
Applications of Mathematics

Alexandru Agapie; Alden H. Wright
Theoretical analysis of steady state genetic algorithms

Applications of Mathematics, Vol. 59 (2014), No. 5, 509–525

Persistent URL: http://dml.cz/dmlcz/143928

Terms of use:
© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143928
http://dml.cz

59 (2014) APPLICATIONS OF MATHEMATICS No. 5, 509–525

THEORETICAL ANALYSIS OF STEADY STATE

GENETIC ALGORITHMS

Alexandru Agapie, Bucharest, Alden H. Wright, Missoula

(Received March 24, 2013)

Abstract. Evolutionary Algorithms, also known as Genetic Algorithms in a former termi-
nology, are probabilistic algorithms for optimization, which mimic operators from natural
selection and genetics. The paper analyses the convergence of the heuristic associated to
a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA),
considered as a discrete-time dynamical system non-generational model. Inspired by the
Markov chain results in finite Evolutionary Algorithms, conditions are given under which
the SSGA heuristic converges to the population consisting of copies of the best chromosome.

Keywords: genetic algorithm; Markov chain; random heuristic search

MSC 2010 : 60J10, 68W20, 90C59

1. Introduction

In the finite-population paradigm, a Genetic Algorithm (GA) is convergent if the

probability of containing the global optimum (best chromosome) inside the current

generation tends to one as the generation index tends to infinity. In short, the

algorithm’s convergence can be related to the asymptotic behavior of a finite homo-

geneous Markov chain (MC) by the following condensed procedure.

(1) Identify the MC set of states to the set of all possible fixed-size GA populations.

(2) Check if the associated transition matrix is of the form P =

(

R 0

Q T

)

.

(3) If the matrix is of the form P (the MC is called reducible in this case), and if

all non-optimal populations are in T , then GA is convergent.

The research has been supported by grant of the Romanian National Authority for Sci-
entific Research, CNCS-UEFISCDI, project number PNII-ID-PCCE-2011-0015, and by
a COBASE grant from the National Science Foundation, USA.

509

(4) If the matrix cannot be put into the form P (the MC is called ergodic), then

GA is not convergent.

The first analysis exposing the reducible behavior of the MC was performed by

Rudolph, for the case of an elitist GA—that is, a GA maintaining the best solu-

tion from a generation to another [8]. Successive refining of the elitist case finally

concluded in the simple convergence condition presented [1], [9]. Different paths

emerged from that simple conditions, leading to various convergence analyses for

either adaptive algorithms [2], continuous space algorithms [4], [5] or even marginal

distribution algorithms [3].

A totally different interpretation of the GA theory came from dynamical systems,

when Vose [11] regarded GA populations as points in the simplex. He developed the

theory of Random Heuristic Search and built his analysis on a two-limit behavior.

First, on each fixed population size the corresponding MC must approach its limit

distribution from the ergodic case presented above. Second, as the population size

tends to infinity the corresponding limits gather into a sequence of distributions

which, under specific requirements, will approach a distribution concentrated on one

of the ‘fixed point’ populations, say x0. The fact that x0 contains copies of the best

individual is then a simple consequence of the large population size and of x0 being

situated in the interior of the simplex.

It is worth noticing that the second modeling presented is not primarily intended

for studying ‘convergence’ in the finite-population sense, but in the sense of discrete

time dynamical systems (that is, with respect to stable/unstable fixed-points inside

the simplex). Within this framework the theory splits into the expected value and

infinite population models, mainly concentrated on generational genetic algorithms.

Yet, many practitioners advocate the use of steady-state genetic algorithms where

a single individual is replaced at each step. Discrete-time expected value models are

described in this paper, where each time step corresponds to the replacement of an

individual.

The steady-state model that uses random deletion has a very close correspondence

with the generational model that uses the same crossover, mutation, and selection. It

is a remarkable result that a SSGA with random deletion has the same fixed-points

as a generational GA with common heuristic function G, as shown in [7], [13].

Let Ω denote the search space for a search problem. We identify Ω with the integers

in the range from 0 to n−1, where n is the cardinality of Ω. We assume a real-valued

nonnegative fitness function f over Ω. We will denote f(i) by fi. Our objective is to

model population-based search algorithms that search for elements of Ω with high

fitness. Such algorithms can be generational, where a large proportion of the popula-

tion is replaced at each time step (or generation). Or they can be steady-state, where

only a single or small number of population members are replaced in a time step.

510

A population is a multiset (set with repeated elements) with elements drawn

from Ω. We will represent populations over Ω by nonnegative vectors indexed over

the integers in the interval [0, n) whose sum is 1. If a population of size r is repre-

sented by a vector p, then rpi is the number of copies of i in the population. For

example, if Ω = {0, 1, 2, 3}, and the population is the multiset {0, 0, 1, 2, 2}, then the

population is represented by the vector 〈2/5, 1/5, 2/5, 0〉.

Let us define

Λ =

{

x :
n−1
∑

i=0

xi = 1 and xi > 0 for all i

}

.

Then all populations over Ω are elements of Λ, and Λ can also be interpreted as

the set of probability distributions over Ω. It is natural to think of elements of Λ as

infinite populations. Geometrically, Λ is the unit simplex in R
n.

The ith unit vector in Rn is denoted by ei. The Euclidean norm on R
n is denoted

by ‖·‖ = ‖·‖2, the max norm by ‖·‖∞, and the sum norm by ‖·‖1. The Euclidean

norm is the default.

Vose’s random heuristic search algorithm describes a class of generational popula-

tion-based search algorithms. The model is defined by a heuristic function G : Λ→

Λ. If x is a population of size r, then the next generation population is obtained by

taking r independent samples from the probability distribution G(x). When random

heuristic search is used to model the simple genetic algorithm, G is the composition of

a selection heuristic function F : Λ→ Λ and a mixing heuristic functionM : Λ→ Λ.

The mixing function describes the properties of crossover and mutation. Properties

of the functionsM and F are explored in detail in [11].

Given a population x ∈ Λ, it is not hard to show that the expected next genera-

tion population is G(x). As the population size goes to infinity, the next generation

population converges in probability to its expectation, so it is natural to use G to de-

fine an infinite population model. Thus, x 7→ G(x) defines a discrete-time dynamical

system on Λ that we will call the generational model. Given an initial population x,

the trajectory of this population is the sequence x,G(x),G2(x),G3(x), . . .

Note that after the first step, the populations produced by this model do not

necessarily correspond to populations of size r. Building on previous analysis of the

Steady State GA (SSGA) [12], [13], this paper aims to bring together for the first

time the finite and infinite population paradigms. Namely, we tackle two versions of

the steady-state algorithm (represented by a heuristic function) and give conditions

for their convergence to the uniform population consisting of copies of the global

optimum (similar to the finite-population approach).

511

2. Steady-state genetic algorithms

Whitley’s Genitor algorithm [12] was the first “steady state” genetic algorithm.

Genitor selects two parent individuals by ranking selection and applies mixing to

them to produce one offspring, which replaces the worst element of the population.

Syswerda [10] described variations of the steady-state genetic algorithm and empir-

ically compared various deletion methods. Davis [6] also empirically tested steady-

state genetic algorithms and advocates them as being superior to generational GAs

when combined with a feature that eliminates duplicate chromosomes.

In this section, we describe two versions of steady-state search algorithms. Both

the algorithms start with a population η of size r. In most applications, this popu-

lation would be chosen randomly from the search space, but there is no requirement

for a random initial population. At each step of both algorithms, an element j is

removed from the population, and an element i of Ω is added to the population, The

selection of element i is described by a heuristic function G. (For a genetic algorithm,

G will describe crossover, mutation, and usually selection.) The selection of element

j is described by another heuristic function Dr. (We include the population size r

as a subscript, since there may be a dependence on population size.)

In the first algorithm, the heuristic functions G and Dr both depend on x, the

current population. Thus, i is selected from the probability distribution G(x), and j

is selected from the probability distribution Dr(x).

Steady-state random heuristic search algorithm 1:

1. Choose an initial population η of size r.

2. x← η.

3. Select i from Ω using the probability distribution G(x).

4. Select j using the probability distribution Dr(x).

5. Replace x by x− ej/r + ei/r.

6. Go to step 3.

The second algorithm differs from the first by allowing for the possibility that the

newly added element i might be deleted. Thus, j is selected from the probability

distribution D((rx+ ei)/(r+1)). This algorithm is an (r+1) algorithm in evolution

strategy notation.

Steady-state random heuristic search algorithm 2:

1. Choose an initial population η of size r.

2. x← η.

3. Select i from Ω using the probability distribution G(x).

4′. Select j using the probability distribution Dr((rx + ei)/(r + 1)).

5. Replace x by x− ej/r + ei/r .

6. Go to step 3.

512

Some heuristics that have been suggested for the Dr function include worst-element

deletion, where a population element with the least fitness is chosen for deletion,

reverse proportional selection, reverse ranking deletion, and random deletion, where

the element to be deleted is chosen randomly from the population. Random deletion

was suggested by Syswerda [10]. He points out that random deletion is seldom used in

practice. Because of this, one of the reviewers of this paper objected to the use of the

term “steady-state genetic algorithm” for an algorithm that used random deletion.

However, we feel that the term can be applied to any genetic algorithm that replaces

only a few members of the population during a time step of the algorithm.

Random deletion can be modeled by choosing Dr(x) = x.

If the fitness function is injective (the fitnesses of elements of Ω are distinct), then

reverse ranking and worst-element deletion can be modeled using the framework

developed for ranking selection in [11],

Dr(x)i =

∫

∑
{j : fj6fi}

xj

∑
{j : fj<fi}

xj

̺(s) ds.

The probability density function ̺(s) can be chosen to be 2s to model standard

ranking selection, and 2 − 2s to model reverse ranking deletion. To model worst-

element deletion, we define ̺(s) as follows:

̺(s) =

{

r if 0 6 s 6 1/r,

0 otherwise.

As an example, let n = 3, x = 〈13
1
6

1
2 〉

T, f = 〈2 1 3〉T, and r = 4. Then ̺(s) = 4

if 0 6 s 6 1/4 and ̺(s) = 0 if 1/4 < s 6 1. (The population x does not correspond

to a real finite population of size 4. However, this choice leads to a more illustrative

example. Also, if Dr is iterated, after the first iteration the populations produced

will not necessarily correspond to finite populations of size r.) Then

Dr(x)1 =

∫ x1

0

̺(s) ds =

∫ 1/6

0

4 ds = 2/3,

Dr(x)0 =

∫ x1+x0

x1

̺(s) ds =

∫ 1/2

1/6

̺(s) ds =

∫ 1/4

1/6

4 ds = 1/3,

and

Dr(x)2 =

∫ x1+x0+x2

x1+x0

̺(s) ds =

∫ 1

1/2

̺(s) ds = 0.

For random deletion and reverse ranking deletion, Dr(x) does not depend on the

population size and can be shown to be differentiable as a function of x.

513

For worst-element deletion, Dr(x) does depend on the population size, and is

continuous but not differentiable.

Lemma 2.1. If Dr is defined as above for worst-element deletion, then Dr satisfies

a Lipschitz condition. In other words, there is a constant Lr such that ‖Dr(x) −

Dr(y)‖ 6 Lr‖x− y‖ for all x, y ∈ Λ.

P r o o f. Let x, y ∈ Λ. Then for an arbitrary index i we have

|Dr(x)i −Dr(y)i| =

∣

∣

∣

∣

∫

∑
{j : fj6fi}

xj

∑
{j : fj<fi}

xj

̺(s) ds−

∫

∑
{j : fj6fi}

yj

∑
{j : fj<fi}

yj

̺(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∑
{j : fj<fi}

yj

∑
{j : fj<fi}

xj

̺(s) ds−

∫

∑
{j : fj6fi}

yj

∑
{j : fj6fi}

xj

̺(s) ds

∣

∣

∣

∣

6 r
∑

{j : fj<fi}

|yj − xj |+ r
∑

{j : fj6fi}

|yj − xj |

6 2r

n−1
∑

j=0

|yj − xj | = 2r‖x− y‖1.

Thus, ‖Dr(x) − Dr(y)‖∞ 6 2r‖x − y‖1. Since all norms are equivalent up to a

constant, ‖Dr(x) −Dr(y)‖2 6 2rK‖x− y‖2 for some constant K. �

The function

(2.1) Hr(x) = x+
1

r
G(x) −

1

r
Dr(x)

gives the expected population for Algorithm 1 at the next time step, and the function

(2.2) Kr(x) = x+
1

r
G(x)−

1

r
Dr+1

(rx + G(x)

r + 1

)

gives the expected population for Algorithm 2 at the next time step.

Thus, x 7→ Hr(x) and x 7→ Kr(x) define discrete-time expected-value models of

the above steady-state algorithms. We will call them the discrete-time steady-state

models.

The following is straightforward.

Lemma 2.2. If the deletion heuristic Dr of the discrete-time steady-state models

satisfies

(2.3) Dr(y) 6 rx + G(x),

where y = x for (2.1) and y = (rx + G(x))/(r + 1) for (2.2), then the trajectories of

the systems defined by Hr and Kr remain in the simplex Λ.

514

The models for random deletion, reverse ranking deletion, and worst-element dele-

tion all satisfy the hypotheses of Lemma 2.2.

3. Convergence of the Kr heuristic

In this section we assume that the deletion heuristic is defined by worst element

deletion. We give conditions on the fitness function and on G that ensure that

lim
t→∞

Kt
r(x) exists and is the uniform population consisting of copies of the global

optimum.

In evolution strategy terminology, this is an (r + 1)-ES algorithm which uses an

elitist selection method. Rudolph [9] has shown that for this class of algorithms, if

there is mutation rate which is greater than zero and less than one, then the finite

population algorithm converges completely and in mean. These are statements about

the best element in the population rather than the whole population, so these results

do not imply our result.

We assume that the fitness function is injective. In other words, we assume that

if i 6= j, then fi 6= fj . Since we will not be concerned with the internal structure

of Ω, without loss of generality we can assume that f0 < f1 < . . . < fn−1. This

assumption will simplify notation.

Under this assumption, we can give a simplified definition for the worst-element

deletion heuristic Dr+1 that is used in the definition of Kr:

Dr+1(y)i =

(r + 1)yi if
∑

j6i

yj 6
1

r + 1
,

1− (r + 1)
∑

j<i

yj if
∑

j<i

yj 6
1

r + 1
<

∑

j6i

yj ,

0 if
1

r + 1
<

∑

j<i

yj .

Now let us define m(x) = min{i : xi > 0}.

Theorem 3.1. If there is a δ > 0 such that for all x ∈ Λ,

∑

j>m(x)

Gj(x) > δ,

then lim
t→∞

Kt
r(x) = en−1 for all x ∈ Λ.

This condition says that G(x) has a combined weight of at least δ at those points

of Ω whose fitness is higher than the worst-fitness element of x. (By “element of x”,

515

we mean any i ∈ Ω such that xi > 0.) This condition would be satisfied by any G

heuristic that allowed for a positive probability of mutation between any elements

of Ω. The proof of Theorem 3.1 will follow from Lemma 3.3.

Lemma 3.2. For any x ∈ Λ, if j < m(x), then Kr(x)j = 0.

P r o o f. To simplify notation, let m stands for m(x).

Let y = (rx + G(x))/(r + 1). Then
∑

j<m

G(x)j 6 1/(r + 1), since
∑

j<m

xj = 0 and
∑

j<m

Gj 6 1.

Thus, for j < m, Dr+1(y)j = yj , and Kr(x)j = yj −Dr+1(y)j = 0. �

Define M(x) = 2m(x) + 1− xm(x).

Lemma 3.3. For any x ∈ Λ, if there is a δ > 0 such that
∑

j>m(x)

G(x)j > δ, then

M(Kr(x)) > M(x) +
δ

r
.

P r o o f. To simplify notation, again let m stands for m(x). Let y = (rx+G(x))×

(r + 1)−1.

Case 1:
∑

j6m

yj 6 1/(r + 1). Then

Dr+1(y)m = (r + 1)ym = rxm + G(x)m,

and

Kr(x)m = xm +
1

r
G(x)m −

1

r
(rxm + G(x)m) = 0.

Thus

M(Kr(x)) > 2(m+ 1) + 1− xm+1 > 2m+ 2 > M(x) + 1.

Case 2:
∑

j<m

yj 6 1/(r + 1) <
∑

j6m

yj . Then

Dr+1(y)m = 1− (r + 1)
∑

j<m

yj = 1−
∑

j<m

G(x)j .

Thus

Kr(x)m = xm +
1

r
G(x)m −

1

r
Dr+1(y)m

= xm −
1

r

(

1−
∑

j6m

G(x)j

)

= xm −
1

r

∑

j>m

G(x)j

6 xm −
δ

r
.

516

Also note that

1

r + 1
<

∑

j6m

yj =⇒ 1 <
∑

j6m

(rxj + G(x)j)

=⇒ xm −
1

r

(

1−
∑

j6m

G(x)j

)

> 0 =⇒ Kr(x)m > 0.

Thus

M(Kr(x)) = 2m+ 1− xm +
1

r

∑

j>m

G(x)j

= M(x) +
1

r

∑

j>m

G(x)

> M(x) +
δ

r
.

Case 3: 1/(r + 1) <
∑

j<m

yj. In this case, 1 <
∑

j<m

(rxj + G(x)j), which implies

1 <
∑

j<m

G(x)j . This is impossible, so the case never happens. �

4. Bounded-convergence of the Hr heuristic

In this section we assume that the deletion heuristic is defined by worst element

deletion. We give conditions on the heuristic G that ensure that Ht
r(x)n−1 > σ for

all t > T0, where T0 is a positive integer and σ > 0 is a constant depending on

the population size r. We also assume that the fitness function is injective and that

f0 < f1 < . . . < fn−1.

Then the worst-element deletion heuristic Dr used in the definition ofHr simplifies

to

(4.1) Dr(y)i =

ryi if
∑

j6 i

yj 6
1

r
,

1− r
∑

j<i

yj if
∑

j<i

yj 6
1

r
<

∑

j6i

yj ,

0 if
1

r
<

∑

j<i

yj .

First, we show that without imposing any condition on heuristic G, if the starting

point has a positive last component (xn−1 > 0), then the same property will be

shared by all subsequent iterations of heuristic H. This is the correspondent of

‘elitism’, in the finite population EA theory.

Proposition 4.1. If xn−1 = σ ∈ (0, (r − 1)/r), then Ht
r(x)n−1 > σ for all t > 0.

517

P r o o f. We have

xn−1 6
r − 1

r
⇒ 1− xn−1 > 1−

r − 1

r
⇒

∑

j<n−1

xj >
1

r
⇒ Dr(x)n−1 = 0,

which leads to

Hr(x)n−1 = xn−1 +
1

r
G(x)n−1 −

1

r
D(x)n−1 = xn−1 +

1

r
G(x)n−1 − 0 > xn−1 = σ.

Let us see what happens if Hr(x)n−1 = y > (r − 1)/r. By taking the second

branch in the deletion heuristic one gets

Hr(y)n−1 = yn−1 +
1

r
G(y)n−1 −

1

r
+ 1− yn−1 = 1−

1

r
+

1

r
G(y)n−1 > 1−

1

r
> σ.

�

Next, the interesting problem would be to find conditions on heuristic G that

ensure the positivity of the last component of Ht
r for some t > 0, regardless of the

starting point x. One way to do this is by copying the positive mutation assumption

from the finite population case [9], [8], by imposing G(x)i > δ for some appropriate

fixed δ > 0 and for all i, 0 6 i 6 n− 1.

Yet, one can find weaker assumptions on heuristic G that ensure the same behavior

of Hr, and this will be proved in the rest of this section.

We start with a simple counter-example, showing that the convergence condition

for heuristic Kr (proved in the previous section) is no longer valid for theHr heuristic.

E x am p l e 1. Let heuristic H be defined by

Hr(x) = x+
1

r
G(x) −

1

r
Dr(x),

where deletion is defined by (4.1), and G is constrained by
∑

j>o(x)

Gj(x) > δ only, for

some δ > 0. Then the evolution described in the table below precludes convergence.

Let Ω = {0, 1, 2} and let r = 3.

Ω 0 1 2
rx 0 1 2

G(x) 1− δ 0 δ

Dr(x) 0 1 0
rHr(x) = ry 1− δ 0 2 + δ

G(y) 1− δ δ 0

Dr(y) 1− δ 0 δ
rH2

r(x) = rHr(y) 1− δ δ 2

518

In order to obtain convergent behavior for this heuristic, we must first define

another index function, say o(x). This will be related to the population size r in the

following manner:

o(x) = or(x) = min

{

j :
∑

i6j

xi >
1

r

}

.

We can now state the main result on the H heuristic.

Theorem 4.2. If there is a δ > 0 such that for all x ∈ Λ,

∑

j>or(x)

Gj(x) > δ,

then there is a positive integer Tn−2 such that for all t > Tn−2,

∑

i6n−2

Ht
r(x)i 6

1

r
.

P r o o f. We start by tackling the case where x has the first component greater

than 1/r (that is, or(x) = 0), all other components being arbitrary.

Lemma 4.3. Let x ∈ Λ, x = 〈1/r + ε, . . . , . . .〉, with ε > 0, under the hypothesis

of Theorem 4.2. Then there is a positive integer T0 such that for all t > T0,

Ht
r(x)0 6

1

r
.

P r o o f. Since x0 > 1/r, we have Dr(x) = 〈1, 0, . . . , 0〉 and r(x) = 0, thus

Hr(x)0 =
1

r
+ ε+

1

r
G(x)0 −

1

r
= ε+

1

r
G(x)0 6 ε+

1− δ

r
.

Let us assume that Hr(x)0 > 1/r. This yields

H2
r(x)0 6 ε+

1− δ

r
+

1

r
G(H(x))0 −

1

r
6 ε+

2(1− δ)

r
−

1

r
= ε+

1− δ

r
−

δ

r
.

By repeating this reasoning under the assumption Hs
r(x)0 > 1/r, for all s ∈

{0, 1, . . . , t− 1}, we obtain

Ht
r(x)0 6 ε+

1

r
−

tδ

r
.

So, as t increases, the iterations Ht
r(x)0 will descend under 1/r, starting with some

index T0. Let us see what happens at the next iteration (we denote HT0
r (x) = y)

HT0+1
r (x)0 = y0 +

1

r
G(y)0 − y0 =

1

r
G(y)0 6

1− δ

r
<

1

r
.

So, Ht
r(x)0 < 1/r for all t > T0. �

519

The following result generalizes Lemma 4.3 to the case or(x) = k, k 6 n− 2.

Lemma 4.4. Assume the hypothesis of Theorem 4.2. If or(x) = k, 1 6 k 6 n−2,

then there is a positive integer Tk such that for all t > Tk,

∑

i6k

Ht
r(x)i 6

1

r
.

P r o o f. Looking at the deletion operator (4.1), or(x) = k implies

Dr(x)i =

rxi if i < k,

1− r
∑

j<k

xj if i = k,

0 if i > k.

Thus
∑

i6k

Dr(x)i = 1. Next,

∑

i6k

Hr(x)i =
∑

i6k

xi +
1

r

∑

i6k

G(x)i −
1

r

∑

i6k

Dr(x)i

6
∑

i6k

xi +
1

r
(1− δ − 1) =

∑

i6k

xi −
δ

r
.

Now, if we suppose that or(Hr(y)) = k, we get

∑

i6k

H2
r(x)i 6

∑

i6k

xi −
δ

r
+

1− δ

r
−
∑

i<k

x′
i +

1

r
+
∑

i<k

x′
i =

∑

i6k

xi −
2δ

r
,

where we denoted Hr(x) = x′. As in the proof of Lemma 4.3, there will be a positive

integer Tk such that
∑

i6k

HTk
r (x)i 6 1/r and all successive iterations will preserve the

inequality. �

Now, turning back to the proof of Theorem 4.2, induction on the assertion If

or(x) = k, then there is a positive integer Tk such that or(HTk
r (x)) > k, and this

holds also for all t > Tk ensures the result. Lemmas 4.3 and 4.4 have proved the

assertion up to k = n − 2. Thus, starting with an arbitrary x ∈ Λ, by iterating Hr

the index-string {or(H
t
r(x)}t>0 increases (not necessarily strictly), until it reaches

the value n− 1, which will be never left. �

R em a r k 1. Obviously, the constant σ > 0 that we announced at the beginning

of the section as a lower bound for {Ht
r(x)n−1}t→∞ is given by

σ =
r − 1

r
.

520

5. Convergence of the Hr heuristic

In this section we prove that by imposing stronger assumptions on the heuristic

G one can ensure that lim
s→∞

Hs
r(x) exists (at least for a subsequence {sk}k>0, and

regardless of the starting point x) and is the uniform population consisting of copies

of the global optimum, en−1.

Under the same hypothesis on the fitness function and the simplified form of the

deletion heuristic (see the previous section), we now introduce in a different manner

the index function, say p(x). Namely, we put

ps(x) = min

{

i :
∑

j6i

xj >
1

s

}

.

We can now state the main convergence result.

Theorem 5.1. If for all x ∈ Λ and all s > 1,

(5.1)
∑

j>ps(x)

Gj(x) > 1−
1

s+ 1
,

then there is a subsequence {sk}k>0 such that lim
k→∞

Hsk
r (x) = en−1.

P r o o f. As the population size r is considered fixed, it will be omitted in the

sequel when referring to heuristic H. We start with a useful result.

Lemma 5.2. Under the hypothesis of Theorem 5.1, the following inequalities

hold:

(1)
∑

i6ps(x)

H(x)i < 1/(s+ 1),

(2) ps+1(H(x)) > ps(x).

P r o o f. Let us start with a fixed s. As the interesting case corresponds to s > r

(and thus ps(x) 6 pr(x)), we shall make this assumption in the sequel. By applying

the deletion operator (4.1) and assumption (5.1) one gets

∑

i>ps(x)

H(x)i =
∑

i>ps(x)

(x)i +
1

r

∑

i>ps(x)

G(x)i −
1

r
+

∑

i<pr(x)

(x)i −
∑

i∈(ps(x),pr(x))

(x)i

=
∑

i>ps(x)

(x)i +
∑

i6ps(x)

(x)i +
1

r

∑

i>ps(x)

G(x)i −
1

r

> 1 +
1

r

(

1−
1

s+ 1

)

−
1

r
> 1−

1

s+ 1

⇔
∑

i6ps(x)

H(x)i <
1

s+ 1
,

which proves the first part of the lemma. Next, the second part is obvious. �

521

Turning back to the proof of Theorem 5.1, let us have a look at the string

{ps(H
s(x))}s>0. By Lemma 5.2 this string increases up to n − 1—that is, there

is an index s1 such that ps1(H
s1(x)) = n − 1. From that point further, one can

distinguish two cases.

Case 1: For all h > 0,

ps1+h(H
s1+h(x)) = n− 1.

Then by applying Lemma 5.2 we get

Hs1+h(x)n−1 = 1−
∑

i6n−2

Hs1+h(x)i > 1−
1

s1 + h+ 1
→ 1 (h→∞).

Thus, lim
h→∞

Hs1+h(x) = en−1.

Case 2: There is an index s2 = s1 + h such that ps2(H
s2) 6 n − 2. Then, by

applying once more the above reasoning, one will find a greater index s3 such that

ps3(H
s3) = n− 1, which leads to

Hs3+h(x)n−1 > 1−
1

s3 + 1
.

By reiterating the above procedure, we obtain a string {s2k+1}k → ∞ for which

Hs2k+1(x)→ en−1. And this takes place regardless of the starting point x. �

Two will be our goals for the rest of this section. First, to prove that condition (5.1)

is essential for the convergence of heuristicH—by showing that a weaker (in a certain

sense) version of (5.1) does not ensure convergence. Second, we shall give an example

of operator G which fulfils condition (5.1), and thus the hypothesis of convergence of

Theorem 5.1.

Let us introduce a weaker form of condition (5.1), by allowing the sum counter on

the right-hand side of the inequality to take also the value ps(x). That is,

(5.2)
∑

j>ps(x)

Gj(x) > 1−
1

s+ 1
.

One can easily prove the following equivalent of Lemma 5.2.

Lemma 5.3. Under the hypothesis of Theorem 5.1, the following inequalities

hold:

(1)
∑

i6ps(x)

H(x)i < 1/(s+ 1),

(2) ps+1(H(x)) > ps(x).

522

Yet, as one will see below, this result is not strong enough in order to ensure

convergence.

Theorem 5.4. If for all x ∈ Λ and all s > 1 condition (5.2) holds, then the iterates

of heuristic H do not necessarily converge to en−1, not even on subsequences.

P r o o f. Let us start with an x ∈ Λ such that p2(x) < n − 1. According to

Lemma 5.3 we have, for all s > 2,
∑

i6ps(x)

Hs(x)i < 1/(s+ 1) and ps(H(x)) > p2(x).

This means that, when looking at the vector

Hs(x) = 〈Hs(x)0,H
s(x)1, . . . ,H

s(x)ps−1,H
s(x)ps

, . . .〉 ,

its first ps(x) components→ 0 as s→∞, but what happens to the rest? In the most

unfavorable case allowed by condition (5.2), one can concentrate the whole mass of

heuristic H on the p2(x) component, as s → ∞. It is obvious that such a heuristic

converges to ep2(x), which is not en−1. �

Now let us turn again to condition (5.1) and give an example of heuristic G that

satisfies the condition. However, we must admit that this example (and this stands

for all the results in this section) is of purely theoretical interest only, that is, we do

not expect the practical algorithms to meet the very strong assumption we formulate

here.

Let x = 〈x0, x1, . . . , xn−1〉 ∈ Λ be an arbitrary starting point. Obviously, the

sequence {ps(x)}s>1 is non-increasing, so one can define a function M on {0, 1, . . . ,

p2(x)} in the following manner:

M(i) =

{

max{k : pk(x) = i},

0, if {k : pk(x) = i} = ∅.

Next, let us take the following pointwise definition for heuristic G:

(5.3) G(x)i =

0, if M(i) = 0,

1

M(i) + 2
, for the first i such that M(i) > 0,

1

M(i) + 2
−

1

M(hi) + 2
, if 0 < i 6 p2(x),M(i) > 0 and hi > 0,

M(i− 1) + 1

M(i− 1) + 2
, if i = p2(x) + 1,

0, if i > p2(x) + 1,

523

where, for each i, hi is defined by

hi =

{

max{j : j < i, M(j) > 0},

0, if the set is empty.

Let us illustrate the construction above by a numerical example.

E x am p l e 2.

p2(x) p3(x) p4(x) p5(x) . . . p24(x) p25(x) . . . p∞
10 10 8 7 7 7 1 1 1

i 0 1 2 3 4 5 6 7 8 9 10
M(i) 0 25 0 0 0 0 0 24 4 0 3

G(x)i 0 1
25+2 0 0 0 0 0 1

24+2 −
1
27

1
4+2 −

1
24+2 0 1

3+2 −
1

4+2

Turning back to the general case, we have the following.

Proposition 5.5. If heuristic G is given by equation (5.3), then G(x) ∈ Λ.

P r o o f. One has to show that the sum over all components of G is one. But this

comes from
∑

i6p2(x)

G(x)i =
1

M(p2(x)) + 2
,

which is a straightforward consequence of (5.3). �

One must notice that the dependence on x is very strong in the definition of

heuristic G, cf. formula (5.3). Also, we required a big jump from x to G(x), namely

we moved the whole mass
M(p2(x)) + 1

M(p2(x)) + 2

(which can be very close to one) one position to the right; and this must happen for

all x ∈ Λ!

Unfortunately, this condition is very hard to achieve for a practical algorithm, so

one should prefer, instead of looking for pure convergence, the bounded-convergence

property introduced earlier. In this concern, we conjecture that bounded-convergence

of heuristic H is sufficient to ensure the convergence of the implemented finite pop-

ulation algorithm, with respect to the usual convergence definition employed by the

finite population EA theory, see [9].

524

References

[1] A.Agapie: Modelling genetic algorithms: From Markov chains to dependence with com-
plete connections. Lect. Notes Comput. Sci. 1498 (1998), 3–12.

[2] A.Agapie: Theoretical analysis of mutation-adaptive evolutionary algorithms. Evol.
Comput. 9 (2001), 127–146.

[3] A.Agapie: Estimation of distribution algorithms on non-separable problems. Int. J.
Comput. Math. 87 (2010), 491–508.

[4] A.Agapie, M.Agapie, G. Rudolph, G. Zbaganu: Convergence of evolutionary algorithms
on the n-dimensional continuous space. IEEE Trans. Cybern. 43 (2013), 1462–1472.

[5] A.Agapie, M.Agapie, G. Zbaganu: Evolutionary algorithms for continuous space opti-
mization. Int. J. Syst. Sci. 44 (2013), 502–512.

[6] L.Davis: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.
[7] B.Mitavskiy, J. Rowe, A.H.Wright, L. Schmitt: Quotients of Markov chains and asymp-
totic properties of the stationary distribution of the Markov chain associated to an
evolutionary algorithm. Genet. Program. Evolv. Mach. 9 (2008), 109–123.

[8] G.Rudolph: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovać,
Hamburg, 1997.

[9] G.Rudolph: Stochastic convergence. Handbook of Natural Computing (G.Rozenberg,
T.H.W.Bäck, J.N.Kok, eds.). Springer, Berlin, 2012.

[10] G.Syswerda: A study of reproduction in generational and steady state genetic algo-
rithms. Foundations of Genetic Algorithms. San Mateo, Morgan Kaufman, San Fran-
cisco, 1991, pp. 94–101.

[11] M.D.Vose: The Simple Genetic Algorithm. Foundations and Theory. MIT Press, Cam-
bridge, 1999.

[12] D.Whitley: The GENITOR algorithm and selection pressure: Why rank-based alloca-
tion of reproductive trials is best. Proceedings of the Third International Conference on
Genetic Algorithms. Morgan Kaufman, San Francisco, 1989, pp. 116–123.

[13] A.H.Wright, J.Rowe: Continuous dynamical system models of steady-state genetic
algorithms. Foundations of Genetic Algorithms—6. Proc. FOGA-6, Morgan Kaufmann
Publishers, Orlando, 2002, pp. 209–225.

Authors’ addresses: Alexandru Agapie, Bucharest University of Economic Studies, Calea
Dorobantilor 15-17, Bucharest, 010552, Romania, and Institute of Mathematical Statis-
tics and Applied Mathematics, Bucharest e-mail: agapie@clicknet.ro; Alden H.Wright,
Computer Science, University of Montana, Missoula, MT 59812 USA, e-mail: wright@
cs.umt.edu.

525

		webmaster@dml.cz
	2020-07-02T14:01:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

