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Abstract. We study systems of reaction-diffusion equations with discontinuous spatially
distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-
valued function of space and time. Such systems describe hysteretic interaction of non-
diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to
formation of spatial patterns. We provide sufficient conditions under which the problem
is well posed in spite of the assumed discontinuity of hysteresis. These conditions are
formulated in terms of geometry of the manifolds defining the hysteresis thresholds and the
spatial profile of the initial data.
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1. Setting of the problem

1.1. Introduction and setting. Reaction-diffusion equations with spatially dis-

tributed hysteresis were first introduced in [6] to describe the growth of a colony

of bacteria (Salmonella typhimurium) and explain emerging spatial patterns of the

bacteria density. In [6], [7], numerical analysis of the problem was carried out,

however without rigorous justification. First analytical results were obtained in [2],

[17] (see also [1], [11]), where existence of solutions for multi-valued hysteresis was
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by posdoctoral fellowship of the Max Planck Institute for Mathematics in the Sciences.

239



proved. Formal asymptotic expansions of solutions were recently obtained in a spe-

cial case in [8]. Questions about the uniqueness of solutions and their continuous

dependence on the initial data as well as a thorough analysis of pattern formation

have remained open. In this paper, we formulate sufficient conditions that guar-

antee existence, uniqueness, and continuous dependence of solutions on initial data

for systems of reaction-diffusion equations with discontinuous spatially distributed

hysteresis. Analogous conditions for scalar equations have been considered by the

authors in [4], [5].

Denote QT = (0, 1)× (0, T ), where T > 0. Let U ⊂ R
k and V ⊂ R

l (k, l ∈ N) be

closed sets. We assume throughout that (x, t) ∈ QT , u(x, t) ∈ U , v(x, t) ∈ V .
We consider the system of reaction-diffusion equations

(1.1)

{

ut = Duxx + f(u, v,W (ξ0, u)),

vt = g(u, v,W (ξ0, u))

with the initial and boundary conditions

(1.2) u|t=0 = ϕ(x), v|t=0 = ψ(x), ux|x=0 = ux|x=1 = 0.

Here D is a positive-definite diagonal matrix; W is a hysteresis operator which maps

an initial configuration function ξ0(x) (∈ {1,−1}) and an input function u(x, ·) to
an output function W (ξ0(x), u(x, ·))(t). As a function of (x, t), W (ξ0, u) takes values

in a set W ⊂ R
m (m ∈ N). Now we shall define this operator in detail.

Let Γα,Γβ ⊂ U be two disjoint smooth manifolds of codimension one without
boundary (we call them hysteresis thresholds). For clarity of explanation, we assume

that they are given by γα(u) = 0 and γβ(u) = 0 with ∇γα(u) 6= 0 and ∇γβ(u) 6= 0,

respectively, where γα and γβ are C
∞-smooth functions.

Denote Mα = {u ∈ U : γα(u) 6 0}, Mβ = {u ∈ U : γβ(u) 6 0}, Mαβ = {u ∈
U : γα(u) > 0, γβ(u) > 0}. Assume that Mα ∩ Γβ = ∅ and Mβ ∩ Γα = ∅ (Figure 1).
Next, we introduce functions

(1.3) W1 : D(W1) =Mα ∪Mαβ → W , W−1 : D(W−1) =Mβ ∪Mαβ → W ,

which we call hysteresis branches.

Condition 1.1. The functions W1 and W−1 are locally Hölder continuous.

For any ζ0 ∈ {1,−1} (initial configuration) and u0 ∈ C([0, T ];U) (U-valued input)
we introduce the configuration function

ζ : {1,−1} × C([0, T ];U) → L∞(0, T ), ζ(t) = ζ(ζ0, u0)(t)
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as follows. Let Xt = {s ∈ (0, t] : u0(s) ∈ Γα ∪ Γβ}. Then ζ(0) = 1 if u0(0) ∈ Mα,

ζ(0) = −1 if u0(0) ∈ Mβ, ζ(0) = ζ0 if u0(0) ∈ Mαβ; for t ∈ (0, T ], ζ(t) = ζ(0)

if Xt = ∅, ζ(t) = 1 if Xt 6= ∅ and u0(maxXt) ∈ Γα, ζ(t) = −1 if Xt 6= ∅ and
u0(maxXt) ∈ Γβ (Figure 1).

Figure 1. Regions of different behavior of the configuration ζ and the hysteresis W .

Now we introduce the hysteresis operator W : {1,−1} × C([0, T ];U) → L∞(0, T )

by the following rule (cf. [12], [18], [10]). For any initial configuration ζ0 ∈ {1,−1}
and input u0 ∈ C([0, T ];U), the function W (ζ0, u0) : [0, T ] → W (output) is given by

(1.4) W (ζ0, u0)(t) =Wζ(t)(u0(t)),

where ζ(t) is the configuration function (taking values ±1) andW±1 are the functions

in (1.3) defining the hysteresis branches.

Assume that the initial configuration and the input function depend on spatial

variable x. Denote them by ξ0(x) and u(x, t), where u(x, ·) ∈ C([0, T ];U). Using (1.4)
and treating x as a parameter, we define the spatially distributed hysteresis

(1.5) W (ξ0(x), u(x, ·))(t) =Wξ(x,t)(u(x, t)),

where ξ(x, t) = ζ(ξ0(x), u(x, ·))(t) is the spatial configuration (taking values ±1) and

W±1 are the functions in (1.3) defining the hysteresis branches.

1.2. Function spaces. Denote by Lq(0, 1), q > 1, the standard Lebesgue space

and by W l
q(0, 1) with natural l the standard Sobolev space. For a noninteger l > 0,

denote by W l
q(0, 1) the Sobolev space with the norm

‖ϕ‖
W

[l]
q (0,1)

+

(
∫ 1

0

dx

∫ 1

0

|ϕ([l])(x) − ϕ([l])(y)|q
|x− y|1+q(l−[l])

dy

)1/q

,
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where [l] is the integer part of l. Introduce the anisotropic Sobolev spaces W 2,1
q (QT )

with the norm

(
∫ T

0

‖u(·, t)‖qW 2
q (0,1)

dt+

∫ T

0

‖ut(·, t)‖qLq(0,1)
dt

)1/q

and the space W 0,1
q (QT ) of Lq(0, 1)-valued functions continuously differentiable on

[0, T ] with the norm

‖u‖Lq(QT ) + ‖ut‖Lq(QT ).

Denote by Cγ(QT ), γ ∈ (0, 1), the Hölder space with the norm

‖u‖Cγ(QT ) = sup
(x,t)∈QT

|u(x, t)|+ sup
(x,t),(y,s)∈QT

|u(x, t)− u(y, s)|
|x− y|γ + |t− s|γ .

For vector-valued functions, we use the following notation. If, e.g., u(x, t) ∈ U
and each component of u belongs to W 2,1

q (QT ), then we write u ∈ W 2,1
q (QT ;U).

Throughout, we fix q and γ such that q ∈ (3,∞) and γ ∈ (0, 1−3/q). This implies

that u, ux ∈ Cγ(QT ;U) for u ∈W 2,1
q (QT ;U) (see Lemma 3.3 in [13], Chapter 2).

To define the space of initial data, we use the fact that if u ∈ W 2,1
q (QT ;U), then the

trace u|t=0 is well defined and belongs to W
2−2/q
q ((0, 1);U) (see Lemma 2.4 in [13],

Chapter 2). Moreover, one can define the space W
2−2/q
q,N ((0, 1);U) as the subspace of

functions from W
2−2/q
q ((0, 1);U) with the zero Neumann boundary conditions.

We assume that ϕ ∈W
2−2/q
q,N ((0, 1);U) and ψ ∈ L∞((0, 1);V) in (1.2).

Definition 1.1. A pair (u, v) ∈ W 2,1
q (QT ;U) × W 0,1

∞ (QT ;V) is a solution of
problem (1.1), (1.2) if W (ξ0, u) is measurable with respect to (x, t) and (1.1), (1.2)

hold.

Note that, due to hysteresis, the right-hand side in (1.1) is discontinuous in x

and t, but it belongs to Lq(QT ;U). Hence, it is natural to use the Sobolev spaces
W 2,1

q (QT ;U) and W 2−2/q
q,N ((0, 1);U) for the component u and its initial data rather

than Hölder spaces. By choosing q > 3, we ensure that the spatial derivative of the

solution u is continuous. This allows us to define the notion of spatial transversality

(see the next section), which is crucial for our proof of well-posedness of system (1.1).

Since the v-component of system (1.1) has no diffusion, the function v can be discon-

tinuous in x. However, we will see that it is bounded and has a generalized derivative

with respect to t. This motivates the choice for the space W 0,1
∞ (QT ;V).

1.3. Spatial transversality. We will deal with the case where ξ0(x) has one

discontinuity point. Generalization to finitely many discontinuity points is straight-

forward.
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Condition 1.2.

(1) For some b ∈ (0, 1), we have

(1.6) ξ0(x) = 1 (x 6 b), ξ0(x) = −1 (x > b).

(2) For x ∈ [0, b], we have ϕ(x) ∈Mα ∪Mαβ or, equivalently, γβ(ϕ(x)) > 0.

(3) For x ∈ (b, 1], we have ϕ(x) ∈Mβ ∪Mαβ or, equivalently, γα(ϕ(x)) > 0.

(4) If γα(ϕ(b)) = 0, then (d/dx)γα(ϕ(x))
∣

∣

x=b
> 0.

It follows from Condition 1.2 that the hysteresis in (1.5) at the initial moment

equals W1(ϕ(x)) for x 6 b and W2(ϕ(x)) for x > b. Parts 2 and 3 in Condition 1.2

are necessary for the hysteresis to be well defined at the initial moment, while part 4

is an essential assumption. We refer to part 4 as the spatial transversality and say

that ϕ(x) is transverse with respect to the spatial configuration ξ0(x). This means

that if ϕ(b) ∈ Γα, then the vector ϕ
′(b) is transverse to the manifold Γα at this point.

Consider time-dependent functions u(x, t) such that u, ux ∈ C(QT ;U).

Definition 1.2. We say that a function u is transverse on [0, T ] (with respect

to a spatial configuration ξ(x, t)) if, for every fixed t ∈ [0, T ], either ξ(·, t) has no
discontinuity points for x ∈ (0, 1), or it has one discontinuity point and the function

u(·, t) is transverse with respect to the spatial configuration ξ(·, t).

Definition 1.3. A function u preserves spatial topology (of a spatial configura-

tion ξ(x, t)) on [0, T ] if, for t ∈ [0, T ], there is a continuous function b(t) ∈ (0, 1) such

that ξ(x, t) = 1 for x 6 b(t) and ξ(x, t) = −1 for x > b(t).

We say that the solution from Definition 1.1 is transverse (preserves spatial topol-

ogy) if the function u(x, t) is transverse (preserves spatial topology).

R em a r k 1.1. The function b(t) defining the discontinuity point of ξ(x, t) plays

the role of a free boundary. It resembles the free boundary arising in parabolic

obstacle-type problems, where, loosely speaking, the hysteresis thresholds coincide

(see, e.g., [3], [15] and the references therein).

1.4. Assumptions on the right-hand side. First, we assume the following.

Condition 1.3. The functions f(u, v, w) and g(u, v, w) are locally Lipschitz con-

tinuous in R
k × R

l × R
m.

Next, we formulate dissipativity conditions for f and g.

In the following condition, we denote by Uµ, µ > 0, closed parallelepipeds in U
with the edges parallel to coordinate axes such that ϕ(x) ∈ Uµ for all x ∈ [0, 1].
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Condition 1.4. There is a parallelepiped U0 and, for each sufficiently small µ > 0,

there is a parallelepiped Uµ and a locally Lipschitz continuous function fµ(u, v) such

that

(1) |fµ(u, v)| converges to 0 uniformly on compact sets in U × V as µ→ 0,

(2) for each j = ±1 and each point u ∈ ∂U0 ∩ D(Wj), v ∈ V , the vector
f(u, v,Wj(u)) + fµ(u, v) points strictly inside U0,

(3) for each j = ±1 and each point u ∈ ∂Uµ ∩ D(Wj), v ∈ V , the vector
f(u, v,Wj(uµ)) + fµ(u, v) points strictly inside Uµ for all uµ ∈ Uµ.

To formulate the assumption on g, we fix U0 satisfying Condition 1.4 and set

(1.7) W0 =
⋃

j=±1

{Wj(u) : u ∈ U0}.

Condition 1.5. For any T0 > 0, there is a compact V0 = V0(T0,U0) ⊂ V such
that ψ(x) ∈ V0 (x ∈ (0, 1)) and the Cauchy problem

(1.8) vt = g(u0(x, t), v, w0(x, t)), v|t=0 = ψ(x)

has a solution v ∈W 0,1
∞ (QT0 ;R

l) satisfying v(x, t) ∈ V0 whenever

u0 ∈ L∞(QT0 ;U), w0 ∈ L∞(QT0 ;W),

u0(x, t) ∈ U0, w0(x, t) ∈ W0 ((x, t) ∈ QT0).

R em a r k 1.2. It follows from [14], Theorem 1, page 111, that system (1.8) has

a unique solution v ∈ W 0,1
∞ (QT0 ;R

l) for a sufficiently small T0 > 0. Condition 1.5

additionally guarantees the absence of blow-up. In particular, the uniform bounded-

ness of v holds if |g(u, v, w)| 6 A(u,w)|v| +B(u,w), where A(u,w) and B(u,w) are

bounded on compact sets (see Example 1.1). However, if V 6= R
l, one must addi-

tionally check that v does not leave V , i.e., there exists a corresponding compact V0

lying inside V . Alternatively, to fulfil Condition 1.5, one could assume the existence
of invariant parallelepipeds for g, similarly to Condition 1.4.

E x am p l e 1.1. The hysteresis operator and the right-hand side in the present

paper apply to a model describing the growth of a colony of bacteria (Salmonella

typhimurium) in a Petri plate (see, e.g., [7]). Let u1(x, t) and u2(x, t) denote the

concentrations of diffusing buffer (pH level) and histidine (nutrient), respectively,

while v(x, t) denotes the density of nondiffusing bacteria. These three unknown
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functions satisfy the equations

(1.9)































∂u1
∂t

= D1∆u1 − a1W (ξ0, u)v,

∂u2
∂t

= D2∆u2 − a2W (ξ0, u)v,

∂v

∂t
= aW (ξ0, u)v

supplemented by the initial and no-flux (Neumann) boundary conditions. In (1.9),

D1, D2, a, a1, a2 > 0 are given constants and W (ξ0, u) is the hysteresis operator.

In this example, we have U = {u ∈ R
2 : u1, u2 > 0}, V = [0,∞), W = [0,∞).

The hysteresis thresholds Γα and Γβ are the curves in the plane given by γα(u) :=

−u1 + aα/u2 + bα = 0 and γβ(u) := u1 − aβ/u2 − bβ = 0, respectively, where

aα, aβ , bα, bβ > 0 are some constants (Figure 1); the hysteresis branches are given by

W1(u) = 1 and W−1(u) = 0.

2. Main results

In what follows, we assume that Conditions 1.1–1.5 hold.

Theorem 2.1 (local existence). There is a number T > 0 such that

(1) there is at least one solution of problem (1.1), (1.2) in QT ;

(2) any solution in QT is transverse and preserves spatial topology.

Theorem 2.2 (continuation of solutions). Let (u, v) be a transverse topology

preserving solution of problem (1.1), (1.2) in QT for some T > 0. Then it can be

continued to an interval [0, Tmax), where Tmax > T has the following properties:

1. For any t0 < Tmax, the pair (u, v) is a transverse solution of problem (1.1), (1.2)

in Qt0 .

2. Either Tmax = ∞, or Tmax <∞ and (u, v) is a solution in QTmax , but u(·, Tmax)

is not transverse with respect to ξ(·, Tmax).

Theorem 2.3 (continuous dependence on initial data). Assume the following.

(1) There is a number T > 0 such that problem (1.1), (1.2) with initial functions

ϕ, ψ and initial configuration ξ0(x) defined by its discontinuity point b admits

a unique transverse topology preserving solution (u, v) in Qs for any s 6 T .

(2) Let ϕn ∈ W
2−2/q
q,N ((0, 1);U), ψn ∈ L∞((0, 1);V), n = 1, 2, . . ., be a sequence of

initial functions such that ‖ϕ− ϕn‖W 2−2/q
q ((0,1);U)

→ 0, ‖ψ− ψn‖Lq((0,1);V) → 0

as n→ ∞.
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(3) Let ξ0n(x), n = 1, 2, . . ., be a sequence of initial configurations defined by their

discontinuity points bn similarly to (1.6) and bn → b as n→ ∞.
Then, for all sufficiently large n, problem (1.1), (1.2) with the initial data (ϕn, ψn,

ξ0n) has at least one transverse topology preserving solution (un, vn). Each sequence

of such solutions satisfies

‖un − u‖W 2,1
q (QT ;U) → 0, ‖vn − v‖W 0,1

q (QT ;V) → 0, ‖bn − b‖C[0,T ] → 0

as n→ ∞, where b(t) and bn(t) are the respective discontinuity points of the config-

uration functions ξ(x, t) and ξn(x, t).

R em a r k 2.1. If one knows a priori that all un are transverse on some interval

[0, T ] ⊂ [0, Tmax), then one can prove that un approximate u on [0, T ] even if u is

not topology preserving on [0, T ].

Now we discuss the uniqueness of solutions. We will strengthen Condition 1.1

concerning the local Hölder continuity of W±1. Let U0 be the set from Condition 1.4.

Condition 2.1. There are numbers K > 0 and σ ∈ [0, 1) such that

|W1(u)−W1(û)| 6
K

(γβ(u))σ + (γβ(û))σ
|u− û|, ∀u, û ∈Mα ∪Mαβ,

|W−1(u)−W−1(û)| 6
K

(γα(u))σ + (γα(û))σ
|u− û|, ∀u, û ∈Mβ ∪Mαβ .

We refer the reader to [5] for the discussion about functions satisfying this condi-

tion.

Theorem 2.4 (uniqueness). Assume additionally that Condition 2.1 holds. Let

(u, v) and (û, v̂) be two transverse solutions of problem (1.1), (1.2) in QT for some

T > 0. Then (u, v) = (û, v̂).

3. Local existence, continuation and continuous dependence

of solutions on the initial data

In this section we prove Theorems 2.1–2.3. Throughout the section, we fix U0

satisfying Condition 1.4 and W0 given by (1.7). Next, we fix some T0 ∈ (0, 1] and

then V0 satisfying Condition 1.5.

The idea of the proof of Theorem 2.1 concerning the local existence is to show the

existence of a fixed point of a nonlinear map R that is defined as follows. We take
some function u1(x, t) and define the right-hand side of (1.1) via W (ξ0, u1) instead
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of W (ξ0, u). After that, we solve the resulting system, which has no hysteresis

depending on u any more, and obtain a solution (u, v). Then we set R : u1 7→ u. To

make this scheme work, we have to choose a proper set for the functions u1. It must

be mapped into itself by R, and the topology must be chosen in such a way that
the operator R be continuous and compact. The required properties of the functions
u1 from the domain of R will be described in Lemma 3.4 and the properties of
u = R(u1) in Lemmas 3.5 and 3.6. Based on these lemmas, we shall implement the

above scheme in Section 3.3.

3.1. Preliminaries. The following result is straightforward.

Lemma 3.1.

(1) Let λ ∈ [0, 1), a ∈ Cλ[0, T ], and b(t) = max
s∈[0,t]

a(s). Then b ∈ Cλ[0, T ] and

‖b‖Cλ[0,T ] 6 ‖a‖Cλ[0,T ].

(2) If aj ∈ C[0, T ] and bj(t) = max
s∈[0,t]

aj(s), j = 1, 2, then ‖b1 − b2‖C[0,T ] 6

‖a1 − a2‖C[0,T ].

Take some T 6 T0. Consider functions u1, û1 ∈ L∞(QT ;U) such that u1(x, t),
û1(x, t) ∈ U0 ((x, t) ∈ QT ). Next, consider functions b1, b̂1 ∈ C[0, T ] such that

b1(t), b̂1(t) ∈ [0, 1) (t ∈ [0, T ]). Define functions

(3.1) w1(x, t) =

{

W1(u1(x, t)), 0 6 x 6 b1(t),

W−1(u1(x, t)), b1(t) < x 6 1,

ŵ1(x, t) =

{

W1(û1(x, t)), 0 6 x 6 b̂1(t),

W−1(û1(x, t)), b̂1(t) < x 6 1;

here we assume W±1(u1) and W±1(û1) to be extended to U0 without loss of regular-

ity.

Lemma 3.2. For any p ∈ [1,∞) and t ∈ [0, T ], we have

‖w1(·, t)− ŵ1(·, t)‖Lp((0,1);W) 6 c0(‖u1(·, t)− û1(·, t)‖σ0

L∞((0,1);U) + |b1(t)− b̂1(t)|1/p),

‖w1 − ŵ1‖Lp(QT ;W) 6 c0(T
1/p‖u1 − û1‖σ0

L∞(QT ;U) + ‖b1 − b̂1‖1/pL1(0,T )),

where σ0 is a Hölder exponent for the functions W±1 and c0 > 0 depends on U0

and p, but does not depend on u1, b1, û1, b̂1, T .
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P r o o f. We fix t ∈ [0, T ] and assume that b1(t) 6 b̂1(t) for this t. Then, us-

ing (3.1), we have

∫ 1

0

|w1 − ŵ1|p dx =

∫ b1(t)

0

|W1(u1)−W1(û1)|p dx+

∫ 1

b̂1(t)

|W−1(u1)−W−1(û1)|p dx

+

∫ b̂1(t)

b1(t)

|W−1(u1)−W1(û1)|p dx.

Using the Hölder continuity and the boundedness of W±1(u) for u ∈ U0, we obtain

the first inequality in the lemma. Integrating it with respect to t from 0 to T , we

obtain the second inequality. �

Now we introduce sets that “measure” the spatial transversality. Denote by Em,

m ∈ N, the set of triples (ϕ, ψ, ξ0) such that ϕ ∈W
2−2/q
q,N ((0, 1);U), ψ ∈ L∞((0, 1);V),

ξ0(x) is of the form (1.6), and the following hold:

(1) b ∈ [1/m, 1− 1/m],

(2) γβ(ϕ(x)) > 1/m2 for x ∈ [0, b],

(3) γα(ϕ(x)) > 1/m2 for x ∈ [b + 1/m, 1],

(4) if x ∈ [b, b+ 1/m] and γα(ϕ(x)) ∈ [0, 1/m2], then (d/dx)γα(ϕ(x)) > 1/m,

(5) ‖ϕ‖
W

2−2/q
q ((0,1);U)

6 m and ‖ψ‖L∞((0,1);V) 6 m.

It is easy to check that Em ⊂ Em+1. Furthermore, the sets Em have the following

properties (see Lemma 2.25 in [4]).

Lemma 3.3.

(1) The union of all sets Em, m > 1, coincides with the set of all data satisfying

Condition 1.2.

(2) Assume

(a) (ϕm, ψm, ξm) ∈ Em \ Em−1, m = 2, 3, . . . ;

(b) ‖ϕm − ϕ‖
W

2−2/q
q ((0,1);U)

→ 0 and ‖ψm − ψ‖L∞((0,1);V) → 0 as m→ ∞ for
some ϕ ∈W

2−2/q
q ((0, 1);U) and ψ ∈ L∞((0, 1);V);

(c) bm − b→ 0 as m→ ∞ for some b ∈ [0, 1].

Then b ∈ {0, 1} or ϕ(x) is not transverse with respect to ξ0(x), where ξ0(x) is
given by (1.6).

From now on, we fix m ∈ N such that (ϕ, ψ, ξ0) ∈ Em.

The next lemma follows from the implicit function theorem and Lemma 3.1. It

describes the properties of the functions u1 from the domain of the map R which we
construct in Section 3.3.
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Lemma 3.4. Let λ ∈ (0, 1), u1, ∂u1/∂x ∈ Cλ(QT0
;U),

‖u1‖Cλ(QT0
;U) +

∥

∥

∥

∂u1
∂x

∥

∥

∥

Cλ(QT0
;U)

6 c

for some c > 0, u1|t=0 = ϕ(x), and (ϕ, ψ, ξ0) ∈ Em. Then there are T1 =

T1(m,λ, c) 6 T0 and a natural number N1 = N1(m,λ, c) > m which do not de-

pend on u, ϕ, ξ0 such that the following is true for any t ∈ [0, T1]:

(1) The equation γα(u1(x, t)) = 0 for x ∈ [b, 1] has at most one root. If this root

exists, we denote it by a1(t); otherwise, we set a1(t) = b. One has a1(t) ∈
[b, b+ 1/N1], a1 ∈ Cλ[0, T1] and ‖a1‖Cλ[0,T1] 6 1 + 2mc.

(2) The hysteresisW (ξ0, u1) and its configuration function ξ1(x, t) have exactly one

discontinuity point b1(t); moreover, b1(t) = max
s∈[0,t]

a1(s), b1 ∈ Cλ[0, T1].

3.2. Auxiliary problem. Consider functions u1 ∈ L∞(QT ;U) and functions
w1 ∈ L∞(QT ;W) such that

u1(x, t) ∈ U0, w1(x, t) ∈ W0 ((x, t) ∈ QT )

for some T > 0. Define functions

(3.2) f1(u, v, x, t) = f(u, v, w1(x, t)), g1(v, x, t) = g(u1(x, t), v, w1(x, t)).

Consider the auxiliary problem

(3.3)











ut = Duxx + f1(u, v, x, t),

vt = g1(v, x, t),

u|t=0 = ϕ(x), v|t=0 = ψ(x), ux|x=0 = ux|x=1 = 0.

Set fU = sup f(u, v, w) and gU = sup g(u, v, w), where (u, v, w) ∈ U0 × V0 ×W0.

The next result follows from the standard estimates for solutions of linear parabolic

equations [13], from Conditions 1.3–1.5, and from the principle of invariant rectan-

gles [16].

Lemma 3.5.

(1) For any T 6 T0, problem (3.3) has a unique solution (u, v) ∈ W 2,1
q (QT ;U) ×

W 0,1
∞ (QT ;V) and

u(x, t) ∈ U0, v(x, t) ∈ V0 ((x, t) ∈ QT ),

‖u‖W 2,1
q (QT ;U) + max

t∈[0,T ]
‖u(·, t)‖

W
2−2/q
q ((0,1);U)

6 c1(‖ϕ‖W 2−2/q
q ((0,1);U)

+ fU ),

‖v‖W 0,1
∞ (QT ;V) 6 ‖ψ‖L∞((0,1);V) + 2gU ,

‖u‖Cγ(QT ;U) + ‖ux‖Cγ(QT ;U) 6 c2(‖ϕ‖W 2−2/q
q ((0,1);U)

+ fU ),(3.4)

where c1, c2 > 0 depend only on T0.
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(2) If un, vn, n = 1, 2, . . ., are solutions of problem (3.2), (3.3) with u1, w1 replaced

by u1n, w1n (with the same properties) and

‖u1n − u1‖L∞(QT ;U) + ‖w1n − w1‖Lq(QT ;W) → 0 as n→ ∞,

then

‖un − u‖W 2,1
q (QT ;U) + ‖vn − v‖W 0,1

q (QT ;V) → 0 as n→ ∞.

The next lemma follows from Lemmas 3.4 and 3.5. Together with Lemma 3.5,

it describes the image of the operator R which we construct in Section 3.3. In
particular, it shows that the functions from the image remain spatially transverse

on a sufficiently small time interval. Moreover, this time interval depends on m, but

not on a particular initial data from Em.

Lemma 3.6. Let (u, v) be the solution of problem (3.3) defined in part (1) of

Lemma 3.5. Then there are T2 = T2(m) 6 T0 and a natural number N2 = N2(m) >

m such that, for any t ∈ [0, T2], conclusions (1) and (2) from Lemma 3.4 hold for

u(x, t), for the corresponding function a(t), for the configuration function ξ(x, t)

of the hysteresis W (ξ0, u), for its discontinuity point b(t), and for T2, N2 instead of

T1, N1. Furthermore, (u(·, t), v(·, t), ξ(·, t)) ∈ EN2 .

3.3. Proof of Theorem 2.1: local existence. Let us prove the first assertion.

Fix λ in Lemma 3.4 such that λ ∈ (0, γ). Fix c2 from Lemma 3.5. Set c =

cλ,γc2(m+ fU ), where cλ,γ > 0 is the embedding constant such that ‖u‖Cλ(QT ;U) 6

cλ,γ‖u‖Cγ(QT ;U). Set T = min(T1, T2), where T1, T2 are defined in Lemmas 3.4

and 3.6.

Let Rλ(QT ) be the set of functions u(x, t) such that u|t=0 = ϕ(x),

(3.5) u, ux ∈ Cλ(QT ;U), u(x, t) ∈ U0 ((x, t) ∈ QT ),

‖u‖Cλ(QT ;U) + ‖ux‖Cλ(QT ;U) 6 c.

The set Rλ(QT ) is a closed convex subset of the Banach space endowed with the

norm given by the left-hand side of the inequality in (3.5). Similarly, we define

Rγ(QT ).

Now we construct a map R : Rλ(QT ) → Rγ(QT ) as follows. Take any u1 ∈
Rλ(QT ) and define a1(t) and b1(t) according to Lemma 3.4. Then define w1(x, t)

by (3.1) and, using this w1, define f1, g1 by (3.2). Finally, apply Lemma 3.5 and

obtain a solution (u, v) of auxiliary problem (3.3). We now define R : u1 7→ u.
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The operator R is continuous. Indeed, it is not difficult to check that the mapping
u1 7→ a1 is continuous from Rλ(QT ) to C[0, T ]. Thus, the continuity of R follows by
consecutively applying Lemmas 3.1 part (2), 3.2, 3.5 part (2), and the continuity of

the embedding W 2,1
q (QT ;V) ⊂ Rγ(QT ).

Furthermore, due to (3.4) and the choice of c, the operator R maps Rλ(QT )

into itself. As an operator acting from Rλ(QT ) into itself, it is compact due to its

continuity from Rλ(QT ) to R
γ(QT ) and the compatness of the embedding R

γ(QT ) ⊂
Rλ(QT ). Therefore, applying the Schauder fixed-point, we conclude the proof of the

first assertion of the theorem.

The second assertion follows by applying the principle of invariant rectangles

(see [16]) and Lemma 3.6. �

3.4. Proof of Theorem 2.2: continuation of solutions. Assume that there

is T1 > 0 such that the solution (u, v) cannot be continued to [0, T1] as a transverse

solution of problem (1.1), (1.2).

Applying Theorem 2.1 and using Lemma 3.6, we obtain sequences mk ∈ N, tk > 0

(k = 1, 2, . . .) such that mk+1 > mk, tk+1 > tk, the solution (u, v) of problem (1.1),

(1.2) can be continued as a transverse solution to the time interval [0, tk] and

(3.6) (u(·, tk), v(·, tk), ξ(·, tk)) ∈ Emk
\ Emk−1,

where ξ(x, t) is the spatial configuration of the hysteresis W (ξ0, u). Denote T =

lim
k→∞

tk. By assumption, T 6 T1. Since (u, v) is a solution of problem (1.1), (1.2)

in Qtk for all k and

‖u‖W 2,1
q (Qtk

;U) 6 c1(‖ϕ‖W 2−2/q
q ((0,1);U)

+ fU ),

‖v‖W 0,1
∞ (Qtk

;V) 6 ‖ψ‖L∞((0,1);V) + 2gU ,

it follows that u ∈ W 2,1
q (QT ;U), v ∈ W 0,1

∞ (QT ;V), and (u, v) is a solution of prob-

lem (1.1), (1.2) in QT . Since u(·, t) is a continuousW 2−2/q
q ((0, 1);U)-valued function

and v(·, t) is a continuous L∞((0, 1);V)-valued function, we have

(3.7) ‖u(·, tk)− u(·, T )‖
W

2−2/q
q ((0,1);U)

→ 0,

‖v(·, tk)− v(·, T )‖L∞((0,1);V) → 0 as k → ∞.

Denote by b(t) the discontinuity point of the configuration function ξ(x, t). By

construction, b(t) is continuous and nondecreasing on [0, tk] for all k. Therefore, b(t)

is continuous on [0, T ]. In particular, b(tk) → b(T ), k → ∞. It follows from (3.6),
(3.7), and part (2) of Lemma 3.3 that u(x, T ) is not transverse with respect to ξ(x, T )
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(and Theorem 2.2 is proved in this case) or b(T ) = 1. In the latter case, we can

proceed similarly to the above, but effectively with hysteresis whose configuration

function has no discontinuity points any more. �

3.5. Proof of Theorem 2.3: continuous dependence on initial data. It suf-

fices to prove the theorem for a sufficiently small time interval. Since (ϕ, ψ, ξ0) ∈ Em,

it is easy to show that there is n1 = n1(m) > 0 such that (ϕ, ψ, ξ0), (ϕn, ψn, ξ0n) ∈
Em+1 for all n > n1(m). Hence, by Theorem 2.1, there is T ∈ (0, 1] for which prob-

lem (1.1), (1.2) has transverse topology preserving solutions (u, v) and (un, vn) with

the corresponding initial data. Moreover, any solution of problem (1.1), (1.2) in QT

is transverse and preserves topology.

Let a(t) and an(t) be the functions corresponding to u and un as described in

Lemma 3.6. Then the discontinuity points of the corresponding configuration func-

tions ξ(x, t), ξn(x, t) are given by b(t) = max
s∈[0,t]

a(s) and bn(t) = max
s∈[0,t]

an(s).

Assume that there is ε > 0 such that

(3.8) ‖un − u‖W 2,1
q (QT ;U) + ‖vn − v‖W 0,1

q (QT ;V) + ‖bn − b‖C[0,T ] > ε, n = 1, 2, . . . ,

for some subsequence of un, which we denote un again. Lemmas 3.4 and 3.5 imply

that un and an are uniformly bounded in W
2,1
q (QT ;U) and Cγ [0, T ], respectively.

Hence, we can choose subsequences of un and an (which we denote un and an again)

such that

‖un − û‖Cγ(QT ;U) → 0, ‖(un)x − ûx‖Cγ(QT ;U) → 0, n→ ∞,(3.9)

‖an − â‖C[0,T ] → 0, n→ ∞,(3.10)

for some function û ∈ Cγ(QT ;U) with ûx ∈ Cγ(QT ;U) and some â ∈ C[0, T ].

Set b̂(t) = max
s∈[0,t]

â(s). Due to (3.10) and Lemma 3.1, we have

(3.11) ‖bn − b̂‖C[0,T ] → 0, n→ ∞.

Using (3.9), (3.10), and Lemma 3.2, we conclude that

W (ξ0(x), û(x, ·))(t) =
{

W1(û(x, t)), 0 6 x 6 b̂(t),

W2(û(x, t)), b̂(t) < x 6 1,
(3.12)

sup
t∈[0,T ]

(‖W (ξ0n, un)(t)−W (ξ0, u)(t)‖Lq((0,1);W)) → 0, n→ ∞.(3.13)

Now we show that

(3.14) ‖vn − v̂‖W 0,1
q (QT ;V) → 0, n→ ∞,
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for some v̂. Take an arbitrary δ > 0. It follows from the assumptions of the theorem

and from (3.9) and (3.13) that

‖ψn − ψk‖Lq((0,1);V) 6 δ, ‖un(·, t)− uk(·, t)‖Lq((0,1);U) 6 δ,(3.15)

‖W (ξ0n, un)(t) −W (ξ0k, uk)(t)‖Lq((0,1);W) 6 δ,

provided n, k are large enough. Estimates (3.15), the second equation in (1.1), and

the local Lipschitz continuity of g yield

‖vn(·, t)− vk(·, t)‖Lq((0,1);V) 6 (1 + 2L)δ + L

∫ t

0

‖vn(·, s)− vk(·, s)‖Lq((0,1);V) ds,

where L > 0 does not depend on n, k. Hence, by Gronwall’s inequality,

(3.16) ‖vn(·, t)− vk(·, t)‖Lq((0,1);V) 6 k1δ,

where k1 > 0 does not depend on δ, n, k, and t ∈ [0, T ]. A similar inequality for

the time derivative of vn follows from (3.15), (3.16), and from the second equation

in (1.1). Since δ > 0 is arbitrary, (3.14) holds.

Now consider (1.1), (1.2) with the subsequences ϕn, ψn, ξ0n, un, vn. Due to (3.9),

(3.13), (3.14), and the local Lipschitz continuity of f , we have

‖f(un, vn,W (ξ0n, un)− f(û, v̂,W (ξ0, û)‖Lq(QT ;U) → 0, n→ ∞.

Therefore, by the standard parabolic theory [13], we obtain from the first equation

in (1.1) that

‖un − û‖W 2,1
q (QT ;U) → 0, n→ ∞.

Combining the latter relation with (3.14) and the local Lipschitz continuity of f

and g, we can pass to the limit, as n → ∞, in (1.1), (1.2) with the subsequences
ϕn, ψn, ξ0n, un, vn, and obtain that (û, v̂) is a solution of (1.1), (1.2) with the initial

data (ϕ, ψ, ξ0). Hence, due to the uniqueness assumption (see part 1 in the formula-

tion of Theorem 2.3), (u, v) = (û, v̂) and b(t) ≡ b̂(t). Therefore, (3.8) is not true and

we have the convergence for the whole sequence (un, vn). �

4. Uniqueness of solutions

In this section, we prove Theorem 2.4. For clarity of explanation, we restrict

ourselves to the case where the initial data satisfy the equality γα(ϕ(b)) = 0 in
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addition to Condition 1.2. (The case γα(ϕ(b)) 6= 0 can be treated easily because

then the hysteresis W (ξ0, u) remains constant on some time interval.)

Set

ϕ :=
1

2

d

dx
γα(ϕ(x))|x=b (> 0).

We fix T1 such that the conclusions of Lemma 3.4 are true for u, û on (0, T1). Let

a(t), b(t), â(t), b̂(t) be the functions defined in Lemma 3.4 for u and û, respectively.

We fix T ∈ (0, T1) and δ > 0 such that the following inequalities hold for t ∈ [0, T ]:

d

dx
γα(u(x, t)) > ϕ, x ∈ [b− δ, b+ δ],(4.1)

γβ(u(x, t)) < 0, x ∈ [0, b(t)],(4.2)

and the analogous inequalities hold for û.

Due to (4.1) and (4.2), we have

(4.3) W (ξ0(x), u(x, ·)(t) =
{

W1(u(x, t)), 0 6 x 6 b(t),

W−1(u(x, t)), b(t) < x 6 1,

W (ξ0(x), û(x, ·)(t) =
{

W1(û(x, t)), 0 6 x 6 b̂(t),

W−1(û(x, t)), b̂(t) < x 6 1.

Let us now prove Theorem 2.4.

Step 1. Set w = u− û and z = v− v̂. The functions w and z satisfy the equations

(4.4)

{

wt = wxx + hw(x, t),

zt = hz(x, t),

and zero boundary and initial conditions, where

hw(x, t) = f(u, v,W (u))− f(û, v̂,W (û)),

hz(x, t) = g(u, v,W (u))− g(û, v̂,W (û)).

Obviously, hw, hz ∈ L∞(QT ). The function w can be represented via the Green

function G(x, y, t, s) of the heat equation with the Neumann boundary conditions:

w(x, t) =

∫ t

0

∫ 1

0

G(x, y, t, s)hw(y, s) dy ds.

Therefore, using the estimate |G(x, y, t, s)| 6 k1/
√
t− s, 0 < s < t, with k1 > 0

not depending on (x, t) ∈ QT (see, e.g., [9]), we obtain

(4.5) |w(x, t)| 6 k1

∫ t

0

ds√
t− s

∫ 1

0

|hw(y, s)| dy.
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Set Z(t) =
∫ 1

0 |hz(y, t)| dy. Due to the second equation in (4.4),

(4.6) Z(t) 6

∫ t

0

∫ 1

0

|hz(y, s)| dy ds.

Step 2. Now we prove that, for some k2 > 0 and all s ∈ (0, T ), we have

(4.7)

∫ 1

0

|hw(y, s)| dy 6 k2(‖w‖C(QT ) + ‖Z‖L∞(0,T )),

∫ 1

0

|hz(y, s)| dy 6 k2(‖w‖C(QT ) + ‖Z‖L∞(0,T )).

Let us prove the first inequality (for the function hw), assuming that b(s) < b̂(s).

(The cases of hz and b(s) > b̂(s) are treated analogously.) Since f is locally Lipschitz,

(4.8)

∫ 1

0

|hw(y, s)| dy 6 k3

∫ 1

0

(|w(y, s)| + |z(y, s)|+ |W (u(y, s))−W (û(y, s))|) dy

6 k3

(

‖w‖C(QT ) + ‖Z‖L∞(0,T ) +

∫ 1

0

|W (u(y, s))−W (û(y, s))| dy
)

,

where k3 > 0 and the constants k4, k5, . . . > 0 below do not depend on s ∈ [0, T ].

Denote θ(y, s) =W (u(y, s))−W (û(y, s)). Due to (4.3), we have

θ(y, s) =











W1(u)−W1(û), 0 < y < b(s),

W−1(u)−W1(û), b(s) < y < b̂(s),

W−1(u)−W−1(û), b̂(s) < y < 1.

Below we separately consider the integrals of θ(y, s) over the intervals (0, b(s)),

(b(s), b̂(s)), (b̂(s), b̄ + δ), and (b̄ + δ, 1), where δ was defined in (4.1).

Interval (0, b(s)). Inequality (4.2) implies that γβ(u(y, s)) < 0, γβ(û(y, s)) < 0

on the closed set {(y, s) : y ∈ [0, b(s)], s ∈ [0, T ]}. Hence, the values γβ(u(y, s)) and
γβ(û(y, s)) are separated from 0. Therefore, using Condition 2.1, we obtain

(4.9)

∫ b(s)

0

|θ(y, s)| dy 6 k4

∫ b(s)

0

|u(y, s)− û(y, s)| dy 6 k4‖w‖C(QT ).

Interval (b(s), b̂(s)). Boundedness of W1(û) and W−1(u) for (y, s) ∈ QT and

Lemma 3.1 imply

(4.10)

∫ b̂(s)

b(s)

|θ(y, s)| dy 6 k5

∫ b̂(s)

b(s)

dy 6 k5‖b− b̂‖C[0,T ] 6 k5‖a− â‖C[0,T ].
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Using (4.1), we obtain for any t ∈ [0, T ] the inequalities

(4.11) |a(t)− â(t)| 6 1

ϕ
|γα(u(a(t), t))− γα(û(a(t), t))|

6
Lα

ϕ
|u(a(t), t)− û(a(t), t)| 6 Lα

ϕ
‖u− û‖C(QT ),

where Lα > 0 is a respective Lipschitz constant for γα(u) and hence does not depend

on T ∈ (0, T1). Inequalities (4.10) and (4.11) yield

(4.12)

∫ b̂(s)

b(s)

|θ(y, s)| dy 6 k6‖w‖C(QT ).

Interval (b̂(s), b̄ + δ). Inequality (4.1) and the mean-value theorem imply that

for y ∈ [b̂(s), b+ δ] the following inequalities hold:

γα(û(y, s)) = γα(û(y, s))− γα(û(â(s), s)) > (y − â(s))ϕ > (y − b̂(s))ϕ,

|γα(u(y, s))| > (y − b(s))ϕ.

Taking into account these two inequalities and using Condition 2.1, we obtain

(4.13)

∫ b+δ

b̂(s)

|θ(y, s)| dy 6 k7

∫ b+δ

b̂(s)

|u(y, s)− û(y, s)|
(y − b̂(s))σ

dy 6 k8‖w‖C(QT ).

Interval (b̄+ δ, 1). Similarly to the interval (0, b(s)), we conclude that

(4.14)

∫ 1

b+δ

|θ(y, s)| dy 6 k9‖w‖C(QT ).

Finally, (4.8)–(4.14) imply the first inequality in (4.7).

Step 3. Combining estimates (4.5)–(4.7), we obtain

|w(x, t)| 6 k10(‖w‖C(QT ) + ‖Z‖L∞(0,T ))

∫ t

0

ds√
t− s

= 2k10T
1/2(‖w‖C(QT ) + ‖Z‖L∞(0,T )),

Z(t) 6 k2T (‖w‖C(QT ) + ‖Z‖L∞(0,T )).

Taking the supremum with respect to t ∈ (0, T ), we see that

‖w‖C(QT ) + ‖Z‖L∞(0,T ) 6 (2k10T
1/2 + k2T )(‖w‖C(QT ) + ‖Z‖L∞(0,T )).

Thus, w = 0 and z = 0, provided that T > 0 is small enough. �
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