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ON ITERATION DIGRAPH AND ZERO-DIVISOR GRAPH

OF THE RING Zn

Tengxia Ju, Meiyun Wu, Nantong

(Received February 4, 2013)

Abstract. In the first part, we assign to each positive integer n a digraph Γ(n, 5), whose
set of vertices consists of elements of the ring Zn = {0, 1, . . . , n − 1} with the addition
and the multiplication operations modulo n, and for which there is a directed edge from a

to b if and only if a5 ≡ b (mod n). Associated with Γ(n, 5) are two disjoint subdigraphs:
Γ1(n, 5) and Γ2(n, 5) whose union is Γ(n, 5). The vertices of Γ1(n, 5) are coprime to n, and
the vertices of Γ2(n, 5) are not coprime to n. In this part, we study the structure of Γ(n, 5)
in detail.
In the second part, we investigate the zero-divisor graph G(Zn) of the ring Zn. Its vertex-

and edge-connectivity are discussed.
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1. Introduction

In this paper we consider the properties of iteration graphs associated with the

map x → x5 over the ring Zn, extending the results given in the work [7] which

provided an interesting connection between number theory, graph theory and group

theory.

We recall that a directed graph is a finite set of vertices together with directed

edges. The iteration digraph of a map f : S → S on a finite set S is a directed

graph, whose vertices are elements of S and whose directed edges connect each x ∈ S

with its image f(x) ∈ S. The iteration graphs of the function f(x) = xk on the rings

S = Zn have interesting connections to number theory and have been extensively

discussed (see [8]–[12]). These digraphs reflect the properties of Zn and f. For each

positive integer n, we denote such an iteration graph on the ring Zn by Γ(n, k).

The research has been supported by the NSFC Grant 11271208.
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A component of the iteration digraph is a subdigraph which is a maximal con-

nected subgraph of the associated nondirected graph. The indegree of a vertex a of

Γ(n, k), denoted by indegn(a), is the number of directed edges coming into a, and

the outdegree of a is the number of directed edges leaving the vertex a. For sim-

plicity, the subscript n will be omitted from now on. By the definition of f, the

outdegree of each vertex of Γ(n, k) is always equal to 1. It is well known that each

component has exactly one cycle, i.e., the number of components of Γ(n, k) is equal

to the number of its cycles, since each vertex of the component has outdegree 1 and

the component has only a finite number of vertices. Let us call a cycle of length 1

a fixed point, a cycle of length t a t-cycle, and a fixed point a an isolated fixed point if

indeg(a) = outdeg(a) = 1. The cycles can be isolated or not isolated (see Figure 1).

0 1

3 4 5 9

10

2 6 7 8

Figure 1. The digraph of Γ(11, 5).

A digraph is regular if the indegree of each vertex is equal to 1. Every component

of such a regular digraph is a cycle. A digraph is semiregular if there exists a positive

integer d such that each vertex has either indegree d or 0. A digraph is an m-ary

directed tree with root r if indeg(r) = m, every vertex adjacent to the root also

has indegree m (has exactly m neighbours), similarly every vertex from all these m

neighbours also has the indegree m and so on.

In this article, we study the iteration graph Γ(n, 5) for an arbitrary positive inte-

ger n.We can specify two subdigraphs of Γ(n, 5). Denote by Γ1(n, 5) the subdigraph

whose vertices are coprime to n and by Γ2(n, 5) the subdigraph whose vertices are

not coprime with n. It is easy to see that Γ1(n, 5) and Γ2(n, 5) are disjoint and

Γ(n, 5) = Γ1(n, 5) ∪ Γ2(n, 5). It is clear that the vertices of Γ1(n, 5) form a group of

order ϕ(n) with respect to multiplication modulo n, where ϕ(n) is the Euler function.

We will need the following definition and results.

Definition 1.1 ([4]). Let n be a positive integer. The Carmichael λ-function

λ(n) is defined as follows:

λ(1) = 1 = ϕ(1), λ(2) = 1 = ϕ(2), λ(4) = 2 = ϕ(4),

λ(2k) = 2k−2 =
1

2
ϕ(2k) for k > 3,

λ(pk) = (p− 1)pk−1 = ϕ(pk) for any odd prime p and k > 1,
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λ(pk1

1 pk2

2 . . . pks

s ) = [λ(pk1

1 ), λ(pk2

2 ), . . . , λ(pks

s )], where p1, p2, . . . , ps are distinct

primes for ki > 1, i ∈ {1, . . . , s}, and [a1, . . . , as] stands for the least common

multiple of the numbers a1, . . . , as.

From this definition, it follows that λ(n) | ϕ(n) for all n and that λ(n) = ϕ(n) if

and only if n ∈ {1, 2, 4, qk, 2qk} where q is an odd prime and k > 1.

The following theorem generalizes the well-known Euler’s theorem which says that

aϕ(n) ≡ 1 (mod n) if and only if (a, n) = 1. It shows that λ(n) is the least possible

order modulo n.

Theorem 1.1 (Carmichael’s theorem, see [4] and [6]). Let a, n ∈ N. Then

aλ(n) ≡ 1 (mod n) if and only if (a, n) = 1. Moreover, there exists an integer g

such that ordng = λ(n), where ordng denotes the multiplicative order of g mod-

ulo n.

Theorem 1.2 ([10], [12]). Let n =
r
∏

i=1

pαi

i , where p1 < p2 < . . . < pr are primes

and αi > 1, and let a be a vertex of positive indegree in Γ1(n, k). Then

(1.1) indeg(a) = ε

r
∏

i=1

(λ(pαi

i ), k),

where ε = 2 if 2 | k and 8 | n, and ε = 1 otherwise.

Theorem 1.3 ([10]). Let n =
r
∏

i=1

pαi

i , where p1 < p2 < . . . < pr are primes and

αi > 1, and let a be a vertex of positive indegree in Γ2(n, k). Suppose a = Q
r
∏

i=1

pβi

i ,

where (Q,n) = 1, βi > 0 for 1 6 i 6 r, and βi > 1 for at least one value of i. Then

for 1 6 i 6 r, either βi > αi or both βi < αi and βi = kti for some nonnegative

integer ti. Moreover,

(1.2) indeg(a) =

r
∏

i=1

AiBi,

where

(1.3) Ai =

{

p
αi−⌈αi/k⌉
i , if βi > αi,

p
(k−1)ti
i , if 0 6 βi < αi,

the symbol ⌈a⌉ means the smallest natural number greater than or equal to a, and

Bi = εi(λ(p
αi−min(αi−βi)
i ), k),

where εi = 2 if pi = 2, 2 | k and αi − βi > 3, otherwise, εi = 1.
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2. Structure of the digraph Γ(n, 5) of congruence x5 ≡ y (mod n)

The following results are generalizations of work [7] by Skowronek-Kaziów.

Proposition 2.1. Let k, l ∈ {1, . . . , n− 1}. Then

(1) the number k is mapped into 0 (or into n/2 for an even n) if and only if n− k

is mapped into 0 (or into n/2 for an even n);

(2) the number k is mapped into l if and only if n− k is mapped into n− l;

(3) the number k is an isolated fixed point if and only if n− k is an isolated fixed

point;

(4) the number k is a part of a t-cycle if and only if n − k is an element of some

t-cycle. Moreover, the isolation of one of these t-cycles implies the isolation of

the other.

Lemma 2.2. The numbers 0, 1 and n − 1 are fixed points of Γ(n, 5). Moreover,

0 is an isolated fixed point of Γ(n, 5) if and only if n is square-free.

P r o o f. It is clear that

05 ≡ 0 (mod n), 15 ≡ 1 (mod n), (n− 1)5 ≡ n− 1 (mod n).

Now, if n is not square-free then p2 | n for some prime p and

(n

p

)5

= n · n ·
n

p
·
n

p2
·
n

p2
≡ 0 (mod n).

Hence, n/p is mapped into 0 and 0 is not an isolated fixed point. Conversely, if n is

square-free, then there does not exist k, 2 6 k 6 n − 2, such that n | k5, thus 0 is

isolated. �

Lemma 2.3. (1) The number of quintic roots (if they exist) of any quintic residue

in Γ1(n, 5) is equal to the number of quintic roots of 1 modulo n, i.e., each vertex

of digraph Γ1(n, 5) has the same positive indegree d or 0.

(2) Let ω0(n) be the number of distinct primes dividing n which are congruent to

1 modulo 5. Then the number of quintic roots of 1 modulo n is 5ω(n), where

(2.1) ω(n) =

{

ω0(n) + 1, 52 | n,

ω0(n), 52 ∤ n.

P r o o f. We can prove it directly by the formula for the indegree (see Theo-

rem 1.2), but, here, we prove it by the methods of number theory. The proof of (1)
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is obvious. Assume n = pα1

1 . . . pαr

r , where p1 < p2 < . . . pr are primes and αi > 1.

Since

(2.2) x5 ≡ 1 (mod n) ⇔















x5 ≡ 1 (mod pα1

1 ),

...

x5 ≡ 1 (mod pαr

r ),

we only need to consider the number of solutions of x5 ≡ 1 (mod pα). The trivial

solution of this congruence is 1. Suppose 1 6= a is a nontrivial solution of x5 ≡ 1

(mod n); we note that

a5 ≡ 1 (mod pα) ⇒ a5 ≡ 1 (mod p),

thus (a, p) = 1 and ordpa = 5. We note that Z∗
p is a cyclic group of order p− 1, thus

5 | (p− 1). Hence there exists a nontrivial solution of x5 ≡ 1 (mod p) if and only if

p ≡ 1 (mod 5).

If p ≡ 1 (mod 5), then there exist five solutions of x5 ≡ 1 (mod p), and also for

x5 ≡ 1 (mod pα), where α > 1. If p = 5, then there exists exactly one solution x = 1

of x5 ≡ 1 (mod 5), but the number of solutions of x5 ≡ 1 (mod 5α) is 5, provided

α > 1. As for other primes p, there exists exactly one solution x = 1 of x5 ≡ 1

(mod pα), provided α > 1. The result now follows, since the function

̺f (n) = |{0 6 m 6 n− 1: f(m) ≡ 0 (mod n)}|

is multiplicative (see [5]). �

Corollary 2.4. The digraph Γ1(n, 5) is always semiregular, and every vertex of

Γ1(n, 5) has indegree either 5
ω(n) or 0. Moreover, the digraph Γ1(n, 5) is regular

(each vertex of Γ1(n, 5) has indegree 1, i.e., each component of Γ1(n, 5) is a cycle) if

and only if 5 ∤ ϕ(n).

P r o o f. If 5 ∤ ϕ(n), then (5, ϕ(n)) = 1, thus there exist two integers s, t such

that 5s+ ϕ(n)t = 1. We therefore have

a = a1 = a5s+ϕ(n)t = a5saϕ(n)t ≡ (as)5 (mod n),

which means that there exists a solution of x5 ≡ a (mod n). Then by Lemma 2.3(2)

or Theorem 1.2, the number of solutions of x5 ≡ a (mod n) is exactly one, i.e., for

each vertex a ∈ Γ1(n, 5), indeg(a) = 1, hence Γ1(n) is regular.

If 5 | ϕ(n), then 52 | n or there exists a prime p ≡ 1 (mod 5) such that p | n, thus

by Lemma 2.3 it follows that indeg(a) = 0, or 5ω(n)(> 1), i.e., Γ1(n, 5) is semiregular,

but not regular. �
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Lemma 2.5. Every component of the digraph Γ(n, 5) is a cycle if and only if

5 ∤ ϕ(n) and n is square-free.

P r o o f. If every component of the digraph Γ(n, 5) is a cycle, then Γ(n, 5) is

regular. It is obvious that Γ1(n, 5) is regular and indeg(0) = 1. Then by Lemma 2.2

and Corollary 2.4, 5 ∤ ϕ(n) and n is square-free.

Conversely, assume n is square-free and 5 ∤ ϕ(n). By Corollary 2.4, Γ1(n, 5) is

regular. We only need to verify that the digraph of Γ2(n, 5) is regular.

Let a 6= 0 be an arbitrary vertex of Γ2(n, 5). Then d = (a, n) > 1 and n = d · n/d.

Next, suppose p | n, thus p | d or p | n/d.

If p | d for some prime p > 2, then the solution b of the congruence b5 ≡ a (mod n)

satisfies b ≡ 0 (mod p) for all primes p | d. Hence, b5 ≡ a ≡ 0 (mod p) for each prime

p dividing d. The solution b is unique by Lemma 2.2.

If p ∤ d, then p | (n/d), and p ∤ a. Since 5 ∤ ϕ(n), 5 ∤ ϕ(p) = p − 1, it follows that

there exists x such that 5x ≡ 1 (mod p− 1). Set b ≡ ax (mod p), then b5 ≡ a5x ≡ a

(mod p) by Fermat’s little theorem. If there exists another c such that c5 ≡ a

(mod p), then (bc−1)5 ≡ 1 (mod p), i.e., order p(bc
−1) = 1 or 5. Since Zp\ {0} is

a cyclic group of order p − 1 and 5 ∤ p − 1, it follows that bc−1 ≡ 1 (mod p), i.e.,

b ≡ c (mod p) and the solution b is unique.

Hence, by the Chinese remainder theorem, the solution of x5 ≡ a (mod n) is

unique, i.e., indeg(a) = 1 for each vertex a ∈ Γ2(n, 5), thus Γ2(n, 5) is regular. �

We give a formula for the number of fixed points of the digraph Γ(n, 5).

Theorem 2.6. Let n = 2mpα1

1 pα2

2 . . . pαs

s be the prime power factorization of n,

where p1 < p2 < . . . < ps are distinct, odd primes, αi > 1,m > 0 and s > 0. Denote

by ω(n) the number of distinct odd prime divisors pi of n satisfying pi ≡ 1 (mod 4).

Then the number L(n) of fixed points of Γ(n, 5) is equal to

(2.3) L(n) =



































3s−ω(n) · 5ω(n) if m = 0,

2 · 3s−ω(n) · 5ω(n) if m = 1,

3 · 3s−ω(n) · 5ω(n) if m = 2,

5 · 3s−ω(n) · 5ω(n) if m = 3,

9 · 3s−ω(n) · 5ω(n) if m > 4.

P r o o f. It is clear that a is a fixed point of Γ(n, 5) if and only if a is the zero of

the polynomial f(x) ≡ x5 − x (mod n). We denote

̺f (n) = |{0 6 m 6 n− 1: f(m) ≡ 0 (mod n)}|,
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i.e., ̺f (n) is the number of solutions of f(x) ≡ 0 (mod n). It is easy to see that

̺f (2) = 2, ̺f (2
2) = 3, and ̺f (2

3) = 5. If m > 4, then ̺f (2
m) = 9. In fact,

for n = 2m, m > 3, x5 ≡ x (mod 2m) is equivalent to x5 − x = x(x4 − 1) ≡ 0

(mod 2m), the trivial solution being x = 0. Next we consider the nontrivial solution

0 < x < 2m − 1. The parities of x and x4 − 1 are opposite. Then either 2m | x

or 2m | (x4 − 1). But 0 < x < 2m − 1, 2m ∤ x, and the solution x must satisfy

2m | (x4 − 1), which means that x4 ≡ 1 (mod 2m). Suppose y = x2 while y2 ≡ 1

(mod 2m) has four solutions {1, 2m−1−1, 2m−1+1, 2m−1}.We only need to consider

the solutions of

x2 ≡ 1 (mod 2m); x2 ≡ 2m−1 − 1 (mod 2m);

x2 ≡ 2m−1 + 1 (mod 2m); x2 ≡ 2m − 1 (mod 2m),

respectively.

When m > 3, neither x2 ≡ 2m−1 − 1 (mod 2m) nor x2 ≡ 2m − 1 (mod 2m) has

a solution. As for the other two congruences, x2 ≡ 1 (mod 2m) (m > 3) has four

solutions and x2 ≡ 2m−1+1 (mod 2m) (m > 4) has four solutions by number theory.

Hence, ̺f (2
m) = 9, where m > 4. Then

(2.4) ̺f (2
m) =























2 if m = 1,

3 if m = 2,

5 if m = 3,

9 if m > 4.

Now set n = pα, where p > 3 is an odd prime and α > 1.We note that x5 −x ≡ 0

(mod pα) ⇒ x5 − x ≡ 0 (mod p), i.e., p | x(x2 − 1)(x2 + 1). Suppose x is a solution

of x5 − x ≡ 0 (mod pα). We can investigate it in the following three cases. If p | x,

then (p, x2−1) = (p, x2+1) = 1, thus x ≡ 0 (mod pα). If p | (x2−1), then (p, x) = 1

and (p, x2 + 1) = 1, which means that in this case, x5 ≡ x (mod pα) ⇒ x2 − 1 ≡ 0

(mod pα), the latter congruence having two solutions. If p | (x2 +1), then (p, x) = 1

and (p, x2 − 1) = 1, which means that in this case, x5 ≡ x (mod pα) ⇒ x2 ≡ −1

(mod pα). It is well known that the latter congruence has solutions if and only if

p ≡ 1 (mod 4), and if it has solutions, it has exactly two solutions. Then

(2.5) ̺f (p
α) =

{

3 if p ≡ 3 (mod 4),

5 if p ≡ 1 (mod 4).

The function ̺f (n) is a multiplicative function, which completes the proof. �
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Theorem 2.7. Let n > 2. Then there exists a cycle of length t in the digraph

Γ(n, 5) if and only if t = ordd5 for some even, positive divisor d of λ(n).

P r o o f. Suppose that a is a vertex of a t-cycle in Γ(n). Then t is the least

positive integer satisfying a5
t

≡ a (mod n), i.e., t is the least positive integer such

that

a5
t

− a ≡ a(a5
t−1 − 1) ≡ 0 (mod n).

Set n1 = (a, n), and n2 = n/n1. It follows that t is the least positive integer such

that a ≡ 0 (mod n1), a
5t−1 ≡ 1 (mod n2) and (n1, n2) = 1, since (a, a5

t−1 − 1) = 1.

Then, by the Chinese remainder theorem, there exists an integer b such that b ≡ 1

(mod n1), b ≡ a (mod n2).

Hence, t is the least positive integer such that b5
t−1 ≡ 1 (mod n1), b

5t−1 ≡ a5
t−1 ≡

1 (mod n2), which means that b
5t−1 ≡ 1 (mod n). Set c = ordnb. Then 5t ≡ 1

(mod c). If c is odd then since 5t ≡ 1 (mod 2), we get that t is the least positive

integer such that 5t ≡ 1 (mod 2c).

Let

(2.6) d =

{

2c if c is odd,

c if c is even.

Then t = ordd5, and by Carmichael’s theorem, d | λ(n). Conversely, suppose that

d is an even positive divisor of λ(n) and let t = ordd5. By Carmichael’s theorem,

there exists a residue g modulo n such that ordng = λ(n). Let h = gλ(n)/d. Then

ordnh = d. Since d | (5t − 1) but d ∤ (5k − 1) for 1 6 k < t, we see that t is the

least positive integer such that h5t−1 ≡ 1 (mod n), and h ·h5t−1 = h5t ≡ h (mod n).

Thus, h is a vertex of a t-cycle of Γ(n, 5). �

Theorem 2.8. The number of components of Γ(n, 5) is 2 if and only if n = 2.

Theorem 2.9. The number of components of Γ(n, 5) is 3 if and only if n = 4 or

n is a prime of the form n = 2 · 5k + 1, for some integer k > 0.

P r o o f. If Γ(n, 5) has exactly 3 components, then there exist 3 fixed points at

most, and by Theorem 2.6, either n = 4 or n is the power of some odd prime number

p for which p ≡ 3 (mod 4). Of course, there is no t-cycle for t > 1, otherwise, there

are more than 3 components of Γ(n, 5). Hence, by Theorem 2.7, d ∤ 5t − 1 for every

t > 1 and every even divisor d > 2 (if such d exists) of the Carmichael λ-function

λ(n). Therefore, 5 | d and λ(n) = 2 · 5l for some natural number l. Finally, n must

be 4 or a prime number of the form n = 2 · 5k + 1, k > 0.

Conversely, if n = 4, then we have exactly 3 components. If n is a prime of

the form n = 2 · 5k + 1, then we have exactly 3 fixed points by Theorem 2.6, and
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λ(n) = 2 · 5k. If we have more than 3 components, then there exists a cycle of length

t > 1 and t = ordd5 for some even positive divisor d of λ(n). Then t is the least

positive number such that 5t ≡ 1 (mod d) and d | (5t−1). Since also d | λ(n) = 2 ·5k,

we get d = 2. Then t = ordd5 = ord25 = 1, which is a contradiction. Hence, the only

cycles of Γ(n, 5) are the fixed points at 0, 1 and at n− 1. �

Example 2.1. For n = 3, 4 or 11 (see Figures 2, 3 and Figure 1), the digraph

Γ(n, 5) has three components.

0 1 2

Figure 2. The digraph of Γ(3, 5).

0

2

1 3

Figure 3. The digraph of Γ(4, 5).

Theorem 2.10. The number of components of Γ(n, 5) is 5 if n = 8 or n = 5k,

k > 1.

P r o o f. Of course, Γ(8, 5) has exactly 5 components. If n = 5k, k > 1, clearly,

there is no t-cycle for t > 1 by Theorem 2.7. Hence, by Theorem 2.6, Γ(5k, 5) has

exactly 5 fixed points. Therefore Γ(5k, 5) has 5 components. �

Example 2.2. For n = 8, or 25, the digraph Γ(n, 5) has 5 components (see

Figures 4 and 5).

0

2 4 6

1 3 5 7

Figure 4. The digraph of Γ(8, 5).
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0

5 10 15 20

1

6 11 16 21

7

2 12 17 22

18

3 8 13 23

24

4 9 14 19

Figure 5. The digraph of Γ(25, 5).

Question 2.1. If Γ(n, 5) has 5 components for n = pk, k > 1, where p ≡ 3

(mod 4) is an odd prime, then there exist exactly 3 fixed points. Of course, there

must exist exactly two cycles of length bigger than 1. In this case, what is the

necessity for n in order that Γ(n, 5) have 5 components?

Example 2.3. For n = 7 or 9, the digraph Γ(n, 5) has 5 components. However,

when n = 19, the digraph Γ(n, 5) has 7 components (see Figures 6, 7 and 8).

0 1 6 3

5

2

4

Figure 6. The digraph of Γ(7, 5).

3 6

0 1 8 4

7

2

5

Figure 7. The digraph of Γ(9, 5).

0 1 18 7

11

8

12

2

1314

10

3 15

4

176

5

9 16

Figure 8. The digraph of Γ(19, 5).
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Next we consider three kinds of digraphs Γ(2k, 5), Γ(3k, 5), and Γ(5k, 5).

Theorem 2.11. Let k > 5 be a natural number. The digraph Γ1(2
k, 5) contains

(except for 8 fixed points) only cycles of lengths which are powers of 2 and Γ2(2
k, 5)

is a tree with the root 0. Moreover, indeg(0) = 2k−⌈k/5⌉, where ⌈a⌉ is the smallest

natural number greater than or equal to a.

P r o o f. If n = 2k, then each of the digraphs Γ1(n, 5) and Γ2(n, 5) contains

exactly ϕ(n) = 2k−1 vertices. Of course 5 ∤ ϕ(n) and hence, Γ1(2
k, 5) contains only

cycles by Corollary 2.4. It is easy to check that there exist exactly 8 fixed points in

Γ1(2
k, 5), namely 1, 2k−1 − 1, 2k−1 +1, 2k − 1, 2k−2 +1, 2k − 2k−2 − 1, 2k−2 − 1, and

2k − 2k−2 + 1. We know that there exists a cycle of length t if and only if t = ordd5

for some divisor d of λ(n) = 2k−2. Then 5t ≡ 1 (mod d). Noting that d | λ(n) | ϕ(n)

and 5 ∤ ϕ(n), it follows that (5, d) = 1 and 5λ(d) ≡ 1 (mod d) by Theorem 1.1.

Therefore, t | λ(d). Hence, t is a power of 2. It is easy to see that we have 2k−⌈k/5⌉

elements in Γ2(2
k, 5), namely 2⌈k/5⌉, 2·2⌈k/5⌉, 3·2⌈k/5⌉, . . . , 2k−⌈k/5⌉ ·2⌈k/5⌉ = 0 which

are mapped into 0. Of course, all vertices w of Γ2(2
k, 5) are multiples of 2 and the

greater the power of 2 which is a divisor of w, the shorter the directed path from w

to 0. �

The digraph Γ1(2
4, 5) contains 8 isolated fixed points, and Γ2(2

4, 5) is a directed

tree with the root 0 (see Figure 9). The digraph Γ1(2
5, 5) contains 8 isolated fixed

points and 4 cycles of length 2, and Γ2(2
5, 5) is a directed tree with the root 0.

1 3 5 7 9 11 13 15

0

2

4

6
8

10

12

14

Figure 9. The digraph of Γ(16, 5).

The digraph Γ1(3
2, 7) contains 2 fixed points and 2 cycles of length 2, and Γ2(3

2, 5)

is a directed tree with the root 0 (see Figure 7).

The digraph Γ1(3
3, 5) contains 2 fixed points, 2 cycles of length 2, and 2 cycles of

length 6, and Γ2(3
3, 5) is a directed tree with the root 0 (see Figure 10).
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Figure 10. The digraph of Γ(27, 5).

Then we can conjecture as follows:

Theorem 2.12. Let k > 2 be a natural number. The digraph Γ1(3
k, 5) consists

of 2 fixed points, 2 cycles of length 2, 6, 18, 54, . . . , 2 · 3k−2, respectively. Moreover,

Γ2(3
k, 5) is a tree with the root 0 and indeg(0) = 3k−⌈k/5⌉. Suppose a = 3qb ∈

Γ2(3
k, 5), where (b, 3) = 1, and 1 6 q < k. Then the height of the vertex a from the

root 0 is h = ⌈log5 k/q⌉.

In the process of trying to prove Theorem 2.12, we find the interesting fact that 5

is a primitive root mod 3k for all positive integers k.

Lemma 2.13. If 3k+1 | (53
k−1

+ 1) for some positive integer k > 2, then 3k |

(53
k−2

+ 1).

P r o o f. Suppose 53
k−2

≡ a (mod 3k), then there exists an integer such that

53
k−2

= 3kl + a. It follows that 53
k−1

= 53
k−2·3 + 1 = (3kl + a)3 + 1 ≡ a3 + 1

(mod 3k+1), which means that a3+1 = (a+1)(a2−a+1) ≡ 0 (mod 3k+1).We note

that

(2.7) a2 − a+ 1 ≡

{

1 if a ≡ 0, 1 (mod 3),

0 if a ≡ 2 (mod 3),

and

(2.8) a2 − a+ 1 ≡























1 if a ≡ 0, 1 (mod 9),

3 if a ≡ 2, 5, 8 (mod 9),

4 if a ≡ 4, 6 (mod 9),

7 if a ≡ 3, 7 (mod 9),

hence 9 ∤ (a2 − a + 1). Of course, 3k | (a + 1), hence 53
k−2

+ 1 = 3kl + a + 1 ≡ 0

(mod 3k). �
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Proposition 2.14. 5 is a primitive root mod 3k for all positive integers k.

P r o o f. It is easy to see that 5 is a primitive root mod 3, and also a primitive root

mod 9. Next suppose 5 is a primitive root mod 3k, i.e., ord3k5 = ϕ(3k) = 2 ·3k−1.We

only need to show that 5 is a primitive root mod 3k+1 by induction. Set λ = ord3k+15.

Then λ is the smallest positive integer such that 5λ ≡ 1 (mod 3k+1). We also know

λ | ϕ(3k+1) by the group theory. It follows that 2 · 3k−1 | λ | 2 · 3k, since 5λ ≡ 1

(mod 3k), 5 is a primitive root mod 3k, and ϕ(3k+1) = 2 · 3k. Hence, λ = 2 · 3k−1 or

2 · 3k. If λ = 2 · 3k−1, then 52·3
k−1

≡ 1 (mod 3k+1), i.e., (53
k−1

− 1)(53
k−1

+ 1) ≡ 0

(mod 3k+1).We know that 53
k−1

−1 ≡ −2 (mod 3), which means that 3 ∤ (53
k−1

−1),

so 3k+1 | (53
k−1

+ 1). Therefore, by Lemma 2.14, 3k | 53
k−2

+ 1, i.e., 52·3
k−2

− 1 ≡ 0

(mod 3k), which is a contradiction. �

We draw the following general conclusion:

Proposition 2.15. Let p 6= 5 be an odd prime. If 5 is a primitive root mod p,

where p is an odd prime, then 5 is a primitive root mod pk for all positive integers k.

P r o o f. We first show that if pk+1 | (5(p−1)/2·pk−1

+ 1) for some positive inte-

ger k > 2, then pk | (5(p−1)/2·pk−2

+ 1). Suppose 5(p−1)/2·pk−2

≡ a (mod pk), then

5(p−1)/2·pk−2

= pkl+ a. It follows that 5(p−1)/2·pk−1

+1 = (pkl+ a)p +1 ≡ ap +1 ≡ 0

(mod pk+1). By Fermat’s little theorem, ap ≡ a (mod p). Then (a + 1)(ap−1 −

ap−2 + . . . + a2 − a + 1) = ap + 1 ≡ a + 1 (mod p). If a + 1 6≡ 0 (mod p), then

ap−1−ap−2+ . . .+a2−a+1 ≡ 1 (mod p), since a+1 is invertible in the multiplica-

tive group Z∗
p. We have

(2.9) ap−1 − ap−2 + . . .+ a2 − a+ 1 ≡

{

1 if a 6≡ −1 (mod p),

0 if a ≡ −1 (mod p).

In the case a ≡ −1 (mod p), i.e., a = pt− 1 for some integer t, one has

(2.10) ap−1 − ap−2 + . . .+ a2 − a+ 1 =
ap + 1

a+ 1
=

(pt− 1)p + 1

pt
≡ p (mod p2),

thus p2 ∤ (ap−1 − ap−2 + . . . + a2 − a + 1). Clearly a + 1 must be divisible by

pk. Then 5(p−1)/2·pk−2

+ 1 = pkl + a + 1 ≡ 0 (mod pk). Finally, we show that if

5 is a primitive root mod p, then 5 also is a primitive root mod pk. We prove

this by induction. Suppose 5 is a primitive root mod pk, i.e., ordpk5 = ϕ(pk) =

(p − 1) · pk−1. Set λ = ordpk+15. Then λ is the smallest positive integer such that

5λ ≡ 1 (mod pk+1). It follows that (p−1)·pk−1 | λ | (p−1)·pk, since 5λ ≡ 1 (mod pk),

5 is a primitive root mod pk, and ϕ(pk+1) = (p − 1) · pk. Hence, λ = (p − 1) · pk−1

or (p− 1) · pk. If λ = (p− 1) · pk−1, then 5(p−1)·pk−1

≡ 1 (mod pk+1), and moreover,
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(5(p−1)/2·pk−1

− 1)(5(p−1)/2·pk−1

+ 1) ≡ 0 (mod pk+1). But 5(p−1)/2·pk−1

− 1 ≡ −2

(mod p), since 5 is a primitive root mod p. Thus p ∤ (5(p−1)/2·pk−1

−1), which implies

that pk+1 | (5(p−1)/2·pk−1

+ 1). By the previous discussion, pk | (5(p−1)/2·pk−2

+ 1).

Thus, 5(p−1)·pk−2

− 1 ≡ 0 (mod pk), which is a contradiction. This completes the

proof. �

P r o o f of Theorem 2.12. Suppose d is an even divisor of λ(3k) = 2 · 3k−1, then

d = 2 or 2 · 3m, where 1 6 m 6 k − 1. We only need to compute the value of ordd5

by Theorem 2.7. Let t = ord2·3m5, i,e., t is the least positive integer such that

(2.11)

{

5t ≡ 1 (mod 2),

5t ≡ 1 (mod 3m).

Since 5t ≡ 1 (mod 2) holds for each positive integer t, it follows that t = ϕ(3m) =

2 · 3m−1 by Proposition 2.14. Thus, by Proposition 2.1 and Theorem 2.7, the di-

graph Γ1(3
k, 5) contains 2 fixed points, 2 cycles of length 2, 6, 18, 54, . . . , 2 · 3k−2,

respectively. Finally, suppose a = 3qb ∈ Γ2(3
k, 5), where (b, 3) = 1. Then the

height of a from the root 0 is the least integer h such that a5
h

≡ 0 (mod 3k). Since

a5
h

≡ 3q·5
h

b5
h

≡ 0 (mod 3k) and (b, 3) = 1, we have 3q·5
h

≡ 0 (mod 3k). Then

h = ⌈log5 k/q⌉. �

Theorem 2.16. Let k > 2 be a natural number. The digraph Γ1(5
k, 5) consists

of four isomorphic quinary trees with roots 1, 5k − 1, and two other fixed points.

Moreover, Γ2(5
k, 5) is a tree with the root 0 and indeg(0) = 5k−⌈k/5⌉. Suppose

a = 5qb ∈ Γ2(5
k, 5), where (b, 5) = 1, and 1 6 q < k. Then the height of the vertex

a from the root 0 is h = ⌈log5 k/q⌉.

P r o o f. By Theorem 2.6 and 2.10, the digraph Γ(5k, 5) has exactly 5 components

with fixed points at 0, 1, 5k − 1, and two other fixed points. The even divisors

of λ(5k) = 4 · 5k−1 are 2, 4, 2 · 5m, or 4 · 5m, where 1 6 m 6 k − 1. Then by

Theorem 2.7, there only exists a cycle of length 1 in the digraph Γ(n, 5). Moreover,

Γ1(5
k, 5) is a semiregular digraph and every vertex has degree either 0 or 5, since

5 | ϕ(5k) = 4 · 5k−1. By simple observations, the digraph Γ1(5
k, 5) consists of four

isomorphic, quinary trees with 5k−1 vertices in every tree.

It is easy to see that we have 5k−⌈k/5⌉ elements in Γ2(5
k, 5), namely 5⌈k/5⌉, 2·5⌈k/5⌉,

3 · 5⌈k/5⌉, . . . , 5k−⌈k/5⌉·5⌈k/5⌉ which are mapped into 0. Of course, all vertices w of

Γ2(5
k, 5) are multiples of 5 and the greater the power of 5 which is a divisor of w,

the shorter the directed path from w to 0. �

Example 2.4. The digraph Γ1(5
2, 5) consists of four isomorphic quinary trees

with roots 1, 7, 18 and 24, and Γ2(5
2, 5) is a directed tree with the root 0 and

indeg(0) = 5 (see Figure 6).
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The digraph Γ1(5
3, 5) consists of four isomorphic quinary trees with roots in 1,

57, 68 and 124, and Γ2(5
3, 5) is a directed tree with the root 0 and indeg(0) = 25.

3. On the zero-divisor graph of the ring Zn

In this section, we give formulas calculating the vertex-connectivity, edge-

connectivity, and minimal degree of the zero-divisor graph of the ring Zn, and

point out some mistakes of formulas for the clique number and the maximum degree

of G(Zn) in [7].

We recall that zero-divisor graphs of commutative rings were introduced by I. Beck

[3] in 1988. Such graphs establish a connection between the graph theory and the

commutative ring theory and help us to study the algebraic properties of rings using

graph theoretical tools.

The zero-divisor graph of the ring Zn, denoted by G(Zn), is the graph whose

vertices are the nonzero zero-divisors of Zn, in which two vertices x and y are adjacent

if and only if x 6= y and x · y ≡ 0 (mod n).

The chromatic number (edge chromatic number) of the graph is the minimal num-

ber of colors which can be assigned to the vertices (edges) in such a way that every

two adjacent vertices (edges) have different colors. A subgraph Km with m vertices

is called a clique of size m if any two distinct vertices in it are adjacent. The clique

number is the least upper bound of the size of the cliques. In 1988, I. Beck showed

that the chromatic number of G(Zn) is equal to its clique number. In 2004, S.Akbari

and A.Mohammadian proved that the edge chromatic number of G(Zn) is equal to

its maximum degree (see [1]).

A graph G is said to be k-vertex-connected (or k-connected) if it has more than k

vertices and the result of deleting any (perhaps empty) set of fewer than k vertices

is a connected graph. The vertex-connectivity, or just connectivity, of a graph is the

largest k for which the graph is k-vertex-connected. A graph is said to be k-edge-

connected if it remains connected whenever fewer than k edges are removed. The

edge-connectivity, or just connectivity, of a graph is the largest k for which the graph

is k-vertex-connected. We denote the vertex-connectivity, edge-connectivity, and

minimal degree of graph G, respectively by κ(G), λ(G), and δ(G). It is well-known

that κ(G) 6 λ(G) 6 δ(G) from elementary graph theory.

In [2], the following result was proved concerning the vertex-connectivity, edge-

connectivity, and minimal degree of the zero-divisor graph G(R) for a finite com-

mutative ring R. Let a ∈ R, and S ⊆ R. Denote the annihilator of a and S

in R, respectively by ann(a) and ann(S), i.e., ann(a) = {r ∈ R : ra = 0}, and

ann(S) = {r ∈ R : ∀s ∈ S, rs = 0}.
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Theorem 3.1 ([2]). LetR be a finite commutative ring, andG(R) the zero-divisor

graph of R. Then:

(1) For any R, λ(G(R)) = δ(G(R)).

(2) If R is nonlocal, κ(G(R)) = δ(G(R)).

(3) If R is local with maximal ideal m, let r be the index of nilpotency of m, and

α = |m| − 1. Then:

(i) If m2 = 0, then α− 1 = κ(G(R)) = δ(G(R)).

(ii) If m
2 6= 0, then α 6 κ(G(R)) 6 δ(G(R)). If there exists x ∈ m such that

ann(x) = ann(m), then α = κ(G(R)) = δ(G(R)).

(iii) If m2 6= 0 and there is no x ∈ m such that ann(x) = ann(m), then α < κ(G(R))

if r > 4.

If n = p, then Zn is a field with none zero-divisors. In this case, G(Zn) is a null

graph, so we only consider the other two cases:

Theorem 3.2. Let G(Zn) be the zero-divisor graph of the ring Zn. Then:

(1) For any natural number n, λ(G(Zn)) = δ(G(Zn)).

(2) If n = pk1

1 . . . pks

s , where s > 1, p1 < p2 < . . . ps are distinct primes and ki > 1,

then Zn is nonlocal, κ(G(Zn)) = δ(G(Zn)) = p1 − 1, and the vertex p1 has the

minimum degree p1 − 1.

(3) If n = pk, where p is a prime and k is a positive integer bigger than 1, then

Zn is local. Moreover, if k = 2, then κ(G(Zn)) = δ(G(Zn)) = p − 2, and the

vertex p has the minimum degree p− 2; if k > 2, then κ(G(Zn)) = δ(G(Zn)) =

p − 1, and the vertex p has the minimum degree p − 1. In a word, the vertex-

connectivity, edge-connectivity, and minimal degree of the zero-divisor graph of

ring Zn always coincide.

P r o o f. It is a well-known fact from the group theory that each additive sub-

group of the cyclic group Zn with the addition operation modulo n is an ideal of

the ring Zn, i.e., Zn is a principal ideal ring. Suppose n = pk1

1 . . . pks

s , where s > 1,

and pi is a prime. Let mi = pk1

1 . . . pki−1
i . . . pks

s . Then each principal ideal (mi) is

the maximal ideal of Zn, and Zn is nonlocal. In this case, κ(G(Zn)) = δ(G(Zn)) by

Theorem 3.1.

If n = p2, then Zn is local and m = (p) is the unique maximal ideal. Thus

m
2 = 0 and ann(m) = {x ; 0 6 x < pk, and p | x}. Then from the number theory,

α = |m| − 1 = [p2/p] − 1 = p − 1, where [a] denotes the greatest integer number

smaller than or equal to a. Hence, κ(G(Zn)) = δ(G(Zn)) = p− 2.

If n = pk and k > 2, then Zn is local and m = (p) is the unique maximal ideal, but

m
2 6= 0 and ann(m) = ann(p) = {x; 0 6 x < pk, and pk−1 | x}. Then α = |m| − 1 =

[pk/pk−1]− 1 = p− 1. Hence, by Theorem 3.1, κ(G(Zn)) = δ(G(Zn)) = p− 1. �
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We correct Propositions 1 and 2 in [7] as follows.

Proposition 3.3. (1) If n = pk1

1 . . . pks

s , where s > 1, p1 < p2 < . . . ps are distinct

primes and ki > 1, then the vertex n/p1 has the maximal degree in G(Zn).Moreover,

if k1 = 1, then the maximum degree is equal to n/p1−1; if k1 > 1, then the maximum

degree is equal to n/p1 − 2;

(2) if n = pk, where p is a prime and k is a positive integer bigger than 1, then

the vertex n/p has the maximal degree in G(Zn), and the maximum degree is equal

to n/p− 2.

P r o o f. It is easy to see that if k1 = 1, the vertex n/p1 has exactly (n/p1 − 1)

neighbors in G(Zn), namely the elements: p1, 2p1, 3p1, . . . , (n/p1 − 1)p1. It is clear

that these elements are not including the vertex n/p1. The number p1 is the smallest

prime in the factorization of n. Hence, n/p1 − 2 is the maximum degree of G(Zn).

Similarly, if k1 > 1, the vertex n/p1 has exactly n/p1−2 neighbors in G(Zn), namely

the elements: p1, 2p1, 3p1, . . . , (n/p1 − 1)p1, deleting the vertex n/p1 itself. �

Proposition 3.4. (1) If n is square-free, then the clique number of the graph

G(Zn) is s.

(2) If αi are even numbers for all 1 6 i 6 s, then the clique number is

p
α1/2
1 p

α2/2
2 . . . p

αs/2
s − 1. Otherwise the clique number is pβ1

1 pβ2

2 . . . pβs

s , where βi =

αi/2 for even αi and βi = (αi − 1)/2 for odd αi. (See [7].)

P r o o f. Let n = p1p2 . . . ps, where pi are distinct primes, 1 6 i 6 s. Then there

exists a clique of the size s with the vertices n/pi, i = 1, 2, . . . , s. �

Example 3.1. (1) Consider the zero-divisor graph G(Z30). Of course n = 30 =

2 · 3 · 5. Hence, the vertex 15 has the maximum degree 3 · 5 − 1 = 14. The clique

number is 3.

(2) Let n = 60 = 22 ·3·5.Hence, the vertex 30 has the maximum degree 60
2 −2 = 28,

and its neighbors are the vertices 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32,

34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58. The clique number is 2.
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