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Abstract. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right (H,α)-Hom-
comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove
that the functor F from the category of relative Hom-Hopf modules to the category of right
(A, β)-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem
for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient
conditions for the functor that forgets the (H,α)-coaction to be separable. This leads to
a generalized notion of integrals.
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Introduction

The present paper investigates variations on the theme of Hom-algebras, a topic

which has recently received much attention from various researchers. The study of

Hom-associative algebras originates with the work by Hartwig, Larsson and Silvestrov

in the Lie case [9], where a notion of Hom-Lie algebra was introduced in the context

of studying deformations of Witt and Virasoro algebras. Later, it was extended to

the associative case by Makhlouf and Silverstrov in [10]–[11]. Now the associativity is

replaced by Hom-associativity α(a)(bc) = (ab)α(c). Hom-coassociativity for a Hom-

coalgebra can be considered in a similar way, see [11]. Caenepeel and Goywaerts [1]
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studied Hom-structures from the point of view of monoidal categories. This leads

to the natural definition of monoidal Hom-algebras, Hom-coalgebras, etc. They

constructed a symmetric monoidal category, and then introduced monoidal Hom-

algebras, Hom-coalgebras, etc. as algebras, coalgebras, etc. in this monoidal category.

The notion of a relative (H,B)-Hopf module, where H is a Hopf algebra over

a field k and B is a right coideal subalgebra of H , was introduced and studied by

Takeuchi in [12]. Later, in [5] (see also [4]), Doi noted that the notion of an (H,B)-

Hopf module works well if B is a right H-comodule algebra, Using this module, he

proved that the existence of a total integral φ : H → B is equivalent to B being

a relative injective H-comodule, and it is also equivalent to any (H,B)-Hopf module

M being a relative injective H-comodule in [3]. Also, in [3], using a commutative

assumption for H , he deduced a version of the Maschke type theorem for (H,B)-

Hopf modules which states that every exact sequence of (H,B)-Hopf modules which

splits B-linearly, also splits (H,B)-linearly. Afterwards, Doi proved in [3] that the

commutative condition can be removed and replaced by some technical conditions

involving the center of B. Caenepeel et al. [2] proved a Maschke type theorem for

the category of relative Hopf modules. In fact, they gave necessary and sufficient

conditions for the functor that forgets the H-coaction to be separable. This leads to

a generalized notion of integrals of Doi [3].

In this paper we study the generalization of the previous results to the Hom-Hopf

algebras. In Section 2, we introduce the notion of a relative Hom-Hopf module and

prove that the functor F from the category of relative Hom-Hopf modules to the

category of right (A, β)-Hom-modules has a right adjoint (see Proposition 2.3). In

Section 3, we introduce the notion of total integrals for Hom-comodule algebras,

which is an effective tool for investigating properties of relative Hom-Hopf modules.

As an important application, we investigate the injectivity of relative Hom-Hopf

modules (see Proposition 3.3), which generalizes the main result in [5]. In Section 4,

we obtain the main result of this paper. We give necessary and sufficient conditions

for the functor that forgets the (H,α)-coaction to be separable (see Theorem 4.2),

and we prove a Maschke type theorem for the category of relative Hom-Hopf modules

as an application. In fact, let (A, β) be a right (H,α)-Hom-comodule algebra with a

total integral φ : (H,α) → (A, β). If φ : (H,α) → (Z(A), β) (the center of (A, β)) is

a multiplication map, then every short exact sequence of relative Hom-Hopf modules

0 −→ (M,µ)
f

−→ (N, ν)
g

−→ (P, π) −→ 0

which splits as a sequence of (A, β)-Hom-modules also splits as a sequence of relative

Hom-Hopf modules.
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1. Preliminaries

Throughout this paper we work over a commutative ring k we recall from [1] some

information about Hom-structures which are needed in what follows.

Let C be a category. We introduce a new category H̃ (C) as follows: the objects

are couples (M,µ), withM ∈ C and µ ∈ AutC(M). A morphism f : (M,µ) → (N, ν)

is a morphism f : M → N in C such that ν ◦ f = f ◦ µ.

Let Mk denote the category of k-modules. H (Mk) will be called the Hom-

category associated with Mk. If (M,µ) ∈ Mk, then µ : M →M is obviously a mor-

phism in H (Mk). It is easy to show that H̃ (Mk) = (H (Mk),⊗, (I, I), ã, l̃, r̃)) is

a monoidal category by Proposition 1.1 in [1]: the tensor product of (M,µ) and

(N, ν) in H̃ (Mk) is given by the formula (M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν).

Assume that (M,µ), (N, ν), (P, π) ∈ H̃ (Mk). The associativity and unit con-

straints are given by the formulas

ãM,N,P ((m⊗ n)⊗ p) = µ(m)⊗ (n⊗ π−1(p)),

l̃M (x⊗m) = r̃M (m⊗ x) = xµ(m).

An algebra in H̃ (Mk) will be called a monoidal Hom-algebra.

Definition 1.1. A monoidal Hom-algebra is an object (A,α) ∈ H̃ (Mk) together

with a k-linear map mA : A⊗A→ A and an element 1A ∈ A such that

α(ab) = α(a)α(b); α(1A) = 1A,

α(a)(bc) = (ab)α(c); a1A = 1Aa = α(a),

for all a, b, c ∈ A. Here we use the notation mA(a⊗ b) = ab.

Definition 1.2. A monoidal Hom-coalgebra is an object (C, γ) ∈ H̃ (Mk) to-

gether with k-linear maps ∆: C → C ⊗C, ∆(c) = c(1) ⊗ c(2) (summation implicitly

understood) and γ : C → C such that

∆(γ(c)) = γ(c(1))⊗ γ(c(2)); ε(γ(c)) = ε(c),

and
γ−1(c(1))⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ γ−1(c(2)),

ε(c(1))c(2) = ε(c(2))c(1) = γ−1(c)

for all c ∈ C.
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Definition 1.3. A monoidal Hom-bialgebra H = (H,α,m, η,∆, ε) is a bialgebra

in the symmetric monoidal category H̃ (Mk). This means that (H,α,m, η) is a Hom-

algebra, (H,∆, α) is a Hom-coalgebra and that ∆ and ε are morphisms of Hom-

algebras, that is,

∆(ab) = a(1)b(1) ⊗ a(2)b(2); ∆(1H) = 1H ⊗ 1H ,

ε(ab) = ε(a)ε(b), ε(1H) = 1H .

Definition 1.4. A monoidal Hom-Hopf algebra is a monoidal Hom-bialgebra

(H,α) together with a linear map S : H → H in H̃ (Mk) such that

S ∗ I = I ∗ S = ηε, Sα = αS.

Definition 1.5. Let (A,α) be a monoidal Hom-algebra. A right (A,α)-Hom-

module is an object (M,µ) ∈ H̃ (Mk) consisting of a k-module and a linear map

µ : M → M together with a morphism ψ : M ⊗A→ M,ψ(m · a) = m · a in H̃ (Mk)

such that

(m · a) · α(b) = µ(m) · (ab); m · 1A = µ(m)

for all a ∈ A and m ∈M . The fact that ψ ∈ H̃ (Mk) means that

µ(m · a) = µ(m) · α(a).

A morphism f : (M,µ) → (N, ν) in H̃ (Mk) is called right A-linear if it preserves

the A-action, that is, f(m ·a) = f(m) ·a. H̃ (Mk)A will denote the category of right

(A,α)-Hom-modules and A-linear morphisms.

Definition 1.6. Let (C, γ) be a monoidal Hom-coalgebra. A right (C, γ)-Hom-

comodule is an object (M,µ) ∈ H̃ (Mk) together with a k-linear map ̺M : M →

M ⊗ C notation ̺M (m) = m[0] ⊗m[1] in H̃ (Mk) such that

m[0][0] ⊗ (m[0][1] ⊗ γ−1(m[1])) = µ−1(m[0])⊗∆C(m[1]); m[0]ε(m[1]) = µ−1(m)

for all m ∈M . The fact that ̺M ∈ H̃ (Mk) means that

̺M (µ(m)) = µ(m[0])⊗ γ(m[1]).

Morphisms of right (C, γ)-Hom-comodule are defined in the obvious way. The cate-

gory of right (C, γ)-Hom-comodules will be denoted by H̃ (Mk)
C .
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2. Adjoint functor

Definition 2.1. Let (H,α) be a monoidal Hom-Hopf algebra. A monoidal Hom-

algebra (A, β) is called a right (H,α)-Hom-comodule algebra if (A, β) is a right (H,α)

Hom-comodule with coaction ̺A : A → A ⊗ H , ̺A(a) = a[0] ⊗ a[1] such that the

conditions

̺A(ab) = a[0]b[0] ⊗ a[1]b[1],

̺A(1A) = 1A ⊗ 1H

are satisfied for all a, b ∈ A.

Definition 2.2. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra. A relative Hom-Hopf module (M,µ) is a right (A, β)-

Hom-module which is also a right (H,α)-Hom-comodule with the coaction structure

̺M : M →M⊗H defined by ̺M (m) = m[0]⊗m[1] such that the following compatible

condition holds: for all m ∈M and a ∈ A,

̺M (ma) = m[0] · a[0] ⊗m[1]a[1].

A morphism between two right relative Hom-Hopf modules is a k-linear map which

is a morphism in the categories H̃ (Mk)A and H̃ (Mk)
H at the same time. H̃ (Mk)

H
A

will denote the category of right relative Hom-Hopf modules and morphisms between

them.

Proposition 2.3. The forgetful functor F : H̃ (Mk)
H
A → H̃ (Mk)A has a right

adjoint G : H̃ (Mk)A → H̃ (Mk)
H
A . G is defined by

G(M) =M ⊗H,

with structure maps

(m⊗ h) · a = m · a[0] ⊗ ha[1],

̺G(M)(m⊗ h) = (µ−1(m)⊗ h(1))⊗ α(h(2))

for all a ∈ A and m ∈M , h ∈ H .

P r o o f. Let us first show that G(M) is an object of H̃ (Mk)
H
A . It is routine to

check that G(M) is a right (H,α)-Hom-comodule and a right (A, β)-Hom-module.
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Now we only check the compatibility condition, for all a ∈ A. Indeed,

̺G(M)((m⊗ h) · a) = ̺G(M)(m · a[0] ⊗ ha[1])

= µ−1(m) · β−1(a[0])⊗ h(1)a[1](1) ⊗ α(h(2)a[1](2))

= µ−1(m) · a[0][0] ⊗ h(1)a[0][1] ⊗ α(h(2))a[1]

= (m⊗ h)[0] · a[0] ⊗ (m⊗ h)(1)a[1]

= ̺(m⊗ c) · a.

This is exactly what we have to show.

For an A-linear map ϕ : (M,µ) → (N, ν), we put

G(ϕ) = ϕ⊗ idH : M ⊗H → N ⊗H.

Standard computations show that G(ϕ) is a morphism of right (A, β)-Hom-modules

and right (H,α)-Hom-comodules. Let us describe the unit η and the counit δ of the

adjunction. The unit is described by the coaction: for (M,µ) ∈ H̃ (Mk)
H
A , we define

ηM : M →M ⊗H as follows: for all m ∈M ,

ηM (m) = m[0] ⊗m[1].

We can check that ηM ∈ H̃ (Mk)
H
A . For any (N, ν) ∈ H̃ (Mk)A, we define δN :

N ⊗H → N for all n ∈ N and h ∈ H by

δN (n⊗ h) = ε(h)n;

we can check that δN is (A, β)-linear. It is easy to check that ηM ∈ H̃ (Mk)
H
A . We

can check that η and δ defined above are all natural transformations and satisfy

G(δN ) ◦ ηG(N) = IG(N),

δF (M) ◦ F (ηM ) = IF (M)

for all M ∈ H̃ (Mk)
H
A and N ∈ H̃ (Mk)A. �

3. Structure type theorem and injective type properties for

relative Hom-Hopf modules

Definition 3.1. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra. The map φ : (H,α) → (A, β) is called a total integral

such that the following conditions are satisfied:

̺Aφ = (φ⊗ idH)∆H , φα = βφ, φ(1H) = 1A.
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Lemma 3.2. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra with a total integral φ : (H,α) → (A, β) and (M,µ) ∈

H̃ (Mk)
H
A ,

λM : M ⊗H →M, m⊗ h 7→ µ−1(m[0]) · φ(S(m[1])α(h)).

Then the following assertions hold:

(1) λM̺M = idM ;

(2) λM is a morphism of right (H,α)-Hom-comodules, and the right (H,α)-Hom-

coaction on M ⊗H is given by ̺(m ⊗ h) = (µ(m) ⊗ h(1)) ⊗ α−1(h(2)) for any

m ∈M and h ∈ H ;

(3) if φ : (H,α) → (Z(A), β) (the center of A) is a multiplication map, then λM is

a morphism in H̃ (Mk)
H
A .

P r o o f. (1) For any m ∈M , we have

λM̺M (m) = λM (m[0] ⊗m[1]) = µ−1(m[0][0]) · φ(S(m[0][1])α(m[1]))

= m[0] · φ(S(m[1](1))m[1](2)) = m[0] · φ(ε(m[1])) = µ−1(m) · 1A = m.

(2) For any m ∈M and h ∈ H , we have

̺MλM (m⊗ h) = ̺M (µ−1(m[0]) · φ(S(m[1])α(h)))

= µ−1(m[0][0]) · φ(S(m[1](2))α(h(1)))⊗ α−1(m[0][1])(S(m[1](1))α(h(2)))

= µ−2(m[0]) · φ(α(S(m[1](2)(2)))α(h(1)))⊗ α−1(m[1](1))α(S(m[1](2)(1)))α(h(2))

= µ−2(m[0]) · φ(S(m[1](2))α(h(1)))⊗m[1](1)(1)(α(S(m[1](1)(2)))α(h(2)))

= µ−2(m[0]) · φ(S(m[1](2))α(h(1)))⊗ (α(m[1](1)(1))α(S(m[1](1)(2))))h(2)

= µ−2(m[0]) · φ(α
−1(S(m[1]))α(h(1)))⊗ α(h(2))

= (λM ⊗ idH)((µ−1(m)⊗ h(1))⊗ α(h(2)))

= (λM ⊗ idH)̺M⊗H(m⊗ h).

(3) For any m ∈M , h ∈ H and b ∈ A, we have

λM ((m⊗ h) · b) = λM (m · b[0] ⊗ hb(1))

= µ−1(m[0] · b[0][0]) · φ(S(m[1]b[0][1])α(hb[1]))

= µ−1(m[0] · b[0][0]) · φ(S(m[1])S(b[0][1])α(hb[1]))

= µ−1(m[0] · b[0][0]) · φ(α(S(m[1])[S(b[0][1])hb[1]]))

= µ−1(m[0] · b[0][0]) · φ(α(S(m[1])[S(b[0][1])(b[1]h)]))
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= µ−1(m[0] · b[0][0]) · φ(α(S(m[1])[(α
−1(S(b[0][1]))b[1])α(h)]))

= (µ−1(m[0]) · b[0]) · φ(α(S(m[1])[(α
−1(S(b[1](1)))α

−1(b[1](2)))α(h)]))

= (µ−1(m[0]) · β
−1(b)) · φ(α(S(m[1])α

2(h)))

= m[0] · (β
−1(b)φ(S(m[1])α(h)))

= m[0] · (φ(α
−4(S(m[1]))α

−3(h))β−1(b))

= (µ−1(m[0]) · φ(S(m[1])α(h))) · b

= λM (m⊗ h) · b.

�

Proposition 3.3. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom comodule algebra with a total integral φ : (H,α) → (A, β). Then

(M,µ) ∈ H̃ (Mk)
H
A is injective as a right (H,α)-Hom-comodule.

If H is a Hopf algebra, then we obtain the main result of [5], Theorem 1.

Corollary 3.4. Let H be a Hopf algebra and A a right H-comodule algebra. If

there is a right H-comodule map φ : (H,α) → (A, β) such that φ(1H) = 1A, then

every relative (H,A)-Hopf-module is injective as a right H-comodule.

Let M be a relative Hom-Hopf module, and let

M0 = {m ∈M ; ̺M (m) = µ−1(m)⊗ 1H}

be an invariant subspace of M and a right (C, β)-Hom-module, where

C = {b ∈ A; ̺A(b) = β−1(b)⊗ 1H}

is a subalgebra of A.

Proposition 3.5. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra with a total integral φ : (H,α) → (A, β) and (M,µ) ∈

H̃ (Mk)
H
A . Assume that φ is a multiplication map and let

τM : (M,µ) → (M,µ)

be the trace map defined by

m 7→ m[0] · φ(S(m[1])).

Then the following assertions hold:
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(1) τM (m) ∈M0 and τ |M0
= id;

(2) τA : (A, β) → (C, β) defined by b 7→ b[0]φ(S(b[1])) is a morphism of left (C, β)-

Hom-modules, so that (C, β) is a direct summand of (A, β) as a sum of left

(C, β)-Hom-modules;

(3) if Imφ ⊆ Z(A), then τM : (M,µ) → (M,µ) is a morphism of right (C, β)-Hom-

modules.

The exact sequence

(M,µ)
τM−→ (M0, µ) −→ 0

thus obtained splits as a sequence of right (C, β)-Hom-modules.

P r o o f. (1) For any m ∈M , we have

̺(τM (m)) = ̺(m[0]φ(S(m[1])))

= m[0][0]φ(S(m[1](2)))⊗m[0][1]φ(S(m[1](1)))

= µ−1(m[0])φ(α(S(m[1](2)(2))))⊗m[1](1)φ(α(S(m[1](2)(1))))

= µ−1(m[0])φ(S(m[1](2)))⊗ α(m[1](1)(1))φ(α(S(m[1](1)(2))))

= µ−1(m[0])φ(α
−1(S(m[1])))⊗ 1H

= µ−1(τM (m))⊗ 1H .

For any n ∈M0,

τM (n) = n[0]φ(S(n[1])) = µ−1(n)1A = n.

(2) For any c ∈ C and a ∈ A,

τA(ca) = (c[0]a[0])φ(S(c[1]a[1])) = (β−1(c)a[0])φ(α(S(a[1])))

= c(a[0] · φ(S(a[1]))) = cτA(a),

thus, τA : (A, β) → (C, β) is a morphism of left (C, β)-Hom-modules, and by (1),

(C, β) is a direct summand of (A, β) as a sum of left (C, β)-Hom-modules.

(3) For any c ∈ C and m ∈M ,

τM (m · c) = (m[0] · c[0])φ(S(m[1]c[1])) = (m[0] · β
−1(c))φ(α(S(m[1])))

= µ(m[0]) · (β
−1(c))φ(S(m[1])) = µ(m[0]) · φ(S(m[1]))β

−1(c)

= (m[0] · φ(S(m[1]))) · c = τM (m) · c.

Thus, τM is a morphism of right (C, β)-Hom-modules, and by (1), the exact sequence

(M,µ)
τM−→ (M0, µ) −→ 0

thus obtained splits as a sequence of right (C, β)-Hom-modules. �
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4. A Maschke-type theorem for relative Hom-Hopf modules

In this section, we give necessary and sufficient conditions for the functor F which

forgets the (H,α)-coaction to be separable, and we prove a Maschke type theorem

for relative Hom-Hopf modules as an application.

Definition 4.1. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra. A k-linear map

θ : (H,α)⊗ (H,α) → (A, β)

such that θ ◦ (α ⊗ α) = β ◦ θ is called a normalized (A, β)-integral, if θ satisfies the

following conditions:

(1) For all h, g ∈ H ,

(4.1) θ(α−1(g)⊗ h(1))⊗ α(h(2)) = β(θ(g(2) ⊗ α−1(h))[0])⊗ g(1)θ(g(2) ⊗ α−1(h))[1].

(2) For all h ∈ H ,

(4.2) θ(h(1) ⊗ h(2)) = 1Aε(h).

(3) For all a ∈ A, h, g ∈ H ,

(4.3) β2(a[0][0])θ(α
−1(g)a[0][1] ⊗ α−1(h)α−1(a[1])) = θ(g ⊗ h)a.

Theorem 4.2. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra. Then the following assertions are equivalent:

(1) The left adjoint F in Proposition 2.3 is separable.

(2) There exists a normalized (A, β)-integral θ : (H,α)⊗ (H,α) → (A, β).

P r o o f. (2) =⇒ (1). For any relative Hom-Hopf module (M,µ), we define

νM : M ⊗H →M,

νM (m⊗ h) = µ(m[0])θ(m[1] ⊗ α−1(h)),

for all m ∈M and h ∈ H . Now, we shall check that νM ∈ H̃ (Mk)
H
A . In fact, for all

m ∈M , h ∈ H and a ∈ A, it is easy to get that

νM (µ(m)⊗ α(h)) = µ(νM (m⊗ h)).
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We also have

νM ((m⊗ h) · a) = νM (ma[0] ⊗ ha[1])

= (µ(m[0]) · β(a[0][0]))θ(m[1]a[0][1] ⊗ α−1(h)α−1(a[1]))

= µ2(m[0]) · (β(a[0][0])β
−1(θ(m[1]a[0][1] ⊗ α−1(h)α−1(a[1])))

= µ2(m[0]) · (β(a[0][0])θ(α
−1(m[1])α

−1(a[0][1])⊗ α−2(h)α−2(a[1])))

(4.3)
= µ2(m[0]) · (θ(m[1] ⊗ α−1(h))β−1(a))

= (µ(m[0]) · θ(m[1] ⊗ α−1(h))) · a

= (νM (m⊗ h)) · a.

Hence it is a morphism of (A, β)-Hom-modules. Next, we shall check that νM is

a morphism of Hom-comodules over (H,α). It is sufficient to check that

̺M ◦ νM = (νM ⊗ idH) ◦ ̺M

holds. For all m ∈M and h ∈ H , we have

̺M ◦ νM (m⊗ h) = ̺M (µ(m[0])θ(m[1] ⊗ α−1(h)))

= (µ(m[0])θ(m(1) ⊗ α−1(h))[0] ⊗ (µ(m[0])θ(m[1] ⊗ α−1(h)))[1]

= µ(m[0][0])θ(m[1] ⊗ α−1(h))[0] ⊗ α(m[0][1])θ(m(1) ⊗ α−1(h))[1]

= m[0]θ(α(m[1](2))⊗ α−1(h))[0] ⊗ α(m[1](1))θ(α(m[1](2))⊗ α−1(h))[1]
(4.1)
= m[0]β

−1(θ(m[1] ⊗ h(1)))⊗ α(h(2))

= m[0]θ(α
−1(m[1])⊗ α−1(h(1)))⊗ α(h(2))

= (νM ⊗ idH) ◦ ̺M (m⊗ h).

For all m ∈M , we have

νM ◦ ηM (m) = νM (m[0] ⊗m[1]) = µ(m[0][0])θ(m[0][1] ⊗ α−1(m[1]))

= m[0]θ(m[1](1) ⊗m[1](2))
(4.2)
= m.

So the left adjoint F in Proposition 2.3 is separable by virtue of Rafael theorem.

(1) =⇒ (2). We consider the relative Hom-Hopf module A ⊗H , and the (A, β)-

actions and (H,α)-coaction are defined as follows:

{
(a⊗ h) · b = ab[0] ⊗ hb[1];

̺A⊗H(a⊗ h) = (β−1(a)⊗ h(1))⊗ α(h(2)),

for any a, b ∈ A and h ∈ H .
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The retraction ν of the unit of the adjunction in Proposition 2.3 yields a morphism

νA⊗H : (A⊗H)⊗H → A⊗H

such that, for all a ∈ A, h ∈ H ,

νA⊗H((a⊗ h(1))⊗ h(2)) = β(a)⊗ h.

It can be used to construct θ as follows:

θ : H ⊗H → A,

θ(h⊗ g) = rA(idA⊗ε)νA⊗H((1A ⊗ h)⊗ g),

where r means the right unit constraint. For all h ∈ H we have

θ(h(1) ⊗ h(2)) = rA(idA ⊗ε)νA⊗H((1A ⊗ h(1))⊗ h(2))

= rA(idA ⊗ε)(1A ⊗ h) = 1Aε(h).

Hence condition (4.2) follows. It can be seen to obey (4.3) by naturality and the

(A, β)-modules map of ν.

The verification of (4.1) is more involved. For any right (H,α)-Hom-comodule

M , we consider the relative Hom-Hopf module M ⊗A, the (A, β)-action and (H,α)-

coaction are defined as follows: for all m ∈M and a, b ∈ A,

{
(m⊗ a) · b = µ−1(m)⊗ aβ(b),

̺M⊗A(m⊗ a) = (m[0] ⊗ a[0])⊗m[1]a[1].

In particular, there is a relative Hom-Hopf module H ⊗A and a map

ξ : H ⊗A→ A⊗H

ξ(h⊗ a) = β(a[0])⊗ α−1(h)a[1].

Since ξ is both right (A, β)-linear and right (H,α)-colinear, we have

(4.4) ξ(νH⊗A((h⊗ a)⊗ g)) = νA⊗H((ξ ⊗ idH)((h⊗ a)⊗ g))

= νA⊗H((β(a[0])⊗ α−1(h)a[1])⊗ g).

It is not hard to check that GF (H ⊗A) = (H ⊗ A) ⊗H ∈ HH̃ (Mk)
H
A , and its left

(H,α)-Hom comodule structure is given by

(h⊗ a)⊗ g 7→ α(h(1))⊗ ((h(2) ⊗ β−1(a))⊗ α−1(g)).
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Also, H ⊗A ∈ HH̃ (Mk)
H
A , and the left (H,α)-coaction of H ⊗A is given by

h⊗ a 7→ α(h(1))⊗ (h(2) ⊗ β−1(a)).

We also get that νH⊗A : (H ⊗A)⊗H → H ⊗A is a Hom morphism in HH̃ (Mk)
H
A ,

which means

(4.5) νH⊗A((h⊗ a)⊗ g)[−1] ⊗ νH⊗A((h⊗ a)⊗ g)[0]

= α(h(1))⊗ νH⊗A((h(2) ⊗ β−1(a)) ⊗ α−1(g)).

Thus we conclude that νH⊗A is both left and right (H,α)-colinear. Taking h, g ∈ H ,

and putting

νA⊗H((1A ⊗ h)⊗ g) =
∑

i

ai ⊗ qi ∈ A⊗H,

νH⊗A((h⊗ 1A)⊗ g) =
∑

i

pi ⊗ bi ∈ H ⊗A,

we obtain

β(θ(h(2) ⊗ α−1(g))[0])⊗ h(1)θ(h(2) ⊗ α−1(g))[1]

= β(rA(idA⊗ε)νA⊗H((1A ⊗ h(2))⊗ α−1(g))[0])⊗ h(1)

× (rA(idA ⊗ε)νA⊗H((1A ⊗ h(2))⊗ α−1(g)))[1]
(4.4)
= β(rA(idA⊗ε)ξνH⊗A((h(2) ⊗ 1A)⊗ α−1(g))[0])⊗ h(1)

× (rA(idA ⊗ε)ξνH⊗A((h(2) ⊗ 1A)⊗ α−1(g))[1])

(4.5)
=

∑

i

β(rA(idA ⊗ε)ξ(pi(2) ⊗ β−1(bi))[0])

⊗ pi(1)(rA(idA ⊗ε)ξ(pi(2) ⊗ β−1(bi))[1])

=
∑

i

β(rA(idA ⊗ε)(bi[0] ⊗ α−1(pi(2))bi[1])[0])

⊗ pi(1)(rA(idA ⊗ε)(bi[0] ⊗ α−1(pi(2))bi[1])[1])

=
∑

i

β(bi[0])⊗ pi(1)ε(pi(2))(bi[1])

=
∑

i

ξ(pi ⊗ bi) = ξ(νH⊗A((h⊗ 1A)⊗ g)).

Using the fact that νA⊗H is a morphism of right (H,α)-Hom comodules, we also

have

θ(α−1(h)⊗ g(1))⊗ α(g(2))

= rA(idA⊗ε)νA⊗H((1A ⊗ α−1(h))⊗ g(1))⊗ α(g(2))

=
∑

i

rA(idA ⊗ε)(β−1(ai)⊗ qi(1))⊗ α(qi(2))
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=
∑

i

ai ⊗ qi = νA⊗H((1A ⊗ h)⊗ g)

(4.4)
= ξ(νH⊗A((h⊗ 1A)⊗ g)).

Hence, we can get condition (4.1). �

We will now investigate the relation between the total integrals and the normalized

(A, β)-integrals. This will explain our terminology, and we will also prove that the

forgetful functor is separable if and only if there exists a total integral φ : (H,α) →

(A, β) such that the image of ̺A ◦ φ is contained in the center of H ⊗A.

Proposition 4.3. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra. If θ : (H,α)⊗(H,α) → (A, β) is a normalized (A, β)-

integral for (H,A,H), then the k-linear map

φ : (H,α) → (A, β), φ(h) = θ(1H ⊗ h)

for all h ∈ H is a total integral.

P r o o f. Notice first that φ(1H) = θ(1H ⊗ 1H) = εH(1H)1A = 1A. Hence

θ(α−1(g)⊗ α−1(h(1)))⊗ α(h(2))

= (θ(α(g(2))⊗ α−1(h)))(0) ⊗ α(g(1))(θ(α(g(2))⊗ α−1(h)))(1).

It follows by taking g = 1H that

θ(1H ⊗ α−1(h1))⊗ α(h2) = θ(1H ⊗ α−1(h))[0] ⊗ α(θ(1H ⊗ α−1(h))[1]),

and applying α⊗ α−1 to the above identity, we have

θ(1H ⊗ α−1(h1))⊗ h2 = θ(1H ⊗ α−1(h))[0] ⊗ θ(1H ⊗ α−1(h))[1].

So we obtain

φ(h1)⊗ h2 = φ(h)[0] ⊗ φ(h)[1].

It is easy to check that φα = βφ. So φ is a total integral.

Let φ : (H,α) → (A, β) be a total integral for the right (H,α)-Hom-comodule

algebra (A, β), and define

θ : (H,α)⊗ (H,α) → (A, β), θ(g ⊗ h) = φ(hS−1(g))

for all g, h ∈ H . �
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Theorem 4.4. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra, and φ : (H,α) → (A, β) a total integral. If

gφ(h)[1] ⊗ φ(h)[0] = φ(h)[1]g ⊗ φ(h)[0], φ(h) ∈ Z(A),

then θ is a normalized (A, β)-integral.

P r o o f. For any h, g ∈ H and a ∈ A, we have

β2(a[0][0])θ(α
−1(g)a[0][1] ⊗ α−1(h)α−1(a[1]))

= β(a[0])θ(α
−1(g)a[1](1) ⊗ α−1(h)a[1](2))

= β(a[0])φ(α
−1(h)a[1](2)S

−1(α−1(g)a[1](1)))

= β(a[0])φ(h[(α
−1(a[1](2)S

−1(α−1(a[1](1)))))S
−1(α−1(g))])

= aφ(hS−1(g)) = θ(g ⊗ h)a,

and

β(θ(g(2) ⊗ α−1(h))[0])⊗ g(1)θ(g(2) ⊗ α−1(h))[1]

= β(φ(α−1(h)S−1(g(2)))[0])⊗ φ(α−1(h)S−1(g(2)))[1]g(1)

= φ(h(1)S
−1(α(g(2)(2)))) ⊗ (α−1(h(2))S

−1(g(2)(1)))g(1)

= φ(h(1)S
−1(g(2)))⊗ (α−1(h(2))S

−1(g(1)(2)))α(g(1)(1))

= φ(h(1)S
−1(g(2)))⊗ h(2)(S

−1(g(1)(2))g(1)(1))

= φ(h(1)S
−1(α−1(g))) ⊗ α(h(2))

= θ(α−1(g)⊗ h(1))⊗ α(h(2)),

θ(h1 ⊗ h2) = ϕ(h2S
−1(h1)) = εH(h)1A.

It is easy to check that φα = βφ. So θ is a normalized (A, β)-integral. �

Since separable functors reflect well the semisimplicity of the objects of a cate-

gory, by Theorem 4.2, we will prove a Maschke type theorem for relative Hom-Hopf

modules as an application.

Lemma 4.5. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra with a total integral φ : (H,α) → (A, β) and (M,µ),

(N, ν) ∈ H̃ (Mk)
H
A and a Hom-morphism f : (N, ν) → (M,µ). Let

fφ : N
̺N

−→ N ⊗H
f⊗idH

−→ M ⊗H
τ

−→M,

that is,

fφ(n) = µ−1(f(n[0])[0]) · φ(S(f(n[0])[1])α(n[1])),

for any n ∈ N . Then the following assertions hold:
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(1) fφ is a morphism of right (H,α)-Hom-comodules,

(2) if f : (N, ν) → (M,µ) is a morphism of right (A, β)-Hom-modules and φ :

(H,α) → (Z(A), β) is a multiplication map, then fφ is a morphism of right

(A, β)-Hom-module.

P r o o f. (1) For any n ∈ N , we have

̺M (fφ(n)) = ̺M
(
µ−1(f(n[0])[0]) · φ(S(f(n[0])[1])α(n[1]))

)

= µ−1(f(n[0])[0][0]) · φ(S(f(n[0])[1](2))α(n[1](1))
)

⊗ α−1(f(n[0])[0][1])
(
S(f(n[0])[1](1))α(n[1](2))

)

= µ−2(f(n[0])[0]) · φ
(
α(S(f(n[0])[1](2)(2)))α(n[1](1))

)

⊗ α−1(f(n[0])[1](1))
(
α(S(f(n[0])[1](2)(1)))α(n[1](2))

)

= µ−2(f(n[0])[0]) · φ
(
S(f(n[0])[1](2))α(n[1](1))

)

⊗ f(n[0])[1](1)(1)
(
α(S(f(n[0])[1](1)(2)))α(n[1](2))

)

= µ−2(f(n[0])[0]) · φ
(
S(f(n[0])[1](2))α(n[1](1))

)

⊗
(
α(f(n[0])[1](1)(1))α(S(f(n[0])[1](1)(2)))

)
n[1](2)

= µ−2(f(n[0])[0]) · φ
(
α−1(S(f(n[0])[1]))α(n[1](1))

)
⊗ α(n[1](2))

= µ−1(f(n[0][0])[0]) · φ
(
S(f(n[0][0])[1])α(n[0][1])

)
⊗ n[1]

= (fφ ⊗ idH)̺N (n).

(2) For any n ∈ N and b ∈ A, we have

fφ(n · b) = µ−1(f(n[0])[0] · b[0][0]) · φ
(
S(f(n[0])[1]b[0][1])α(n[1]b[1])

)

= µ−1(f(n[0])[0] · b[0][0]) · φ
(
[S(f(n[0])[1]b[0][1])][α(b[1])α(n[1])]

)

= µ−1(f(n[0])[0] · b[0][0]) · φ
(
α(S(f(n[0])[1])[S(b[0][1])(b[1]n[1])])

)

= µ−1(f(n[0])[0] · b[0][0]) · φ
(
α(S(f(n[0])[1])[(α

−1(S(b[0][1]))b[1])α(n[1])])
)

= (µ−1(f(n[0])[0]) · b[0])

× φ
(
α(S(f(n[0])[1])[(α

−1(S(b[1](1)))α
−1(b[1](2)))α(n[1])])

)

= (µ−1(f(n[0])[0]) · β
−1(b)) · φ

(
α(S(f(n[0])[1]))α

2(n[1])
)

= f(n[0])[0] ·
(
β−1(b)φ

(
S(f(n[0])[1])α(n[1]))

)

= f(n[0])[0] ·
(
φ
(
S(f(n[0])[1])α(n[1])

)
β−1(b)

)

= (µ−1(f(n[0])[0]) · φ(S(f(n[0])[1])α(n[1]))) · b = fφ(n) · b.

�
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Theorem 4.6. Let (H,α) be a monoidal Hom-Hopf algebra and (A, β) a right

(H,α)-Hom-comodule algebra with a total integral φ : (H,α) → (A, β). If φ :

(H,α) → (Z(A), β) is a multiplication map, then every short exact sequence of

relative Hom-Hopf modules

0 −→ (M,µ)
f

−→ (N, ν)
g

−→ (P, π) −→ 0

which splits as a sequence of (A, β)-Hom-modules also splits as a sequence of relative

Hom-Hopf modules.
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