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Abstract. A special case of a combinatorial theorem of De Bruijn and Erdős asserts
that every noncollinear set of n points in the plane determines at least n distinct lines.
Chen and Chvátal suggested a possible generalization of this assertion in metric spaces
with appropriately defined lines. We prove this generalization in all metric spaces where
each nonzero distance equals 1 or 2.
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It is well known that

(i) every noncollinear set of n points in the plane determines at least n distinct

lines.

As noted by Erdős [5], theorem (i) is a corollary of the Sylvester-Gallai theorem

(asserting that, for every noncollinear set S of finitely many points in the plane, some

line goes through precisely two points of S); it is also a special case of a combinatorial

theorem proved later by De Bruijn and Erdős [4].

Chen and Chvátal [2] suggested that theorem (i) might be generalized in the

framework of metric spaces. In a Euclidean space, line uv is characterized as

uv = {p : dist(p, u) + dist(u, v) = dist(p, v) or

dist(u, p) + dist(p, v) = dist(u, v) or dist(u, v) + dist(v, p) = dist(u, p)},

where dist is the Euclidean metric; in an arbitrary metric space (S, dist), the same

relation may be taken for the definition of the line. (Unlike in the case of Euclidean
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lines, x, y ∈ uv, x 6= y does not imply u, v ∈ xy; nevertheless, x ∈ uv, x 6= u still

implies v ∈ xu.) With this definition of lines in metric spaces, Chen and Chvátal

asked:

(ii) True or false? Every metric space on n points, where n > 2, either has at least

n distinct lines or else has a line that consists of all n points.

Let us say that a metric space on n points has the De Bruijn-Erdős property if it

either has at least n distinct lines or else has a line that consists of all n points: now

we may state (ii) by asking whether or not all metric spaces on at least 2 points have

the De Bruijn-Erdős property. A survey of results related to this question appears

in [1].

By a 1-2 metric space, we mean a metric space where each nonzero distance is 1

or 2. Chiniforooshan and Chvátal [3] proved that

(iii) every 1-2 metric space on n points has Ω(n4/3) distinct lines and this bound is

tight.

This result states that all sufficiently large 1-2 metric spaces have a property far

stronger than the De Bruijn-Erdős property, but it does not imply that all 1-2 metric

spaces on at least 2 points have the De Bruijn-Erdős property. The purpose of the

present note is to remove this blemish.

Theorem 1. All 1-2 metric spaces on at least 2 points have the De Bruijn-Erdős

property.

The rest of this note is devoted to a proof of Theorem 1. A key notion in the proof,

one borrowed from [3], is the notion of twins in a 1-2 metric space: these are points

u, v such that dist(u, v) = 2 and dist(u,w) = dist(v, w) for all points w distinct from

both u and v. Use of this notion in counting lines is pointed out in the following

claim (also borrowed from [3]), whose proof is straightforward.

Claim 1. If u1, u2, u3, u4 are four distinct points in a 1-2 metric space, then

⊲ if dist(u1, u2) 6= dist(u3, u4), then u1u2 6= u3u4,

⊲ if dist(u1, u2) = dist(u2, u3) = 2, then u1u2 6= u2u3,

⊲ if dist(u1, u2) = dist(u2, u3) = 1 and u1, u3 are not twins, then u1u2 6= u2u3.

By a critical 1-2 metric space, we shall mean a smallest counterexample to Theo-

rem 1; in a sequence of claims, we shall gradually prove the nonexistence of a critical

1-2 metric space. We shall say that a line in a metric space is universal if, and only

if, it consists of all points of the space.

Claim 2. For every pair u, v of twins in a critical 1-2 metric space, there is a third

point w in this space such that dist(u,w) = dist(v, w) = 2 and dist(x, y) = 1 when-

ever x ∈ {u, v, w}, y 6∈ {u, v, w}.
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P r o o f. Let S denote the space we are dealing with. Since S is critical, S does

not have the De Bruijn-Erdős property and S \ u has the De Bruijn-Erdős property.

We will derive the existence of w from these two facts.

The assumption that u, v are twins implies that

(a) if x, y are distinct points in S \ {u, v}, then the line xy in S contains either

both u, v or neither of u, v;

(b) if w ∈ S \ u and dist(w, v) = 1, then the line wv in S (and the line wu in S)

contains both u, v;

(c) if w ∈ S \ u and dist(w, v) = 2, then the line line wv in S contains v and not

u and the line wu in S contains u and not v.

Since S does not have the De Bruijn-Erdős property, we have uv 6= S; since u and

v are twins, it follows that

(d) there is a w in S \ u such that dist(w, v) = 2.

From (a), (b), (c), (d), we conclude that

(e) the number of lines in S exceeds the number of lines in S \ u.

Since S does not have the De Bruijn-Erdős property, the number of lines in S is

less than |S|, and so (e) implies that the number of lines in S \ u is less than |S \ u|;

since S \ u has the De Bruijn-Erdős property, it follows that

(f) S \ u has a universal line.

Since S does not have the De Bruijn-Erdős property,

(g) S has no universal line.

Facts (a), (f), and (g) together imply that some line wv in S \ u is universal. Now

(b) and (g) together imply that dist(w, v) = 2; since u, v are twins, it follows that

dist(u, v) = 2 and dist(w, u) = 2. Since wv is a universal line in S \ u, we have

dist(w, y) = dist(v, y) = 1 whenever y 6∈ {u, v, w}; since u, v are twins, it follows that

dist(u, y) = 1 whenever y 6∈ {u, v, w}. �

Claim 3. No critical 1-2 metric space contains a pair of twins.

P r o o f. Assume the contrary: some critical 1-2 metric space S contains a pair

of twins. We will show that S has at least |S| lines, contradicting the assumption

that S does not have the De Bruijn-Erdős property. For this purpose, consider

the largest set {T1, T2, . . . , Tk} of pairwise disjoint three-point subsets of S such

that dist(u, v) = 2 whenever u, v are distinct points in the same Ti and such that

dist(u, x) = 1 whenever u ∈ Ti, x 6∈ Ti for some i. Since S contains a pair of twins,

Claim 2 guarantees that k > 1; we will derive the existence of |S| lines in S from

this fact.

Let L1 denote the set of all lines uv such that u, v are distinct points in the same Ti.

If uv ∈ L1, then uv = S \ w, where {u, v, w} = Ti for some i; it follows that
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(a) L1 consists of the 3k sets S \ w with w ranging through
k⋃

i=1

Ti.

Next, choose a point r in T1 and let L2 denote the set of all lines rx such that

x ∈ S \
k⋃

i=1

Ti. Claim 2 and the maximality of k together guarantee that S contains

no pair x, y of twins such that x, y ∈ S \
k⋃

i=1

Ti. This fact and Claim 1 together imply

that

(b) |L2| = |S| − 3k.

Finally, note that each line in L2 includes all points of T1 and no points of T2.

This observation and (a) together imply that L1 ∩L2 = ∅, and so |L1 ∪L2| = |S| by

(a) and (b). �

Each 1-2 metric space can be thought of as a complete graph with each edge

uv labeled by dist(u, v). Given edges uv, xy of this complete graph, let us write

uv ≈ xy to mean that uv = xy. The following fact is a direct consequence of Claim 1

combined with Claim 3.

Claim 4. Each equivalence class of the equivalence relation ≈ in a critical 1-2

metric space is a set of pairwise disjoint edges with identical labels or else a (not

necessarily proper) subset of a cycle of length four with alternating labels.

Claim 5. The size of each equivalence class of the equivalence relation ≈ in a crit-

ical 1-2 metric space on n points is at most max{(n− 1)/2, 4}.

P r o o f. This is a direct corollary of Claim 4 combined with the observation that

an equivalence class of n/2 pairwise disjoint edges defines a universal line. �

Claim 6. Every critical 1-2 metric space has at most 7 points.

P r o o f. Consider an arbitrary critical 1-2 metric space and let n denote the

number of its points. Since this space does not have the De Bruijn-Erdős property,

it has fewer than n lines, and so its equivalence relation ≈ partitions the n(n− 1)/2

edges of its complete graph into at most n−1 classes. Since the largest of these classes

has size at least n/2, Claim 5 implies that n/2 6 max{(n− 1)/2, 4}, and so n 6 8.

If n = 8, then the 28 edges of the complete graph are partitioned into 7 equivalence

classes of size 4. Now Claim 4 and the absence of a universal line together imply

that each of these equivalence classes is a cycle of length four. But this is impossible,

since the edge set of the complete graph on eight vertices cannot be partitioned into

cycles: each vertex of this graph has an odd degree. �

Claim 7. No critical 1-2 metric space has 7 points.

P r o o f. Consider an arbitrary critical 1-2 metric space on 7 points. Since this

space does not have the De Bruijn-Erdős property, it has fewer than 7 lines, and so

its equivalence relation ≈ partitions the 21 edges of its complete graph into at most

48



6 classes. By Claim 5, each of these classes has size at most 4, and so at least three

of them have size precisely 4; by Claim 4, each of these three classes is a cycle of

length four. Let G1, G2, G3 denote these three subgraphs of the complete graph on

seven vertices.

Since G1, G2, G3 are pairwise edge-disjoint, every two of them share at most two

vertices; since their union has only seven vertices, some two of them share at least

two vertices; we may assume (after a permutation of subscripts if necessary) that G1

and G2 share precisely two vertices. Let us name these two vertices u, v. Since G1

and G2 are edge-disjoint, we may assume (after a switch of subscripts if necessary)

that vertices u, v are adjacent in G1 and nonadjacent in G2.

Next, we may name w, x the remaining two vertices in G1 in such a way that the

four edges of G1 are uv, vw,wx, ux; we may name y, z the remaining two vertices in

G2 in such a way that the four edges of G2 are uy, uz, vz, vy. Since the labels on

the edges of G2 alternate, we may assume (after switching y and z if necessary) that

dist(u, y) = 1, dist(u, z) = 2, dist(v, z) = 1, dist(v, y) = 2. Since uy = vy, we have

u ∈ vy; since dist(v, y) = 2, it follows that dist(u, v) = 1. In turn, since the labels

on the edges of G1 alternate, we have dist(v, w) = 2, dist(w, x) = 1, dist(u, x) = 2.

Now dist(y, u) + dist(u, v) = dist(y, v), and so y ∈ uv; since uv ≈ vw, it follows

that y ∈ vw. But this is impossible, since dist(v, w) = 2 and dist(v, y) = 2. �

Claim 8. Every critical 1-2 metric space on 5 or 6 points contains pairwise distinct

points u, v, w, x, y such that

dist(u,w) = dist(u, x) = dist(v, w) = dist(v, x) = 1,

dist(u, v) = dist(w, x) = 2,

dist(u, y) 6= dist(v, y), dist(w, y) 6= dist(x, y).

P r o o f. Consider an arbitrary critical 1-2 metric space on n points such that

n = 5 or n = 6. Since this space does not have the De Bruijn-Erdős property, it has

fewer than n lines, and so its equivalence relation ≈ partitions the n(n− 1)/2 edges

of its complete graph into at most n − 1 classes. Since the largest of these classes

has size at least 3, Claim 4 and the absence of a universal line together imply that

there are points u, v, w, x such that

dist(u, v) = 2, dist(v, w) = 1, dist(w, x) = 2 and uv = vw = wx

or else

dist(v, w) = 1, dist(w, x) = 2, dist(u, x) = 1 and vw = wx = ux.
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In both cases, the equality of the three lines implies that

dist(u,w) = dist(u, x) = dist(v, w) = dist(v, x) = 1,

dist(u, v) = dist(w, x) = 2.

Since w, x are not twins, there is a point y distinct from both of them and such

that dist(w, y) 6= dist(x, y); we will complete the proof by showing that dist(u, y) 6=

dist(v, y).

To do this, assume the contrary: dist(u, y) = dist(v, y). Since y 6∈ wx and vw =

wx, we have y 6∈ vw, and so dist(v, y) = dist(w, y). Now dist(u, y) 6= dist(x, y), and

so y ∈ ux; since y 6∈ wx, we cannot have vw = wx = ux, and so we must have

uv = vw = wx. In particular, y 6∈ uv; since dist(u, y) = dist(v, y), we conclude that

dist(u, y) = dist(v, y) = dist(w, y) = 2, dist(x, y) = 1.

Since u, v are not twins, there is a point z distinct from both of them and such

that dist(u, z) 6= dist(v, z); it follows that dist(x, z) is distinct from one of dist(u, z),

dist(v, z), and so z belongs to one of the lines ux, vx. But then this line is universal,

a contradiction. �

Claim 9. No critical 1-2 metric space has 5 or 6 points.

P r o o f. Consider an arbitrary critical 1-2 metric space on n points such that

n = 5 or n = 6 and let u, v, w, x, y be as in Claim 8. We may assume (after a cyclic

shift of u,w, v, x if necessary) that

dist(u,w) = dist(u, x) = dist(v, w) = dist(v, x) = 1,

dist(u, v) = dist(w, x) = 2,

dist(u, y) = dist(w, y) = 1, dist(v, y) = dist(x, y) = 2.

Since

ux ⊇ {u, v, w, x, y} and vw ⊇ {u, v, w, x, y},

absence of a universal line implies that n = 6 and that the sixth point of our space

lies outside the lines ux and vw. Let z denote this sixth point. Since z 6∈ ux, z 6∈ vw,

we have dist(u, z) = dist(x, z), dist(v, z) = dist(w, z), and so symmetry allows us to

distinguish three cases:

⊲ dist(u, z) = dist(x, z) = 1, dist(v, z) = dist(w, z) = 1,

⊲ dist(u, z) = dist(x, z) = 1, dist(v, z) = dist(w, z) = 2,

⊲ dist(u, z) = dist(x, z) = 2, dist(v, z) = dist(w, z) = 2.

Each of these three cases comprises two metric spaces, one with dist(y, z) = 1 and

the other with dist(y, z) = 2. Altogether, there are six metric spaces on six points

to inspect; each of them has at least six lines. �

50



Claim 10. Every metric space on 2, 3, or 4 points has the De Bruijn-Erdős property.

P r o o f. Consider an arbitrary critical 1-2 metric space on n points with 2 6

n 6 4. If each of its lines has precisely 2 points or if one of its lines has precisely n

points, then this space has the De Bruijn-Erdős property; otherwise one of its lines

has precisely 3 points and n = 4. Let T denote the 3-point line and let w denote the

fourth point of the space. If there are distinct x, y in T such that wx = wy, then

xy is a universal line; else the three lines wx with x ranging through T are pairwise

distinct 2-point lines. �

Acknowledgement. I am grateful to the anonymous referee for thoughtfully

pointing out several places where my presentation could be, and subsequently was,

improved.

References

[1] P.Aboulker, A.Bondy, X. Chen, E.Chiniforooshan, P.Miao: Number of lines in hyper-
graphs. Discrete Appl. Math. 171 (2014), 137–140.

[2] X.Chen, V.Chvátal: Problems related to a De Bruijn-Erdős theorem. Discrete Appl.
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