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Remarks on Fréchet differentiability of pointwise

Lipschitz, cone-monotone and quasiconvex functions

Luděk Zaj́ıček

Abstract. We present some consequences of a deep result of J. Lindenstrauss
and D. Preiss on Γ-almost everywhere Fréchet differentiability of Lipschitz func-
tions on c0 (and similar Banach spaces). For example, in these spaces, every
continuous real function is Fréchet differentiable at Γ-almost every x at which
it is Gâteaux differentiable. Another interesting consequences say that both
cone-monotone functions and continuous quasiconvex functions on these spaces
are Γ-almost everywhere Fréchet differentiable. In the proofs we use a general
observation that each version of the Rademacher theorem for real functions on
Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lips-
chitz functions) easily implies by a method of J. Malý a corresponding version of
the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions).
Using the method of separable reduction, we extend some results to several non-
separable spaces.

Keywords: cone-monotone function; Fréchet differentiability; Gâteaux differen-
tiability; pointwise Lipschitz function; Γ-null set; quasiconvex function; separable
reduction

Classification: Primary 46G05; Secondary 47H07

1. Introduction and notation

D. Preiss proved in [19] the following very deep theorem.

Theorem P. Each real Lipschitz function on an Asplund Banach space is Fréchet

differentiable at all points of a set D which is uncountable in each ball.

This theorem motivated a number of related interesting results, see the recent
monograph [15].

One of the most interesting open questions in this area asks in which Asplund
spaces X there exists an “a.e. version” of Preiss’ theorem (i.e., a result which
asserts that there exists a non-trivial σ-ideal I such that the set of all Fréchet
non-differentiability points of every Lipschitz function on X belongs to I).

A partial answer was given by J. Lindenstrauss and D. Preiss [14] who defined
and applied the important notion of Γ-null sets. A special case (cf. [14, Corol-
lary 3.12], [15, Corollary 6.3.11]) of their main result (which works with vector
functions) reads as follows.

The research was partly supported by the grant GAČR P201/12/0436.
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Theorem LP. Let X be a Banach space. Suppose that X∗ is separable and

every porous set in X is Γ-null. Then any real Lipschitz function f defined on an

open subset G of X is Γ-almost everywhere Fréchet differentiable.

The main examples of the spaces X which satisfy the assumptions of Theo-
rem LP are subspaces of c0, the spaces C(K) with K compact countable, and the
Tsirelson space ([14, Theorem 4.6], [15, Theorem 10.6.8]).

Theorem LP was generalized to some non-separable spaces:

Theorem C. Let X be a closed subspace of c0(∆) (where ∆ is uncountable)
or X = C(K), where K is a scattered compact topological space. Then any real

Lipschitz function f defined on an open subset G of X is Γ-almost everywhere

Fréchet differentiable.

For the proofs (which use Theorem LP and separable reduction methods) see
[15, (4), p. 45] (for X = c0(∆)) and [7, Theorem 6.18] (for all cases).

The following Theorem LPT from [15] is an interesting generalization and
strengthening of Preiss’ theorem. It works not only with Lipschitz functions, but
also with cone-monotone functions.

Recall that a function f on an open subsetG of a Banach spaceX is called cone-

monotone, if there exists a closed convex cone K ⊂ X with non-empty interior
such that f(y) ≥ f(x) whenever y−x ∈ K. It is easy to see (see, e.g., [15, p. 223])
that for every Lipschitz function f on G there exists a functional x∗ ∈ X∗ such
that the function g := f + x∗ is cone-monotone. So each differentiability theorem
on cone-monotone functions implies a corresponding differentiability theorem on
Lipschitz functions.

Theorem LPT. Let f be a cone-monotone (or Lipschitz) function on an open

subset G of an Asplund space X . Then f is Fréchet differentiable at all points of

a set which is non-σ-porous in each ball.

Theorem LPT immediately follows from [15, Theorem 12.1.3] in the case when
X is separable. The proof for non-separable spaces follows by the separable reduc-
tion method of [15]. It is sketched in [15, (1), p. 44] and can be easily completed
by a standard application of [15, Corollary 3.6.7].

The main results of the present note are Theorem 3.1, Corollary 3.2, Theo-
rem 3.4 and Theorem 3.9 from Section 3.

Theorem 3.1 generalizes “Rademacher’s theorems”, Theorem LP and Theo-
rem C to corresponding “Stepanov’s theorems”. More precisely, it says that if
X is as in these theorems and f is an arbitrary real function on X , then the
set of all points at which f is Lipschitz and is not Fréchet differentiable is Γ-
null. (Theorem 3.1 is an immediate consequence of Theorem LP, Theorem C and
Proposition 2.1.)

Corollary 3.2 asserts that, if X is as in Theorem LP, then every continuous
real function is Fréchet differentiable at Γ-almost every x at which it is Gâteaux
differentiable. It follows immediately from Theorem 3.1 via a lemma from [26].
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Theorem 3.4 shows that the “cone-monotone analogue” of Theorem LP also
holds. It follows easily from Theorem 3.1 via results of J. Duda on Gâteaux
differentiability [9] and Lipschitzness [10] of cone-monotone functions.

Theorem 3.4 on differentiability of cone-monotone functions easily implies Co-
rollary 3.5 on differentiability of continuous quasiconvex functions.

Theorem 3.9 and Theorem 3.10 (proved by the method of separable reduction
from [15]) generalize Theorem 3.4 and Corollary 3.5 to some non-separable Banach
spaces, namely, subspaces c0(Γ) and spaces C(K), whereK is a scattered compact
topological space.

Section 2 is devoted to a general observation that each version of the Rade-
macher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet
or Gâteaux differentiability of Lipschitz functions) easily implies by a method of
J. Malý from [16] a corresponding version of Stepanov’s theorem (on a.e. differ-
entiability of pointwise Lipschitz functions). This observation is formulated in
Proposition 2.1 (see also Remark 2.2).

Notation and some definitions. In the following, by a Banach space we mean
a real Banach space. The symbol B(x, r) will denote the open ball with center x
and radius r.

Let X , Y be Banach spaces, G ⊂ X an open set, and f : G → Y a mapping.

We say that f is Lipschitz at x ∈ G if lim supy→x
‖f(y)−f(x)‖

‖y−x‖ < ∞. We say that

f is pointwise Lipschitz if f is Lipschitz at all points of G.
We say that a subset A of a Banach spacesX is (upper) porous at a point x ∈ X ,

if there exist p > 0 and a sequence xn → x such that B(xn, p‖xn − x‖) ∩ A = ∅
for each n. We say that a set A ⊂ X is porous if A is porous at each point x ∈ A.

Our main results use (in a Banach space X) the notion of Γ-null sets in X and

in the proofs we use the class C̃ of (small) subsets of X . However, we do not need
the (rather complicated) definitions of these classes. For the definition of Γ-null

sets see [15] (or [14]) and for the definition of C̃ [21] (or [25], or [9]).
Note only that the class of Γ-null sets is incomparable with the class of all

Aronszajn null sets (i.e., the class of all Gauss null sets) and also with the class
of Haar null sets, see [15, Example 5.4.11]. (For information on Aronszajn, Gauss
and Haar null sets see [1].)

The sets from C̃ are “much smaller”. Indeed (see [25]),

(1.1) in a separable Banach space X , each set from C̃ is Γ-null.

Moreover, each set from C̃ is also Aronszajn null (see [21, Proposition 13]).
Finally note the fact which easily follows from the definition ([15, Defini-

tion 5.1.1]) that

(1.2) in a Banach space X , the system of all Γ-null sets is a σ-ideal.

Following [14] and [15], we will write “Γ-almost everywhere” instead of “at all
points except for a Γ-null set”.
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2. Stepanov’s theorems via Rademacher’s theorems

This section is devoted to a general observation (Proposition 2.1) which shows
that each version of the Rademacher theorem for real functions on Banach spaces
(i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions)
easily implies a corresponding version of Stepanov’s theorem (on a.e. differentia-
bility of pointwise Lipschitz functions).

The proof is a straightforward combination of the well-known method of [16]
and Stone’s theorem on refinements of open covers of metric spaces. Of course, in
the case of a separable X we do not need Stone’s theorem and thus (after obvious
changes) the proof essentially coincides with the proof of J. Malý from [16] (which
works with functions on R

n).
Note that we apply Proposition 2.1 also in non-separable spaces, see the proof

of Theorem 3.1.

Proposition 2.1. Let X be a Banach space and I a σ-ideal of subsets of X .

Suppose that

(R) each real Lipschitz function on X is Fréchet (resp. Gâteaux) differentiable
except for a set from I.

Let G ⊂ X be an open set, f an arbitrary real function on G, and

A := Af := {x ∈ G : f is Lipschitz but not Fréchet

(resp. Gâteaux) differentiable at x}.

Then A ∈ I.
In particular, each real pointwise Lipschitz function on G is Fréchet (resp.

Gâteaux) differentiable except for a set from I.

Proof: First observe that, without any loss of generality, we can suppose that
f is bounded. Indeed, if we define fk : G → Y by the equalities fk(x) := f(x) if
‖f(x)‖ ≤ k and fk(x) := 0 if ‖f(x)‖ > k, it is easy to see that Af ⊂

⋃∞
k=1 Afk .

So we suppose that ‖f(x)‖ ≤ K, x ∈ G.
For each n ∈ N, set

Ln := {x ∈ G : ‖f(y)− f(x)‖ ≤ n‖y − x‖ whenever ‖y − x‖ ≤ 1/n}

and An := A ∩ Ln. It is easy to see that

(2.1) A =

∞⋃

n=1

An.

Fix an arbitrary n ∈ N and consider the open cover C of G consisting of all open
balls with radius (2n)−1. By the Stone theorem ([11, Theorem 4.4.1]) the cover C
has an open refinement which is σ-discrete. Write this refinement as V =

⋃∞
i=1 Vi,

where (as in [11]) Vi = {Vs,i}s∈S is a discrete family for each i ∈ N. Note that
each family Vi (from the proof of [11, Theorem 4.4.1]) may be assumed to be



Remarks on Fréchet differentiability 207

not only discrete (i.e., topologically discrete), but also metrically discrete, namely
(see [11, (4), p. 280]),

(2.2) dist(Vs1,i, Vs2,i) ≥ 2−i, whenever s1, s2 ∈ S, s1 6= s2.

Denote Di :=
⋃

s∈S Vs,i and An,i := An ∩Di.
Fix an arbitrary i ∈ N and denote M := An,i. Since V is a cover of G, it

is clearly sufficient to prove M ∈ I. Without any loss of generality we suppose
M 6= ∅. Set S∗ := {s ∈ S : Vs,i ∩M 6= ∅}. For each s ∈ S∗ and x ∈ Vs,i, set

gs,i(x) := inf{g(x) : g is Lipschitz with constant n on Vs,i and f ≤ g on Vs,i}

and

hs,i(x) := sup{h(x) : h is Lipschitz with constant n on Vs,i and h ≤ f on Vs,i}.

Consider, for a ∈ Vs,i ∩M , the functions

ga(x) := f(a) + n‖x− a‖, x ∈ Vs,i and ha(x) := f(a)− n‖x− a‖, x ∈ Vs,i.

Clearly ga and ha are Lipschitz with constant n and, sinceM ⊂ Ln and diamVs,i ≤
1/n, we have ha ≤ f ≤ ga on Vs,i. Consequently we obtain that gs,i and hs,i are
finite and Lipschitz with constant n on Vs,i,
(2.3)
hs,i ≤ f ≤ gs,i on Vs,i and hs,i(a) = f(a) = gs,i(a) for each a ∈ M ∩Vs,i.

Define the functions gi, hi onD∗
i :=

⋃
s∈S∗ Vs,i by the equalities gi(x) := gs,i(x)

and hi(x) := hs,i(x) for x ∈ Vs,i. We will show that

(2.4) gi and hi are Lipschitz on D∗
i .

To this end, consider arbitrary x1 ∈ D∗
i , x2 ∈ D∗

i . Let x1 ∈ Vs1,i and x2 ∈ Vs2,i.
If s1 = s2, then we know that ‖gi(x1) − gi(x2)‖ ≤ n ‖x1 − x2‖. If s1 6= s2, then
‖x1 − x2‖ ≥ 2−i by (2.2), and so

‖gi(x1)− gi(x2)‖ ≤ 2K = (2K2i)2−i ≤ (2K2i)‖x1 − x2‖.

Since the same inequalities hold also for hi, (2.4) follows.
So we can (see [18]) extend gi and hi to Lipschitz functions g and h defined on

all X . Let Ng and Nh be the sets of all points of Fréchet (resp. Gâteaux) non-
differentiability of g and h. By (R) we have Ng ∈ I and Nh ∈ I. So it is sufficient
to prove M ⊂ Ng ∪ Nh. Suppose on the contrary that there exists a ∈ M such
that both g and h are Fréchet (resp. Gâteaux) differentiable at a. Let a ∈ Vs,i.
Using the facts that g = gs,i and h = hs,i on Vs,i and (2.3), we clearly obtain that
f is Fréchet (resp. Gâteaux) differentiable at a, which contradicts a ∈ A. �

Remark 2.2. (i) It is easy to see that Proposition 2.1 holds (with the same
proof) for an arbitrary notion of differentiability (“A-differentiability”)
having the following natural property:
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(*) If a ∈ X , h(a) = f(a) = g(a), h ≤ f ≤ g on a neighbourhood
of a and both g and h are A-differentiable at a, then f is A-
differentiable at a.

In particular, Proposition 2.1 holds for Hadamard differentiability. Mo-
reover, we can suppose that X is a metric space in which a notion of
A-differentiability satisfying (*) is defined.

(ii) It is an open question whether Proposition 2.1 holds in the vector case
(i.e., for mappings from X to Y , where X , Y are Banach spaces).

D. Bongiorno [3, pp. 518–519] has shown that the vector version of
Proposition 2.1 holds for Gâteaux differentiability if X is separable and

(**) each Lipschitz mapping f : A → Y (where A ⊂ X) has a
Lipschitz extension f∗ : X → Y .

She used the method (based on consideration of differentiability points
of suitable distance functions) which was probably first used in [2] and
was recently used in several articles, e.g. in [8].

Using this main idea, it will be proved in [17] that the vector ver-
sion of Proposition 2.1 holds for “almost all derivatives” (also for non-
separable X), if the condition (**) holds. The proof of this general ob-
servation is very simple and provides probably an optimal application of
the mentioned idea from [2] and [3].

3. Main results

Proposition 2.1 together with Theorem LP and Theorem C immediately imply
the following generalizations of Theorem LP and Theorem C.

Theorem 3.1. Let X be a Banach space. Suppose that

(i) X∗ is separable and every σ-porous set in X is Γ-null, or
(ii) X is a closed subspace of c0(∆), where ∆ is uncountable, or

(iii) X = C(K), where K is a scattered compact topological space.

Let G be an open subset of X and f an arbitrary real function on X . Then the

set of all points at which f is Lipschitz and is not Fréchet differentiable is Γ-null.
In particular, each pointwise Lipschitz real function on G is Γ-almost every-

where Fréchet differentiable.

Corollary 3.2. Let X be a Banach space such that X∗ is separable and every

σ-porous set in X is Γ-null. Suppose that f : X → R is continuous (or, more

generally, has the Baire property and its restriction to each line is continuous).
Then f is Fréchet differentiable at Γ-almost every point x at which it is Gâteaux

differentiable.

Proof: By [26, Lemma 3.7] the set M of all points at which f is Gâteaux dif-
ferentiable but not Lipschitz is σ-directionally porous set. Since by [15, Remark
5.2.4] each σ-directionally porous set is Γ-null, our assertion follows from Theo-
rem 3.1. �
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Remark 3.3. It is still possible that the Rademacher theorem for Fréchet differen-
tiability holds (with a σ-ideal I different from that of Γ-null sets) for real Lipschitz
functions on a separable Asplund X which does not satisfy the assumptions of
Theorem LP (e.g. for X = ℓ2).

If such a theorem exists, the following analogue of Corollary 3.2 also holds:

Each continuous real function f on X is Fréchet differentiable at I-almost

every point x at which it is Gâteaux differentiable.

Indeed, we can repeat the proof of Corollary 3.2, using now the fact that M ∈ I
by [21, Proposition 14].

Recall that Theorem 3.1(i) holds if X is a subspace of c0, or X = C(K)
with K compact countable, or X is the Tsirelson space (see the references after
Theorem LP).

To these cases apply also Corollary 3.2 and the following generalization of
Theorem LP (together with its Corollary 3.5).

Theorem 3.4. Let X be a Banach space such that X∗ is separable and each

porous set in X is Γ-null. Then each cone-monotone function on X is Γ-almost

everywhere Fréchet differentiable.

Proof: Since X is separable, [9, Theorem 15] implies that there exists a set

C ∈ C̃ such that f is Gâteaux differentiable at all points of X \ C. Consequently
([10, Lemma 2.5]), f is Lipschitz at all points of X \C. Thus Theorem 3.1 implies
that there exists a Γ-null set D such that f is Fréchet differentiable at all points
of X \ (C ∪ D). Consequently the assertion of the theorem follows by (1.1) and
(1.2). �

By a standard method (see [6] or [4]) we obtain:

Corollary 3.5. Let X be a Banach space such that X∗ is separable and each

porous set in X is Γ-null. Then each real continuous quasiconvex function on X
is Γ-almost everywhere Fréchet differentiable.

Proof: Recall that f is quasiconvex if and only if Sλ(f) := {x ∈ X : f(x) ≤ λ}
is convex for every λ ∈ R. Set λ := inf{f(x) : x ∈ X}. If f(x) > λ, then
f is cone-monotone on an open neighbourhood of x (see [6, Theorem 3.1] or
[4, Proposition 2]). Since X is separable and (1.2) holds, we easily see that
Theorem 3.4 implies that f is Γ-almost everywhere Fréchet differentiable on the
open set {x ∈ X : f(x) > λ}. So we are done if Sλ = {x ∈ X : f(x) = λ} = ∅. If
Sλ 6= ∅, then we distinguish two cases.

If Sλ is nowhere dense, then it is easy to prove that Sλ is a porous set (see the
proof of [20, Theorem 2]) and so Sλ is Γ-null.

In the opposite case f is constant (and so Fréchet differentiable) on the non-
empty open set int(Sλ). It is almost obvious (considering supporting hyperplanes)
that the boundary of Sλ is a porous set, and so it is Γ-null. �
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It is an interesting open question whether the assumption that each porous
set in X is Γ-null can be omitted in Corollary 3.5 (also the case of a Lipschitz
quasiconvex f is open). However, the case of Gâteaux differentiability can be
proved easily modifying some details of the proof of Corollary 3.5.

Moreover, it will be proved in a forthcoming article written jointly with J. Tǐser
that each continuous quasiconvex function on a separable Banach space is Γ-
almost everywhere Gâteaux differentiable.

Note that the results of [22] imply that each real continuous quasiconvex func-
tion on X is Gâteaux differentiable outside a Haar null set if X is separable and

reflexive.
Theorem 3.4 generalizes to some non-separable spaces (Theorem 3.9). We will

prove this generalization using the separable reduction method of [15], which is
based on the notion of a rich family of separable subspaces (see Definition 3.6
below). (Other possibility would be modifying the proof of [7, Theorem 6.18],
which uses the separable reduction method based on the set-theoretic notion of
an elementary submodel.)

Definition 3.6. Let X be a normed linear space. A family F of closed separable
subspaces of X is called a rich family on X if the following holds.

(R1) If Yi ∈ F (i ∈ N) and Y1 ⊂ Y2 ⊂ . . . , then
⋃
{Yn : n ∈ N} ∈ F .

(R2) For each closed separable subspace Y0 of X there exists Y ∈ F such that
Y0 ⊂ Y .

The basic fact ([15, Proposition 3.6.2]) concerning rich families reads as follows.

Fact 1. Let X be a normed linear space and let {Fn : n ∈ N} be rich families of

closed separable subspaces of X . Then F :=
⋂
{Fn : n ∈ N} is also a rich family

of closed separable subspaces of X .

We will need also the following results of [15].

Fact 2 ([15, Corollary 5.6.2]). Let X be a Banach space and E ⊂ X a Borel set.

Then E is Γ-null in X if and only if there exists a rich family F on X such that

for every Y ∈ F , E ∩ Y is Γ-null in Y .

Fact 3 ([15, Theorem 3.6.10]). Let X and Z be Banach spaces and f : X → Z
a function. Then there exists a rich family F on X such that for every Y ∈ F , f is

Fréchet differentiable (as a function on X) at every x ∈ Y at which its restriction

to Y is Fréchet differentiable (as a function on Y ).

Moreover, we will need the following lemmas.

Lemma 3.7. Let Y be a closed separable subspace of c0(∆), where ∆ is un-

countable. Then Y is linearly isometric to a closed subspace of c0.

Proof: It is easy to show that there exists an infinite countable C ⊂ ∆ such
that x(s) = 0 whenever x ∈ Y and s /∈ C. Obviously, the mapping x 7→ x ↾C is a
linear isometry of Y on a closed subspace of c0(C). �
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Lemma 3.8. Let X = C(K), where K is a scattered compact topological space.

Then there exists a rich family F on X such that each Y ∈ F is linearly isometric

to a space C(L), where L is a countable compact.

Proof: We can define F as the family of all closed separable subalgebras of
C(K). The fact that F is a rich family is standard. The proof that each Y ∈ F
is isometric to a space C(L), where L is a countable compact is more difficult.
A proof of this fact is sketched in [13, Proof of Theorem 2.1, p. 263]. A different
(more natural) proof, which is implicitly contained in [7], is the following:

Let Y be a closed separable subalgebra of C(K). Write x ∼ y if f(x) = f(y) for
each f ∈ Y . Let L := K/∼ be the quotient topological space and q : K → L the
natural quotient mapping (see [11, p. 90]). Using [11, Proposition 2.4.9] it is not
difficult to prove that ∼ is a closed equivalence relation (in the sense of [11]). So
[11, Theorem 3.2.11] implies that L is a compact space. Let Y ∗ := {f∗ ∈ C(L) :
f∗ ◦ q ∈ Y }. Then Y ∗ is clearly a closed subalgebra of C(L) which contains all
constant functions. So the Stone-Weierstrass theorem implies that Y ∗ = C(L).
Let η : C(L) → Y be defined by η(f∗) := f∗ ◦ q. Then η is clearly a linear
isometry and, using [11, Proposition 2.4.2], it is easy to see that η is surjective.

Consequently C(L) is separable, which implies that L is metrizable (see, e.g.,
[5, Theorem 6.5]). Since a continuous image of a scattered compact is a scattered
compact and a metrizable scattered compact is countable (see [12, Lemmas 12.24
and 12.25]), we obtain that L is a countable compact. �

Theorem 3.9. Suppose that either

(i) X is a subspace of c0(∆), where ∆ is uncountable, or

(ii) X = C(K), where K is a scattered compact topological space.

Let G be an open subset of X and let f be a cone-monotone function on G. Then

f is Fréchet differentiable Γ-almost everywhere on G.

Proof: We will suppose that G = X ; the proof for a general G is essentially
the same. Let N ⊂ X be the set of all Fréchet non-differentiability points of f .
The set N is Borel (it is true even for an arbitrary f , see [23, Theorem 2] or [15,
Corollary 3.5.5]).

Let F1 be the rich family on X from Fact 3 (which corresponds to f).
Let f be monotone with respect to a cone C and x0 ∈ intC. The family F2 of

all separable subspaces of X which contain x0 is clearly rich.
Now we define F3, distinguishing cases (i) and (ii). In the case (i), let F3 be the

family of all separable subspaces of X . In the case (ii), let F3 be the rich family
from Lemma 3.8. Fact 1 implies that F := F1 ∩ F2 ∩ F3 is a rich family. Now
consider an arbitrary Y ∈ F . Since Y ∈ F2, we can easily see that the restriction
f∗ := f ↾Y is a cone-monotone function on Y . Since Y ∈ F3, the set N∗ of all
Fréchet non-differentiability points from Y of f∗ is Γ-null in Y by Lemma 3.7,
Lemma 3.8 and Theorem 3.4. Since Y ∈ F1, we obtain that N ∩Y = N∗ is Γ-null
in Y . So Fact 2 implies that N is Γ-null in X . �
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By the same way (even simpler, without consideration of F2), but using Corol-
lary 3.5 instead of Theorem 3.4, we clearly obtain:

Theorem 3.10. Suppose that either

(i) X is a subspace of c0(∆), where ∆ is uncountable, or

(ii) X = C(K), where K is a scattered compact topological space.

Let f be a continuous quasiconvex function on X . Then f is Fréchet differentiable

Γ-almost everywhere on X .
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