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Abstract. A family of subsets of a set is called a σ-topology if it is closed under arbi-
trary countable unions and arbitrary finite intersections. A σ-topology is perfect if any its
member (open set) is a countable union of complements of open sets. In this paper perfect
σ-topologies are characterized in terms of inserting lower and upper measurable functions.
This improves upon and extends a similar result concerning perfect topologies. Combining
this characterization with a σ-topological version of Katětov-Tong insertion theorem yields
a Michael insertion theorem for normal and perfect σ-topological spaces.
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tion; lower measurable function; measurable function

MSC 2010 : 28A05, 28A20

1. Introduction

Let us recall that Vedenisoff’s theorem states that a topological space X is normal

and perfect if and only if two disjoint closed sets F,K ⊆ X can precisely be separated

by a continuous function f : X → [0, 1], meaning: f = 1 only on F and f = 0 only

on K. Equivalently, χF 6 f 6 χX\K and χF (x) < f(x) < χX\K(x) if χF (x) <

χX\K(x). Michael’s insertion theorem of [10] arises by replacing the characteristic

functions with semicontinuous functions:

Michael insertion theorem. A topological space X is normal and perfect if

and only if, given u, l : X → R such that u 6 l, u is upper semicontinuous and l
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is lower semicontinuous, there is a continuous f : X → R such that u 6 f 6 l and

u(x) < f(x) < l(x) whenever u(x) < l(x).

Speaking ahistorically, a theorem which dismantles Michael’s theorem from per-

fectness is the Katětov-Tong theorem [7], [13]:

Katětov-Tong insertion theorem. A topological space X is normal if and

only if, given u, l : X → R such that u 6 l, u is upper semicontinuous and l is lower

semicontinuous, there is a continuous f : X → R such that u 6 f 6 l.

One might choose to act the other way around: instead of avoiding perfectness one

might choose to avoid normality. An attempt at doing so has recently been made

in [14]: a topological space X is perfect if and only if, given a lower semicontinuous

l : X → [0,∞), there exists an upper semicontinuous u : X → [0,∞) such that u 6 l

and 0 < u(x) < l(x) whenever u(x) < l(x). One shortcoming of this result is that

there is no direct implication from it (using Katětov-Tong theorem) to Michael’s

theorem.

The purpose of this paper is twofold. First, we improve upon and extend the

above characterization of [14]. In contrast to [14], we characterize perfectness in

σ-topological spaces (only countable unions are allowed) and we do not assume the

involved functions to be non-negative (see Theorem 3.2). Second, by combining our

characterization with the insertion theorem of [8] we obtain a σ-topological version

of Michael’s insertion theorem (see Theorem 4.2). We also show how the related

extension and separation theorems look like (see Theorems 3.3 and 4.3).

2. σ-topologies instead of topologies

A family A of subsets of a set X is called a σ-topology [1], [2] (σ-ring in [3],

[6]) if it is closed under countable unions and finite intersections, and ∅, X ∈ A.

Then (X,A) is a σ-topological space. If f : X → R and t ∈ R, we let [f > t] =

{x ∈ X : f(x) > t}, and similarly for [f > t], [f < t], etc. Following [3] and [11], an

f : X → R is called lower [upper] A-measurable if [f > t] ∈ A [if [f < t] ∈ A] for all

t ∈ R. It is A-measurable if it is both lower and upper A-measurable. We denote

by Lm(X), Um(X) and M(X) the collections of all lower A-measurable, upper A-

measurable and A-measurable functions from a σ-topological space (X,A) into R,

respectively. Needless to say, f ∈ Lm(X) iff −f ∈ Um(X). Also, if f, g ∈ Lm(X),

then f + g, αf ∈ Lm(X) for all α > 0. The characteristic function χA of a subset

A ⊆ X is in Lm(X) iff A ∈ A. We let Ac = {F : X \ F ∈ A}. If S ⊆ X , then

AS = {A ∩ S : A ∈ A} is a σ-topology on S. For A a topology on X , lower and

upper A-measurability, and A-measurability become, respectively, lower and upper
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semicontinuity, and continuity. Topological concepts of normality and perfectness

extend to σ-topologies: A is normal if, given any two disjoint members of Ac, there

are disjoint members of A containing them. And A is perfect if any its member is a

countable union of members of Ac.

If A is understood, the σ-topological space (X,A) is referred to as the space X in

which case we also speak about lower measurable, upper measurable and measurable

functions.

The concept of a σ-topology is not merely a formal generalization. Even if any

topology is a σ-topology, there are many important σ-topologies which are not topolo-

gies (see [3] and [11]; also see [8]).

We mention one important example: given a topological space X a subset A

is called a cozero set if it is of the form [f 6= 0] for some continuous f : X → R.

Then the family CozX of all cozero sets is a σ-topology which is always perfect and

normal and need not be a topology (see [4], 1.14, 1.15, for details). Lower and upper

A-measurable functions with respect to A = CozX have been considered in [2], [9],

[12] among others.

3. Perfect σ-topologies

We start with the following lemma.

Lemma 3.1. Let A be a σ-topology on X . Let f : X → [0,∞) be an arbi-

trary function such that there is a non-decreasing sequence (Fn)n∈N in Ac such that
⋃

n∈N

Fn = [f > 0] and Fn ⊆ [f > 1/n] for all n. Then there is an upper A-measurable

function u : X → [0,∞) such that u 6 f and [f > 0] = [u > 0].

P r o o f. Define u : X → R by

u = sup
n∈N

min
( 1

n
, χFn

)

.

Then [u > t] = ∅ if t > 1, and [u > t] = X if t 6 0. If t ∈ (0, 1], we have

[u > t] =
⋃

1/n>t

Fn =
⋃

1/t>n

Fn = Fm

where m is the integer part of 1/t. This shows that u ∈ Um(X). We also have

u 6 sup
n∈N

min
( 1

n
, 1[f>1/n]

)

6 f

and [f > 0] =
⋃

n∈N

Fn =
⋃

n∈N

[u > 1/n] = [u > 0]. �
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Theorem 3.2. For X a σ-topological space the following are equivalent:

(1) X is perfect.

(2) If u, l : X → R are such that u 6 l, u is upper measurable and l is lower

measurable, then there exist u′, l′ : X → R such that u 6 u′ 6 l′ 6 l, u′ is

upper and l′ is lower measurable, and u(x) < u′(x) 6 l′(x) < l(x) whenever

u(x) < l(x).

P r o o f. (1) ⇒ (2): Let A be the σ-topology on X . If u 6 l, then 0 6 l − u ∈

Lm(X). Since A is perfect and [l − u > 1/n] ∈ A, there is an infinite matrix

(Kn,m)n,m∈N of members of Ac with [l − u > 1/n] =
⋃

m∈N

Kn,m for each n. Let

Fn =
⋃

i,j6n

Ki,j .

Then Fn ⊆ Fn+1 in Ac. Also,

⋃

n∈N

Fn =
⋃

n,m∈N

Kn,m =
⋃

n∈N

[

l − u >
1

n

]

= [l− u > 0]

and

Fn ⊆
⋃

i6n

[

l− u >
1

i

]

⊆
[

l − u >
1

n

]

for each n. Now, by Lemma 3.1 there is a k ∈ Um(X) such that 0 6 k 6 l − u and

[l−u > 0] = [k > 0]. Further, u′ = u+k/2 ∈ Um(X), u 6 u′ 6 l and u(x) < u′(x) <

l(x) whenever u(x) < l(x). By the same argument, there is a v ∈ Um(X) such that

−l 6 v 6 −u′ and −l(x) < v(x) < −u′(x) whenever −l(x) < −u′(x). Now, u′ and

l′ = −v are as required.

(2)⇒ (1): Let A ∈ A. Then u = 0 6 χA = l with l ∈ Lm(X). Then with u′ of (2)

one has

A = [χA > 0] = [u′ > 0] =
⋃

n∈N

[

u′ >
1

n

]

,

a countable union of members of Ac. �

The following may be regarded as counterparts of Tietze’s extension theorem and

Urysohn’s lemma for perfect σ-topological spaces.
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Theorem 3.3. For X a σ-topological space the following are equivalent:

(1) X is perfect.

(2) Precise extension: For every F ∈ Ac each AF -measurable function m :

F → [0, 1] has an upper A-measurable extension u : X → [0, 1] and a lower

A-measurable extension l : X → [0, 1] such that 0 < u(x) 6 l(x) < 1 whenever

x ∈ X \ F .

(3) Precise separation: Given disjoint F,G ∈ Ac, there are u, l : X → [0, 1] such

that u 6 l, u is upper and l is lower A-measurable, u = l = 1 on F , u = l = 0

on G, and 0 < u(x) 6 l(x) < 1 whenever x ∈ X \ (F ∪G).

P r o o f. (1) ⇒ (2): Let F ∈ Ac and let m : F → [0, 1] be AF -measurable. Let

u, l : X → [0, 1] be such that u = m = l on F , u = 0 and l = 1 on X \ F . Then

u 6 l and u,−l ∈ Um(X). By Theorem 3.2 there are u′,−l′ ∈ Um(X) such that

u 6 u′ 6 l′ 6 l and u(x) < u′(x) 6 l′(x) < l(x) whenever u(x) < l(x). Hence

m = u 6 u′ 6 l′ 6 l = m on F , and 0 < u′(x) 6 l′(x) < 1 if x ∈ X \ F .

(2) ⇒ (3): Let F,K ∈ Ac be disjoint. Let m : F ∪ K → [0, 1] be given by

m = 1 on F and m = 0 on K. Then m is AF∪K-measurable. By hypothesis, there

are u′,−l′ ∈ Um(X) which extend m to the whole of X and which are such that

0 < u′(x) 6 l′(x) < 1 for x ∈ X\(F ∪K). Consequently, u′ = l′ = 1 on F , u′ = l′ = 0

on K, and 0 < u′(x) 6 l′(x) < 1 if x ∈ X \ (F ∪K).

(3) ⇒ (1): Let F ∈ Ac and K = ∅. Then there exists an l ∈ Lm(X) such that

l′ = 1 on F and l′(x) ∈ (0, 1) if x ∈ X \ F . With An = [l′ > 1 − 1/n] we get

F =
⋂

n∈N

An, so that X is perfect. �

4. Michael’s theorem for σ-topologies

We first record a σ-topological version of the Katětov-Tong theorem.

Theorem 4.1 ([8], Theorem 4.4). A σ-topological space X is normal if and only

if, given u, l : X → R such that u 6 l, u is upper and l is lower measurable, there is

a measurable m : X → R such that u 6 m 6 l.

Combining Theorem 4.1 with Theorem 3.2 yields a σ-topological version of

Michael’s theorem:
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Theorem 4.2. A σ-topological space X is normal and perfect if and only if,

given u, l : X → R such that u 6 l, u is upper and l is lower measurable, there is

a measurable m : X → R such that u 6 m 6 l and u(x) < m(x) < l(x) whenever

u(x) < l(x).

When adding normality to Theorem 3.3 we obtain the following (cf. [5]):

Theorem 4.3. For X a σ-topological space the following are equivalent:

(1) X is normal and perfect.

(2) Precise extension: For every F ∈ Ac each AF -measurable function m : F →

[0, 1] has a A-measurable extension m : X → [0, 1] such that m(X \F ) ⊆ (0, 1).

(3) Precise separation: For every F,G ∈ Ac, there exists anAF -measurable function

m : F → [0,1] such that m = 1 on F , m = 0 on G, and m(X \ (F ∪G)) ⊆ (0, 1).

Remark. Prof. Miklós Laczkovich has read our paper and has made an impor-

tant observation: the “only if” parts of both Michael’s insertion theorem and its

σ-topological version (Theorem 4.2) can be deduced from F.Hausdorff’s Grundzüge

der Mengenlehre, 1914 (cf. [6], pages 267, 275, 276).
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