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ON GEOMETRIC CONVERGENCE OF DISCRETE GROUPS
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Abstract. One of the basic questions in the Kleinian group theory is to understand both
algebraic and geometric limiting behavior of sequences of discrete subgroups. In this paper
we consider the geometric convergence in the setting of the isometric group of the real or
complex hyperbolic space. It is known that if Γ is a non-elementary finitely generated group
and ̺i : Γ→ SO(n, 1) a sequence of discrete and faithful representations, then the geometric
limit of ̺i(Γ) is a discrete subgroup of SO(n, 1). We generalize this result by showing that
for a sequence of discrete and non-elementary subgroups {Gj} of SO(n, 1) or PU(n, 1),
if {Gj} has uniformly bounded torsion, then its geometric limit is either elementary, or
discrete and non-elementary.
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1. Introduction

In this paper, we consider the group G of isometries of the real or complex hy-

perbolic space Hn. One of the basic questions is to understand limiting behavior of

sequences of discrete subgroups of G. Given such a sequence of discrete groups Γi, it

is known that the analysis of this sequence has both algebraic and geometric aspects.

More precisely, one says Γi = 〈g1i , g2i , . . .〉 converges algebraically to Γ if lim gki
= gk

exists for all k and Γ = 〈g1, g2, . . .〉. On the other hand, Γi converges geometrically

to H if the following two conditions hold:

(a) for every h ∈ H , h = lim hi, hi ∈ Γi;

(b) if hij ∈ Γij are such that limhij = h exists, then h ∈ H .

For either algebraically or geometrically convergent sequence of discrete groups,

the best one can hope is to show that its limit is also discrete. There are many
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discussions in this direction (cf. [1], [4], [6], [7]). For example, if a sequence of finitely

generated, discrete and non-elementary subgroups Γi has uniformly bounded torsion

(i.e., there is a universal upper bound on the orders of all elements in {Γi} of finite

order), then the algebraic limit Γ of Γi is also discrete and non-elementary. This

was proved by Martin for the SO(n, 1) case in [7], and for the isometric group of

negatively pinched Hadamard manifolds in [6]. In addition, Martin [7] constructed

a counter-example to show the limit group Γ may not be discrete if {Γi} does not

have uniformly bounded torsion for G = SO(n, 1) when n > 4.

The geometric convergence for G = PSL(2, C) was first studied by Jørgensen and

Marden in [3], where they proved that if discrete groups Γi converge geometrically

to H , then H is either a Kleinian group, or is elementary. For the higher dimensional

case, the following is known (cf. [5], Proposition 8.9):

Theorem 1.1. Let Γ be a non-elementary finitely generated group and ̺i : Γ →

SO(n, 1) a sequence of discrete and faithful representations that converges to ̺∞ :

Γ → SO(n, 1). Assume that limgeo
j→∞ ̺i(Γ) = H . Then H is a discrete subgroup of

SO(n, 1).

Here a discrete and faithful representation ̺ : Γ → SO(n, 1)means ̺ is a monomor-

phism and the image ̺(Γ) is a discrete group. Hence the sequence ̺i(Γ) has uniformly

bounded torsion since Γ is finitely generated.

The purpose of this paper is to generalize Theorem 1.1 to the case when Γ is not

finitely generated. More precisely, we will prove

Theorem 1.2. Let Γj be a sequence of discrete non-elementary subgroups in

G = Isom(Hn) which has uniformly bounded torsion. Assume that limgeo
j→∞(Γj) =

H , then H is either discrete and non-elementary, or it is elementary.

Corollary 1.3. Let Γ be a non-elementary group and ̺i : Γ → G a sequence of

discrete and faithful representations with uniformly bounded torsion that converges

to ̺∞ : Γ → G. Assume that limgeo
j→∞ ̺i(Γ) = H , thenH is a discrete non-elementary

subgroup of G.

Remark 1.4. In the proof of Theorem 1.2, we essentially use another equivalent

characterization of geometric convergence of closed groups in G, that is, Γj converges

geometrically to H if and only if for every compact subgroup K ⊂ G, the sequence

Γj ∩K converges to H ∩K in the Hausdorff topology (cf. [2], Fact 8.3).

Remark 1.5. Note that Martin’s example in [7] shows that the “uniformly

bounded torsion” condition in our Theorem 1.2 is necessary, too.
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2. Main results

The following is the classification of nontrivial elements in G:

(i) f is elliptic if it has a fixed point in Hn;

(ii) f is parabolic if it has exactly one fixed point in ∂Hn;

(iii) f is loxodromic if it has exactly two fixed points in ∂Hn.

Among the three types only loxodromic elements have the property that if fi is

a sequence converging to a loxodromic element, then fi is loxodromic for sufficiently

large i (cf. [8], Lemma 2C). Thus we have

Lemma 2.1. The set of all loxodromic elements is open in G.

We also need the following lemma, which can be found as Corollary 4.5.1 in [3].

Lemma 2.2. Let Γ be a closed subgroup of G, then one of the following is true:

(i) Γ is discrete;

(ii) the elements of Γ have a common fixed point, or Γ leaves invariant a proper

hyperbolic space;

(iii) Γ = G.

Denote by L(Γ) the limit set of Γ and LΓ(I) the set {f ∈ Γ; f(x) = x, ∀x ∈ L(Γ)}.

Note that each nontrivial element in LΓ(I) is elliptic if Γ is non-elementary. Now we

can prove

Lemma 2.3. A non-elementary subgroup Γ of G is discrete if and only if the

following two conditions are satisfied:

(i) LΓ(I) is finite;

(ii) each non-elementary subgroup of Γ generated by two loxodromic elements is

discrete.

P r o o f. The necessary part is obvious since LΓ(I) is a compact group.

Conversely, suppose that LΓ(I) is finite and each non-elementary subgroup of Γ

generated by two loxodromic elements is discrete.

Since Γ is non-elementary, there exists a minimal totally geodesic submanifold

M containing L(Γ) whose dimension dim(M) = k is at least two. Obviously, M

is Γ-invariant. Denote by Γ|M and f |M the restriction to M of Γ and f ∈ Γ,

respectively. It is easy to see f |M is loxodromic if and only if f is loxodromic.

We claim that Γ|M is discrete; otherwise, there exists a sequence {fi|M} of distinct

loxodromic elements converging to the identity by Lemmas 2.1 and 2.2. Since the

fixed point set {ai, bi} of the loxodromic element {fi|M} lies in a compact set, we
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may assume that ai → a and bi → b. Notice that since Γ is non-elementary, one

can select a loxodromic element f ∈ Γ whose fixed point set is disjoint from {a, b}

and thus disjoint from {ai, bi} for large i. Therefore, 〈f, fi〉 is non-elementary and

thus discrete by the assumption. Now we want to show that 〈f |M , fi|M 〉 is also

discrete. Suppose not, then there is a sequence {gj|M} in 〈f |M , fi|M 〉 converging

to the identity. Note that gj is in a discrete convergence group 〈f, fi〉; see [8] for

the definition of convergence groups. Thus there exist two points a, b ∈ ∂Hn and

a subsequence gjk such that

gjk |H̄n\{b} → a

uniformly on compact subsets of H̄n \ {b}. This contradicts that gj |M → id.

On the other hand, 〈f |M , fi|M 〉 is also non-elementary because 〈f, fi〉 is non-

elementary. However, by Jørgensen’s inequality 〈f |M , fi|M 〉 cannot be both discrete

and non-elementary since fi|M converges to the identity. This completes the proof

that Γ|M is discrete.

Finally, suppose that Γ is not discrete, that is, there are distinct gi ∈ Γ such that

gi → id as i → ∞. Obviously, gi|M also converges to the identity map. Since Γ|M

is discrete, gi|M = id for any large i. This contradicts the assumption that LΓ(I) is

finite. �

Theorem 2.4. Let Γj be a sequence of discrete non-elementary subgroups in G

which has uniformly bounded torsion. Assume that limgeo
j→∞(Γj) = H , then H is

either discrete and non-elementary, or it is elementary.

P r o o f. Assume that H is non-elementary.

First we will show that LH(I) is finite. Otherwise, LH(I) is non-discrete since it

is compact.

Let ε > 0 be arbitrary and U the closed neighborhood of LH(I) with radius 3ε.

It is obvious that U is also compact.

Since LH(I) is not discrete, there is a nontrivial g ∈ LH(I) with ‖g− id‖ < ε. We

want to show there is a sequence of distinct elements gj ∈ Γj converging to g which

eventually have finite order. Suppose not for the contradiction. We may assume that

gj → g such that each gj is loxodromic or parabolic (because Γj is discrete), and

‖gj − g‖ < ε for each g.

Fix such a gj . Obviously it is in the compact set U . Then there exists a minimal

positive integer k such that

gk−1
j ∈ U while gkj /∈ U.

This easily implies that

gk−1
j ∈ Γj ∩ U and gk−1 ∈ H ∩ U.
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Note that Γj converges geometrically to H . Therefore, for any compact subgroup

K ⊂ G and for any ε > 0, there exists an integer N , such that Γj ∩ K lies in the

ε-neighborhood of H ∩K, and H ∩K lies in the ε-neighborhood of Γj ∩K for j > N .

Hence for any large j, the Hausdorff distance between Γj and H on the above U is

less than ε. This implies that ‖gk−1
j − gk−1‖ < ε. Then we have

‖gkj − gk−1‖ 6 ‖gkj − gk−1
j ‖+ ‖gk−1

j − gk−1‖

= ‖gj − id‖+ ‖gk−1
j − gk−1‖

6 ‖gj − g‖+ ‖g − id‖+ ‖gk−1
j − gk−1‖

< 3ε.

This together with gk−1 ∈ LH(I) implies that gkj ∈ U , which is a contradiction.

As Γj has uniformly bounded torsion, say N , we see that gN !
j = id and then

gN ! = id. By letting ε → 0, we get a sequence of nontrivial elements in LH(I)

converging to the identity whose orders are less than N !. This is impossible because

if {hi} is a sequence of nontrivial elements converging to the identity, then the orders

of {hi} converge to infinity.

Finally, let 〈f, g〉 be a non-elementary subgroup of H where both f and g are

loxodromic, then f and g have disjoint fixed point sets. Since H is the geometric

limit of Γj , there are fj and gj in Γj which converge to f and g, respectively. By

Lemma 2.1 we see that both fj and gj are loxodromic for large j, which means that

the fixed points of fj and gj converge to those of f and g, respectively. Hence fj and

gj also have disjoint fixed point sets, namely, 〈fj , gj〉 is non-elementary. Notice that

the discrete groups 〈fj , gj〉 converge algebraically to 〈f, g〉. Then 〈f, g〉 is discrete

by [6], Theorem 4.2. Hence H is discrete by Lemma 2.3. �

Corollary 2.5. Let Γ be a non-elementary group and ̺i : Γ → G a sequence of

discrete and faithful representations with uniformly bounded torsion that converges

to ̺∞ : Γ → G. Assume that limgeo
j→∞ ̺i(Γ) = H , thenH is a discrete non-elementary

subgroup of G.

P r o o f. Since Γ is non-elementary, there is a Schottky subgroup 〈f, g〉 in Γ. Note

that a discrete subgroup of G is elementary if and only if it contains no free non-

abelian subgroups. Then 〈̺i(f), ̺i(g)〉 is discrete and non-elementary for each i

because ̺i is a discrete and faithful representation. From [6], Theorem 4.7, it follows

that 〈̺∞(f), ̺∞(g)〉, the algebraic limit of 〈̺i(f), ̺i(g)〉, is non-elementary. Recall

that the algebraic limit ̺∞(Γ) is a subgroup of the corresponding geometric limit H .

Hence H is also non-elementary and then discrete by Theorem 2.4. �

309



Acknowledgement. The authors would like to express much gratitude to the

referee for pointing out an error in the original proof of Theorem 2.4, as well as for

a careful reading of the manuscript and many useful suggestions.

References

[1] W.Abikoff, A.Haas: Nondiscrete groups of hyperbolic motions. Bull. Lond. Math. Soc.
22 (1990), 233–238.

[2] I. Belegradek: Intersections in hyperbolic manifolds. Geom. Topol. 2 (1998), 117–144.
[3] S. S. Chen, L.Greenberg: Hyperbolic spaces. Contributions to Analysis, Collection of
Papers Dedicated to Lipman Bers (L.V.Ahlfors et al., eds.). Academic Press, New
York, 1974, pp. 49–87.

[4] T. Jørgensen, A.Marden: Algebraic and geometric convergence of Kleinian groups.
Math. Scand. 66 (1990), 47–72.

[5] M.Kapovich: Hyperbolic Manifolds and Discrete Groups. Reprint of the 2001 edition.
Modern Birkhäuser Classics, Birkhäuser, Boston, 2009.

[6] G. J.Martin: On discrete isometry groups of negative curvature. Pac. J. Math. 160
(1993), 109–127.

[7] G. J.Martin: On discrete Möbius groups in all dimensions: A generalization of Jørgen-
sen’s inequality. Acta Math. 163 (1989), 253–289.

[8] P.Tukia: Convergence groups and Gromov’s metric hyperbolic spaces. N. Z. J. Math.
(electronic only) 23 (1994), 157–187.

Author’s address: S h i h a i Ya n g, Department of Applied Mathematics, Shanghai Uni-
versity of Finance and Economics, 777 Guoding Road, 200 433 Shanghai, P.R. China, e-mail:
yang.shihai@mail.shufe.edu.cn.

310


		webmaster@dml.cz
	2020-07-03T21:02:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




