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Abstract. In this paper, by using an iterative scheme, we advance the main oscillation
result of Zhang and Liu (1997). We not only extend this important result but also drop
a superfluous condition even in the noniterated case. Moreover, we present some illustrative
examples for which the previous results cannot deliver answers for the oscillation of solutions
but with our new efficient test, we can give affirmative answers for the oscillatory behaviour
of solutions. For a visual explanation of the examples, we also provide 3D graphics, which
are plotted by a mathematical programming language.
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1. Introduction

Partial difference equations are some kinds of difference equations that involve

at least two (discrete) variables. Such equations come out from the mathematical

modeling of random walk problems, molecular structure problems, and numerical dif-

ference approximation of solutions to partial delay differential equations (see [1], [6]).

Because of its many application fields, the oscillation/nonoscillation problem for de-

lay partial difference equations is now receiving much attention (see [2], [5]).

In this work, we consider the linear partial difference equation:

(1.1) x(m+ 1, n) + x(m,n+ 1)− x(m,n) + p(m,n)x(m− k, n− l) = 0

for (m,n) ∈ Z
2
0,

where {p(m,n)}(m,n)∈Z2
0
is a nonnegative double sequence of reals and k, l ∈ N, and

for simplicity of notation, we set K := max{k, l}, L := min{k, l} and Zr0 := {r ∈
Z : r > r0} for r0 ∈ Z.
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We now define the initial problem for (1.1) (see [3]). To this end, we define the

primary and the secondary initial lattices by Ω(−k,−l) := Z−k ×Z−l \Z0 ×Z1 and

Υ(−k,−l) := Z−k×Z−l\Z1×Z0, respectively. By a solution of (1.1) we mean a dou-

ble sequence {x(m,n)}(m,n)∈Z−k×Z−l
of reals which satisfies the recursive equation

(1.1) identically on Z2
0. Clearly, if an initial double sequence {ϕ(m,n)}(m,n)∈Ω(−k,−l)

is given, then one can easily iterate (1.1) and obtain all the values of the unique so-

lution x, which satisfies x = ϕ on the primary initial lattice Ω(−k,−l), by rewriting
(1.1) in the following form:

(1.2) x(m,n+1) = x(m,n)−x(m+1, n)−p(m,n)x(m−k, n− l) for (m,n) ∈ Z
2
0.

Alternatively, if {ψ(m,n)}(m,n)∈Υ(−k,−l) is given, then one can also obtain the unique

solution x of (1.1) satisfying x = ψ on the secondary lattice Υ(−k,−l) by iterating

(1.3) x(m+1, n) = x(m,n)−x(m,n+1)−p(m,n)x(m−k, n− l) for (m,n) ∈ Z
2
0.

Below, we revisit the definition of oscillation of a double sequence on the first discrete

quadrant Z2
0. We call a double sequence {x(m,n)}(m,n)∈Z2

0
eventually positive if there

exists (m0, n0) ∈ Z
2
0 such that x > 0 on Zm0 ×Z0∪Z0×Zn0 , and eventually negative

if −x is eventually positive. If a double sequence is neither eventually positive nor
eventually negative, we call it oscillatory. To point out what is the difference between

our definition and the oscillation definition given in [3], we give an example as follows:

Let {x(m,n)}(m,n)∈Z2
0
be defined by x(r, 0) = (−1)r, x(0, r) = (−1)r for all r ∈ Z0

and x(m,n) = 1 for all (m,n) ∈ Z
2
1. Due to the oscillation definition given in [3], this

sequence is eventually positive and hence is nonoscillatory since we have x(m,n) =

1 > 0 for all largem,n; however, it is oscillatory according to our definition. It is easy

to infer that if it is nonoscillatory in our sense, then it is nonoscillatory according

to the definition in [3], too. And conversely, if a double sequence is oscillatory

according to the definition in [3], it is oscillatory in our sense. We call a solution x of

(1.1) oscillatory if {x(m,n)}(m,n)∈Z−k×Z−l\D(−k,−l) is oscillatory, where D(−k,−l)
is the initial lattice, i.e., either D(−k,−l) = Ω(−k,−l) or D(−k,−l) = Υ(−k,−l)
depending on the choice of the data of the initial value problem (see (1.2) and

(1.3)). If every solution of (1.1) is oscillatory independently of the choice of the

initial lattice and the initial sequence, then (1.1) is called oscillatory. Throughout

the paper, we will focus our attention on those solutions of (1.1) which do not vanish

on Zm0 × Z−l ∪ Z−k × Zn0 \D(−k,−l) for any (m0, n0) ∈ Z
2
0.

Below, we quote an important result due to Zhang and Liu.
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Theorem A ([4], Theorem 2.1). Assume that

(1.4) limsup
m→∞
n→∞

p(m,n) > 0

and that

(1.5) liminf
m→∞
n→∞

Γ(m,n) > 1,

where

(1.6) Γ(m,n) := inf
λ∈Λ(m,n)

{

1

λ

( m−1
∏

i=m−k

n−1
∏

j=n−l

1

1− λp(i, j)

)1/L}

for (m,n) ∈ Zk × Zl

and

(1.7)

Λ(m,n) := {λ > 0: 1− λp(i, j) > 0 for all (i, j) ∈ [m− k,m)× [n− l, n) ∩ Z
2}

for (m,n) ∈ Zk × Zl.

Then (1.1) is oscillatory.

In this paper, we shall advance the conclusion of Theorem A. To this end, we give

the following simple example, which illustrates the significance of the results of this

paper.

E x am p l e 1.1. Consider the delay partial difference equation for (m,n) ∈ Z
2
0

(1.8) x(m+ 1, n) + x(m,n+ 1)− x(m,n) + p(m,n)x(m− 2, n− 1) = 0,

where

p(m,n) :=















2

9
, mod(m, 3) = 0,

1

9
, otherwise.

Due to Theorem A, we have for (m,n) ∈ Z2 × Z1

Γ(m,n) := inf
λ∈Λ(m,n)















1

λ(1 − λ/9)2
, mod(m, 3) = 0,

1

λ(1 − λ/9)(1− 2λ/9)
, otherwise
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and

Λ(m,n) :=

{

(0, 9), mod(m, 3) = 0,

(0, 9/2), otherwise

which yields

Γ(m,n) :=















2
√
3

3
, mod(m, 3) = 0,

3

4
, otherwise.

Hence, we have

liminf
m→∞
n→∞

Γ(m,n) = min
{3

4
,
2
√
3

3

}

=
3

4
< 1,

which shows that Theorem A fails to deliver any conclusion on the oscillatory be-

haviour of solutions of (1.8). However, our result (Theorem 2.1) in the following

section gives the affirmative answer. The following graphics belong to the solution

with the initial condition x ≡ 1 on Ω(−2,−1) and of 60 iterates.
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Here, the points painted with dark color represent the nonnegative terms while

the points painted with light color represent the negative ones.

In the next section, we prove our main result and provide some simple examples

to show its applicability.
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2. Main results

We first prove a simple lemma, which will be needed in the sequel.

Lemma 2.1. Let x be an eventually positive solution of (1.1), and suppose that

(2.1) limsup
m→∞
n→∞

m−1
∑

i=m−k

n−1
∑

j=n−l

p(i, j) > 0.

Then yx defined by

(2.2) yx(m,n) :=
x(m− k, n− l)

x(m,n)
for (m,n) ∈ Z

2
0

satisfies

(2.3) liminf
m→∞
n→∞

yx(m,n) <∞.

P r o o f. Let x be an eventually positive solution of (1.1). Hence, we may suppose

that x(m,n) > 0 for all (m,n) ∈ Zm1 ×Zn1 for some fixed (m1, n1) ∈ Z
2
0. Then from

(1.1) it is obvious that x is decreasing on Zm2 ×Zn2 where (m2, n2) ∈ Zm1+k×Zn1+l,

and thus yx defined by (2.2) satisfies yx > 1 on Zm2 ×Zn2 . By virtue of (2.1), there

exist a constant ε > 0 and an increasing divergent double sequence {(ξr, ζr)}r∈N ⊂
Zm2 × Zn2 such that r ∈ N implies

(2.4)

ξr−1
∑

i=ξr−k

ζr−1
∑

j=ζr−l

p(i, j) > ε.

Keeping in mind the Pigeonhole principle due to Dirichlet, we infer that (2.4) implies

the existence of a double sequence {(αr, βr)}r∈N ⊂ Z
2
0 such that ξr − k 6 αr < ξr,

ζr − l 6 βr < ζr and p(αr, βr) > ε/(kl) for all r ∈ N. Substituting (αr, βr) for r ∈ N

into (1.1) and considering the decreasing nature of x, we easily obtain

0 = x(αr + 1, βr) + x(αr , βr + 1)− x(αr, βr) + p(αr, βr)x(αr − k, βr − l)

> − x(αr , βr) +
ε

kl
x(ξr − k, ζr − l),

which yields

(2.5)
x(αr , βr)

x(ξr − k, ζr − l)
>

ε

kl
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for all r ∈ N. Similarly, for all r ∈ N, we have

0 = x(αr + 1, βr) + x(αr , βr + 1)− x(αr, βr) + p(αr, βr)x(αr − k, βr − l)

> − x(ξr − k, ζr − l) +
ε

kl
x(αr − k, βr − l),

which implies

(2.6)
x(ξr − k, ζr − l)

x(αr − k, βr − l)
>

ε

kl

for all r ∈ N. In view of (2.2), and taking the reciprocal after multiplying (2.5) and

(2.6) yields

(2.7) yx(αr, βr) <
(kl

ε

)2

for all r ∈ N. It is clear that {(αr, βr)}r∈N ⊂ Z
2
0 is divergent and hence (2.7) implies

(2.3), and this completes the proof. �

Next, we have a new lemma, which will be applied in the proof of our main result.

To state the lemma, we need to introduce

(2.8) Γr(m,n) :=











1, r = 0,

inf
λ∈Λr(m,n)

{

1

λ

( m−1
∏

i=m−k

n−1
∏

j=n−l

1

1− λΓr−1(i, j)p(i, j)

)1/L}

, r ∈ N

and

(2.9) Λr(m,n) := {λ > 0: 1− λΓr−1(i, j)p(i, j) > 0

for all (i, j) ∈ [m− k,m)× [n− l, n) ∩ Z
2}

for (m,n) ∈ Zrk × Zrl and r ∈ N.

Lemma 2.2. Let x be an eventually positive solution of (1.1), and suppose that

(2.10) liminf
m→∞
n→∞

Γr0(m,n) > 1

for some r0 ∈ N. Then

(2.11) lim
m→∞
n→∞

yx(m,n) = ∞.
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P r o o f. Let x be an eventually positive solution of (1.1). Hence, we may suppose

that x(m,n) > 0 for all (m,n) ∈ Zm1 × Zn1 for some fixed (m1, n1) ∈ Z
2
0. Then we

may rewrite (1.1) as

(2.12) [1− yx(m,n)p(m,n)]x(m,n) = x(m+ 1, n) + x(m,n+ 1) > 0

for all (m,n) ∈ Zm2 × Zn2 for some fixed (m2, n2) ∈ Zm1 × Zn1 . Set

(2.13) zr(m,n) :=

{

yx(i, j), r = 0,

min
(i,j)∈[m−k,m]×[n−l,n]∩Z2

zr−1(i, j), r ∈ {1, 2, . . . , r0}

for (m,n) ∈ Zm2+rk × Zn2+rl. From (2.12), for all (m,n) ∈ Zm2+k × Zn2 we have

(2.14) x(m,n) < [1− yx(m− 1, n)p(m− 1, n)]x(m− 1, n)

< [1− yx(m− 1, n)p(m− 1, n)]

× [1− yx(m− 2, n)p(m− 2, n)]x(m− 2, n)

...

<

m−1
∏

i=m−k

[

1− yx(i, n)p(i, n)
]

x(m− k, n),

which yields

(2.15) x(m,n) <

( n−1
∏

j=n−l

x(m, j)

)1/l

<

( m−1
∏

i=m−k

n−1
∏

j=n−l

[1− yx(i, j)p(i, j)]x(m− k, j)

)1/l

<

( m−1
∏

i=m−k

n−1
∏

j=n−l

[1− yx(i, j)p(i, j)]

)1/l

x(m− k, n− l)

<

( m−1
∏

i=m−k

n−1
∏

j=n−l

[1− z1(m,n)p(i, j)]

)1/l

x(m− k, n− l)

for all (m,n) ∈ Zm2+k × Zn2+l. By following similar arguments, we can show easily

that

(2.16) x(m,n) <

( m−1
∏

i=m−k

n−1
∏

j=n−l

[1− z1(m,n)p(i, j)]

)1/k

x(m− k, n− l)
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for all (m,n) ∈ Zm2+k×Zn2+l. Combining (2.15) and (2.16) and using the definition

in (2.2), we obtain

(2.17) yx(m,n) >

( m−1
∏

i=m−k

n−1
∏

j=n−l

1

1− z1(m,n)p(i, j)

)1/L

for all (m,n) ∈ Zm2+k × Zn2+l; recall that L is defined to be the minimum of k

and l. Using (2.12) and (2.13), we learn that z1(m,n) ∈ Λ1(m,n) for all (m,n) ∈
Zm2+k × Zn2+l. Hence, it follows from (2.8) and (2.17) that

(2.18) yx(m,n) >

(

1

z1(m,n)

( m−1
∏

i=m−k

n−1
∏

j=n−l

1

1− z1(m,n)p(i, j)

)1/L)

z1(m,n)

> Γ1(m,n)z1(m,n)

holds for all (m,n) ∈ Zm2+k ×Zn2+l. Substituting (2.18) into (2.12), we obtain that

(2.19) [1− z1(m,n)Γ1(m,n)p(m,n)]x(m,n) > x(m+ 1, n) + x(m,n+ 1) > 0

holds for all (m,n) ∈ Zm2+k ×Zn2+l. Following steps similar to those above, we can

obtain

(2.20) yx(m,n) >

(

1

z2(m,n)

( m−1
∏

i=m−k

n−1
∏

j=n−l

1

1− z2(m,n)p(i, j)

)1/L)

z2(m,n)

> Γ2(m,n)z2(m,n)

for all (m,n) ∈ Zm2+2k × Zn2+2l. Repeating the emerging pattern for a total of

(r0 − 2) times more, we finally obtain

(2.21) yx(m,n) > Γr0(m,n)zr0(m,n)

for all (m,n) ∈ Zm2+r0k × Zn2+r0l. Suppose now that (2.11) does not hold, i.e.,

(2.22) liminf
m→∞
n→∞

yx(m,n) <∞.

On the other hand, by the definition in (2.13), we know that

(2.23) liminf
m→∞
n→∞

zr0(m,n) = liminf
m→∞
n→∞

yx(m,n) > 1.

Then, from (2.21)–(2.23) we obtain

liminf
m→∞
n→∞

yx(m,n) > liminf
m→∞
n→∞

(Γr0(m,n)zr0(m,n))

> liminf
m→∞
n→∞

Γr0(m,n) liminf
m→∞
n→∞

zr0(m,n) > liminf
m→∞
n→∞

yx(m,n),

which is an obvious contradiction. Therefore, (2.11) must be true. �
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The following is the main result of the paper.

Theorem 2.1. Assume that (2.10) holds for some r0 ∈ N. Then (1.1) is oscilla-

tory.

P r o o f. To complete the proof, it suffices to prove that (2.10) implies (2.1).

Assume the contrary that (2.10) holds but (2.1) does not, i.e.,

(2.24) lim
m→∞
n→∞

m−1
∑

i=m−k

n−1
∑

j=n−l

p(i, j) = 0,

which yields

(2.25) lim
m→∞
n→∞

p(m,n) = 0.

Then there exists (m1, n1) ∈ Z
2
0 such that

(2.26) Γr0(m,n) > 1

for all (m,n) ∈ Zm1 × Zn1 . Let

(2.27) ε :=
δr0

2
and δ :=

KK

(K + 1)K+1
.

Therefore, there exists (m2, n2) ∈ Zm1 × Zn1 such that

(2.28) p(m,n) < ε

for all (m,n) ∈ Zm2 × Zn2 . Note that (0, 1/ε) ⊂ Λ1(m,n) for all (m,n) ∈ Zm2+k ×
Zn2+l. Hence, for all (m,n) ∈ Zm2+k × Zn2+l we have

(2.29)
ε

δ
= inf

λ∈(0,1/ε)

{ 1

λ

( 1

1− λε

)K}

> Γ1(m,n).

Note that (0, δ/ε) ⊂ Λ2(m,n) for all (m,n) ∈ Zm2+2k × Zn2+2l. Using (2.29) and

the definition in (2.8), we get

(2.30)
ε

δ2
= inf

λ∈(0,δ/ε)

{ 1

λ

( 1

1− λε/δ

)K}

> Γ2(m,n)

for all (m,n) ∈ Zm2+2k × Zn2+2l. Repeating this procedure, we finally obtain

(2.31)
ε

δr0
= inf

λ∈(0,δ(r0−1)/ε)

{ 1

λ

( 1

1− λε/δr0−1

)K}

> Γr0(m,n)

for all (m,n) ∈ Zm2+r0k × Zn2+r0l since (0, δ
(r0−1)/ε) ⊂ Λr0(m,n) for all (m,n) ∈

Zm2+r0k × Zn2+r0l. Using (2.26), (2.27) and (2.31), we are led to an apparent con-

tradiction. The proof is therefore completed. �
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R em a r k 2.1. One can see easily by letting r0 = 1 that Theorem 2.1 reduces to

Theorem A by dropping the superfluous restriction (1.4).

As an illustrative application to Theorem 2.1, we have the following.

E x am p l e 2.1. Consider the delay partial difference equation

(2.32) x(m+ 1, n) + x(m,n+ 1)− x(m,n) + p(m,n)x(m− 3, n− 1) = 0

for (m,n) ∈ Z
2
0,

where for (m,n) ∈ Z
2
0

p(m,n) :=















1

4
, mod(n, 2) = 0,

1

16
, otherwise.

Simple computations show us that for (m,n) ∈ Z3 × Z1

Γ1(m,n) =















16

27
, mod(n, 2) = 0,

64

27
, otherwise.

and

Γ2(m,n) ≡
1024

729
for (m,n) ∈ Z6 × Z2.

Hence, we have

liminf
m→∞
n→∞

Γ2(m,n) =
1024

729
≈ 1.4 > 1.

It follows from Theorem 2.1 (with r0 = 2) that every solution of (2.32) is oscillatory.

Also note that Theorem A cannot be applied to this equation since

liminf
m→∞
n→∞

Γ1(m,n) =
16

27
≈ 0.6 < 1.

The following graphics belong to the solution with the initial condition x ≡ 1 on

Ω(−3,−1) and of 50 iterates. Here, the points painted with dark color represent the

nonnegative terms while the points painted with light color represent the negative

ones.
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For the next corollary, we need to define

Pr(m,n) :=











1, r = 0,
m−1
∑

i=m−k

n−1
∑

j=n−l

Pr−1(i, j)p(i, j), r ∈ N

for (m,n) ∈ Zrk × Zrl and r ∈ N.

Corollary 2.1. Assume that for some r0 ∈ N, we have

(2.33) liminf
m→∞
n→∞

Pr0(m,n) > (δKL)r0 ,

where δ is defined by (2.27). Then (1.1) is oscillatory.

P r o o f. From (2.8) and (2.9) we have

Γ1(m,n) = inf
λ∈Λ1(m,n)

{

1

λ

( m−1
∏

i=m−k

n−1
∏

j=n−l

[1− λp(i, j)]

)−1/L}

> inf
λ∈Λ1(m,n)

{

1

λ

(

1

KL

m−1
∑

i=m−k

n−1
∑

j=n−l

[1− λp(i, j)]

)−K}

> inf
λ>0

{ 1

λ

(

1− λ

KL
P1(m,n)

)−K}

=
1

δKL
P1(m,n)
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for all (m,n) ∈ Zk×Zl. In the second line above, the well-known inequality between

the arithmetic and the geometric mean is used. Define

Λ′
r(m,n) := {λ > 0: 1− λPr−1(i, j)p(i, j)/(δKL)

(r0−1) > 0

for all (i, j) ∈ [m− k,m)× [n− l, n) ∩ Z
2}

for (m,n) ∈ Zrk × Zrl and r ∈ N. In the next step, we see that

Γ2(m,n) = inf
λ∈Λ2(m,n)

{

1

λ

( m−1
∏

i=m−k

n−1
∏

j=n−l

[1− λΓ1(i, j)p(i, j)]

)−1/L}

> inf
λ∈Λ′

2(m,n)

{

1

λ

( m−1
∏

i=m−k

n−1
∏

j=n−l

[

1− λ
1

δKL
P1(i, j)p(i, j)

]

)−1/L}

> inf
λ∈Λ′

2(m,n)

{

1

λ

(

1

KL

m−1
∑

i=m−k

n−1
∑

j=n−l

[

1− λ
1

δKL
P1(i, j)p(i, j)

]

)−K}

> inf
λ>0

{ 1

λ

(

1− λ

δ(KL)2
P2(m,n)

)−K}

=
1

(δKL)2
P2(m,n)

for all (m,n) ∈ Z2k × Z2l. Note that in the second line above, we employed the fact

that Λ2(m,n) ⊂ Λ′
2(m,n) for all (m,n) ∈ Z2k × Z2l. By induction, we obtain

(2.34) Γr0(m,n) >
1

(δKL)r0
Pr0(m,n)

for all (m,n) ∈ Zr0k × Zr0l. So (2.33) and (2.34) imply that (2.10) holds for r0 ∈ N,

and thus the claim follows from Theorem 2.1. �

The following example is an application of Corollary 2.6.

E x am p l e 2.2. Consider the delay partial difference equation for (m,n) ∈ Z
2
0

(2.35) x(m+ 1, n) + x(m,n+ 1)− x(m,n) + p(m,n)x(m− 2, n− 2) = 0,

where for (m,n) ∈ Z
2
0

p(m,n) :=















95

1024
, mod(n, 3) = 0,

3

16
, otherwise.

In this case, for (m,n) ∈ Z
2
4 we have

P1(m,n) =















3

4
, mod(n, 3) = 0,

287

512
, otherwise

and P2(m,n) =















861

2048
, mod(n, 3) = 0,

1431

4096
, otherwise
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which implies

liminf
m→∞
n→∞

P1(m,n) =
287

512
≈ 0.561 <

22

33
22 ≈ 0.593

and

liminf
m→∞
n→∞

P2(m,n) =
1431

4096
≈ 0.349 <

(22

33
22
)2

≈ 0.351 .

However, for (m,n) ∈ Z
2
6 we have

P3(m,n) =















4293

16384
, mod(n, 3) = 0,

219171

1048576
, otherwise,

which gives

liminf
m→∞
n→∞

P3(m,n) =
219171

1048576
≈ 0.209 >

(22

33
22
)3

≈ 0.208.

Applying Corollary 2.6 (with r0 = 3), we learn that every solution of (2.35) os-

cillates. The following graphics belong to the solution with the initial condition

x(m,n) = (−1)m+n for (m,n) ∈ Ω(−2,−2) and of 60 iterates. The points painted

with dark color represent the nonnegative terms while the points painted with light

color represent the negative ones.
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