and τt+1at+1 + · · ·+ τkak ∈ C, and the induction hypothesis (for k − 1 and then
for k = 1) applies. �

The following lemma is perhaps known (for arbitrary fields). Having no refer-
ence at hand, we will give an easy proof.

Lemma 4.3. Let C be a nonempty subset of Fn. Assume that {a0, . . . , ak} is

a maximal affine F -independent subset of C, and let V := Spanaff

F (a0, . . . , ak).
Then

(i) C ⊆ V and V = Spanaff

F (C);
(ii) V does not depend on the choice of {a0, . . . , ak};
(iii) all maximal affine F -independent subsets of C consist of 1+ k elements.

Proof: We know that V = {ξ0a0 + · · ·+ ξkak : ξ0 + · · ·+ ξk = 1, (ξ0, . . . , ξk) ∈
F 1+k}. If we had C 6⊆ V , then {a0, . . . , ak, ak+1} would be affine F -independent
for every ak+1 ∈ C \ V , which contradicts the maximality of {a0, . . . , ak}. Hence
C ⊆ V , which gives Spanaff

F (C) ⊆ V . Conversely, {a0, . . . , ak} ⊆ C implies that
V = Spanaff

F (a0, . . . , ak) ⊆ Spanaff

F (C), proving part (i).
Next, let {b0, . . . , bt} be another maximal affine F -independent subset of C,

and let W be the affine F -subspace it spans. By part (i), C ⊆ W . Let U :=
V ∩W . Since C ⊆ U , {a0, . . . , ak} and {b0, . . . , bt} are affine F -independent in
U . This yields that k ≤ dimaff

F (U) and t ≤ dimaff

F (U). On the other hand, U ⊆ V
and U ⊆ W give that dimaff

F (U) ≤ dimaff

F (V ) = k and dimaff

F (U) ≤ t. Hence
t = dimaff

F (U) = k, proving part (iii).
Using dimaff

F (U) = dimaff

F (V ) and U ⊆ V we conclude that U = V . We obtain
U =W similarly, whence W = V proves part (ii). �

Proof of Theorem 2.4: Assume that (ii) holds. Then ψ is of the form x 7→
Ax + b where b ∈ Fn is a column vector and A is an invertible n-by-n matrix
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over F . Then A is also an invertible real matrix and b ∈ Rn, whence ψ extends
to an Rn → Rn automorphism. Thus, (ii) implies (iii).

Since Io(T ) ⊆ R, the automorphisms of the real affine space preserve the
Io(T )-structure. Hence (iii) trivially implies (i).

Next, assume that (i) holds, and let ϕ : (C, Io(T )) → (C′, Io(T )) be an isomor-
phism. For x ∈ C, ϕ(x) is often denoted by x′. If an element of C′ is denoted
by, say, y′, then y will automatically stand for ϕ−1(y′). We assume that |C| > 1
since otherwise the statement is trivial. Firstly, we show that

(5) dimaff

F (C) = dimaff

F (C′).

Since this is stipulated in the theorem if F 6= Q, let us assume that F = Q and
prove (5). Let, say dimaff

Q (C) ≤ dimaff

Q (C′) =: k. By Lemma 4.3, we can choose
a (maximal) affine F -independent, that is Q-independent, subset {a′0, . . . , a′k}
in C′. It suffices to show that {a0, . . . , ak} ⊆ C is affine F -independent. By way
of contradiction, suppose that this is not the case. Then, apart from indexing,
there is a t ∈ {1, . . . , k} such that {a1, . . . , at} is affine Q-independent and a0 ∈
Spanaff

Q (a1, . . . , at). Hence there are ξ1, . . . , ξt ∈ Q whose sum equals 1 such that

a0 = ξ1a1 + · · · + ξtat. It follows from Lemma 4.2 that Φ
Io(T )
ξ1,...,ξt

(a1, . . . , at; a0)

holds in (C, Io(T )). Consequently, Φ
Io(T )
ξ1,...,ξt

(a′1, . . . , a
′

t; a
′

0) holds in (C′, Io(T )).

Hence Lemma 4.2 implies that a′0 = ξ1a
′

1+ · · ·+ ξta
′

t, which contradicts the affine
F -independence of {a′0, . . . , a′k}. This proves (5).

Next, we let k = dimaff

F (C) = dimaff

F (C′). Clearly, k ≤ n. Let V := Spanaff

F (C)
and V ′ := Spanaff

F (C′). We claim that for t = 0, 1, . . . , k and for an arbitrarily
fixed a0 ∈ C,

(6)
there are a1, . . . , at ∈ C such that both {a0, . . . , at} ⊆ C and

{a′0, . . . , a′t} = ϕ
(

{a0, . . . , at}
)

⊆ C′ are affine F -independent.

(This assertion does not follow from the previous paragraph since here we do not
assume that F = Q.) Of course, we need (6) only for t = k, but we prove it
by induction on t. If t ≤ 1, then (6) is trivial. Assume that 1 < t ≤ k and (6)
holds for t − 1. So we have an affine F -independent subset {a0, . . . , at−1} such
that {a′0, . . . , a′t−1} is also affine F -independent. Let Spanaff

F (a0, . . . , at−1) and
Spanaff

F (a′0, . . . , a
′

t−1) be denoted by Vt−1 and V ′

t−1, respectively. Since t−1 < k =
dimaff

F (C) = dimaff

F (C′), there exist elements x ∈ C \Vt−1 and y′ ∈ C′ \V ′

t−1. Then
{a0, . . . , at−1, x} and {a′0, . . . , a′t−1, y

′} are affine F -independent. We can assume
that x′ ∈ V ′

t−1 and y ∈ Vt−1 since otherwise {a′0, . . . , a′t−1, x
′} or {a0, . . . , at−1, y}

would be affine F -independent, and we could choose an appropriate at from {x, y}.
Take a p ∈ Io(T ), and define at := yxp ∈ C. Then a′t = y′x′ p. Suppose for a
contradiction that at ∈ Vt−1. Then, by Lemma 2.2, x = yat1/p ∈ Vt−1, a contra-

diction. Hence at /∈ Vt−1 and {a0, . . . , at−1, at} is affine F -independent. Similarly,
suppose for a contradiction that a′t ∈ V ′

t−1. Then, again by Lemma 2.2, y′ =
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a′tx
′ p/(p− 1) ∈ V ′

t−1 is a contradiction. Hence a′t /∈ V ′

t−1 and {a0, . . . , at−1, a
′

t} is

affine F -independent. This completes the proof of (6).
From now on in the proof, (6) allows us to assume that {a0, . . . , ak} ⊆ C

and {a′0, . . . , a′k} ⊆ C′ are affine F -independent subsets with a′i = ϕ(ai), for
i = 0, . . . , k. For ∅ 6= X ⊆ Fn, we define two “relatively rational” parts of X as
follows:

rr~a(X) := X ∩ Spanaff

Q (a0, . . . , ak) and rr~a′(X) := X ∩ Spanaff

Q (a′0, . . . , a
′

k).

If F = Q, then Lemma 4.3(i) yields that

rr~a(C) = C ∩ Spanaff

Q (a0, . . . , ak) = C ∩ Spanaff

Q (C) = C,

and rr~a′(C′) = C′ follows similarly. Moreover, even if F 6= Q, rr~a(C) is dense in
C, and rr~a′(C′) is dense in C′ (in topological sense). The restriction of a map α
to a subset A of its domain will be denoted by α⌉A. We claim that there is an
automorphism ψ of AffF (F

n) such that

(7) ψ⌉rr~a(C) = ϕ⌉rr~a(C) and ψ
(

rr~a(C)
)

= rr~a′(C′).

In order to prove this, extend {a0, . . . , ak} and {a′0, . . . , a′k} to maximal affine
F -independent subsets {a0, . . . , an} and {a′0, . . . , a′n} of AffF (F

n), respectively.
Since {a0, . . . , an} and {a′0, . . . , a′n} are free generating sets of AffF (F

n), there is
a (unique) automorphism ψ of AffF (F

n) such that ψ(ai) = a′i for i = 0, . . . , n.
Let x ∈ rr~a(C) be arbitrary. Then there are ξ0, . . . , ξk ∈ Q such that their sum

equals 1 and

(8) x = ξ0a0 + . . .+ ξkak.

Observe that C and C′ areQ-convex and T -convex since they are F -convex. Hence

we obtain from Lemma 4.2 and (8) that Φ
Io(T )
ξ0,...,ξk

(a0, . . . , ak;x) holds in (C, Io(T )).

Since ϕ is an isomorphism, Φ
Io(T )
ξ0,...,ξk

(a′0, . . . , a
′

k;ϕ(x)) holds in (C′, Io(T )). Using

Lemma 4.2 again, we conclude that ϕ(x) = ξ0a
′

0+ . . .+ξka
′

k. Therefore, (8) yields
that ψ(x) = ξ0ψ(a0) + . . .+ ξkψ(ak) = ξ0a

′

0 + . . .+ ξka
′

k = ϕ(x) ∈ C′. This gives
that ψ⌉rr~a(C) = ϕ⌉rr~a(C) and ψ(x) ∈ rr~a′(C′). Therefore, ψ(rr~a(C)) ⊆ rr~a′(C′).

Working with (ψ−1, ϕ−1) instead of (ψ, ϕ), we obtain ψ−1(rr~a′(C′)) ⊆ rr~a(C)
similarly. Thus, (7) holds.

If F = Q, then (7) together with C = rr~a(C) and C′ = rr~a′(C′) implies the
validity of the theorem. Thus we assume that at least one of C and C′ is bounded.
If, say, C is bounded, then so is rr~a(C). The automorphisms of AffF (F

n) preserve
this property, whence (7) implies that rr~a′(C′) is bounded. Since rr~a′(C′) is dense
in C′, we conclude that C′ is bounded. Therefore, in the rest of the proof, we
assume that both C and C′ are bounded.

For X ⊆ Rn, the topological closure of X , that is, the set of cluster points of X ,
will be denoted by [X ]topR . Let C∗ = ψ−1(C′). It is an F -convex subset of Fn since
the automorphisms of AffF (F

n) are also automorphisms of (Fn, Io(F )). By the
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same reason, the restriction ψ−1⌉C′ is an isomorphism (C′, Io(T )) → (C∗, Io(T )).
Let γ := ψ−1⌉C′ ◦ ϕ (we compose maps from right to left). Then, by (7), by
γ(ai) = ai for 0 ≤ i ≤ n, and by Lemma 4.3, we know that

(9)

γ : (C, Io(T )) → (C∗, Io(T )) is an isomorphism,

rr~a(C) = rr~a(C
∗), and γ⌉rr~a(C) is the identical map,

C ⊆ V := Spanaff

F (a0, . . . , ak) and C∗ ⊆ V .

It suffices to show that γ is the identical map. Really, then the desired ϕ = ψ⌉C
would follow by the definition of γ. For y ∈ C, the element γ(y) will be often
denoted by y∗. We have to show that y∗ = y for all y ∈ C. Since this is clear
by (9) if y ∈ rr~a(C), we assume that

y ∈ C \ rr~a(C).

Next, we deal with C and C∗ simultaneously. Since they play a symmetric role,
we give the details only for C.

If~b = (b1, b2, b3, . . .) ∈ rr~a(C)
ω = rr~a(C

∗)ω, then~b is called an rr~a(C)-sequence.
Convergence (without adjective) is understood in the usual sense in Rn. We use

the notation limj→∞ bj = y to denote that ~b converges to y. We say that ~b

(C, Io(T ))-converges to y, in notation ~b→(C,Io(T )) y, if for each j ∈ N,

(10)
there exist an xj ∈ C and a qj ∈ Io(T )

such that qj ≤ 1/j and bj = yxj qj .

In virtue of Lemma 2.2, ~b→(C,Io(T )) y iff

(11)
for each j ∈ N, there is a qj ∈ Io(T )

such that qj ≤ 1/j and ybj 1/qj ∈ C .

It follows from (9) and (10) that for all ~b ∈ rr~a(C)
ω
,

(12) ~b→(C,Io(T )) y iff ~b→(C∗,Io(T )) y
∗.

For X ⊆ Rn, let diam(X) denote the diameter sup{dist(u, v) : u, v ∈ X} of
X . We know that diam(C) < ∞ and diam(C∗) < ∞. Hence if qj ≤ 1/j, then
Lemma 2.2 yields that dist(y, bj) = qj ·dist(y, ybj 1/qj ) ≤ diam(C)/j. Hence (11)

gives that for any rr~a(C)-sequence ~b,

(13)

if ~b→(C,Io(T )) y, then lim
j→∞

bj = y. Similarly,

if ~b→(C∗,Io(T )) y
∗, then lim

j→∞

bj = y∗.
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Next, we intend to show that

(14) there exists a rr~a(C)-sequence ~b such that ~b→(C,Io(T )) y.

Extend {y} to a maximal affine F -independent subset {y, z1, . . . , zk} of C. It
follows from Lemma 4.3 that this set consists of 1 + k elements, and V equals
Spanaff

F (y, z1, . . . , zk). For a given j ∈ N, choose a qj ∈ Io(T ) such that qj ≤ 1/j.
For i = 1, . . . , k, let ui := yzi qj . By the F -convexity of C, ui ∈ C. Since

zi = yui1/qj by Lemma 2.2, {y, u1, . . . , uk} also F -spans V , whence it is affine

F -independent by Lemma 4.3(iii). Hence CnvF (y, u1, . . . , uk) ⊆ C is a (non-
degenerate) k-dimensional simplex of V , so its interior (understood in V ) is
nonempty. Since rr~a(C) is dense in C and rr~a(C) ⊆ C ⊆ V , we can choose
a point bj ∈ CnvF (y, u1, . . . , uk). By (1), bj is of the form yu1 . . . uk τττ . Let
xj := yz1 . . . zk τττ ∈ C. Using that qj commutes with τττ and the terms are idem-

potent, we have that

yxj qj = y(yz1 . . . zk τττ )qj = (yy . . . y τττ )(yz1 . . . zk τττ )qj

= (yyqj )(yz1 qj ) . . . (yzk qj )τττ = yu1 . . . ukτττ = bj.

(Notice that the parentheses above can be omitted.) Therefore, the sequence
~b = (b1, b2, . . .) satisfies (14).

Finally, it follows from (14), (12) and (13) that y∗ = y. Therefore, γ is the
identical map. �

Proof of Corollary 2.5: As we have already mentioned, with reference to
[12], (Fn, h) is term equivalent to (Fn, Io(D)). Hence the first part of the state-
ment is clear.

To prove the second part, assume that D and D′ are isomorphic subalgebras
of (Qn, h) such that D′ is a geometric subset of Qn. By Proposition 2.3(ii), D′

is Q-convex. Let ϕ : (D,h) → (D′, h) be an isomorphism. Let a, b ∈ D. Their
ϕ-images are denoted by a′ and b′, respectively. If y′ ∈ D′, then y will stand
for ϕ−1(y′) ∈ D. Assume that r/q ∈ Io(Q) such that r < q ∈ N0; we have to
show that abr/q ∈ D. Since D′ is Q-convex, u′i = a′b′ i/q ∈ D′ for i ∈ {0, . . . , q}.
Clearly, u′j = u′j−1u

′

j+1h for j ∈ {1, . . . , q−1}. Hence, uj = uj−1u+1h for all these
j, and we conclude that abr/q = ur ∈ D. This proves that D is Q-convex. �

Acknowledgment. The authors are grateful to an anonymous referee for useful
comments and for optimizing the induction step in the proof of Proposition 2.3.
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