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Abstract. The smoothing-type algorithm is a powerful tool for solving the second-order
cone programming (SOCP), which is in general designed based on a monotone line search.
In this paper, we propose a smoothing-type algorithm for solving the SOCP with a non-
monotone line search. By using the theory of Euclidean Jordan algebras, we prove that
the proposed algorithm is globally and locally quadratically convergent under suitable as-
sumptions. The preliminary numerical results are also reported which indicate that the
non-monotone smoothing-type algorithm is promising for solving the SOCP.
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1. Introduction

The second-order cone (SOC) in Rn (n > 1), also called the Lorentz cone, is

defined to be

Kn := {(x1, x̃T)T ∈ R×Rn−1 : x1 > ‖x̃‖},

where ‖·‖ denotes the Euclidean norm. If n = 1, then K1 is the set of nonnegative

reals R+ (the nonnegative orthant in R).
The second-order cone programming (SOCP) problem is a class of convex opti-

mization problems in which a linear function is minimized over the intersection of

This paper was partly supported by Excellent Young Scientist Foundation of Shandong
Province (BS2011SF024, BS2012SF025), Science Technology Research Projects of Edu-
cation Department of Henan Province (13A110767), and Basic and Frontier Technology
Research Project of Henan Province (142300410318).
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an affine linear manifold with the Cartesian product of second-order cones. In this

paper we consider the SOCP in the standard format

(P) min{cTx : Ax = b, x ∈ K},

and the dual problem of (P) is given by

(D) max{bTy : ATy + s = c, s ∈ K},

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm, and K ⊂ Rn is the Cartesian product of

second-order cones, i.e., K = Kn1 × . . .×Knr , with Kni ⊂ Rni for each i = 1, . . . , r,

and n =
r
∑

i=1

ni. In the subsequent analysis, we focus on the caseK = Kn for simplicity.

Our analysis can be easily extended to general cases.

Throughout the paper, we make the following assumption.

A s s um p t i o n 1.1. Both (P) and (D) are strictly feasible.

Under Assumption 1.1, it is well-known that both (P) and (D) have optimal so-

lutions and their optimal values coincide [1], and the SOCP is equivalent to its

optimality conditions :

(1.1) Ax = b, ATy + s = c, x ◦ s = 0, x, s ∈ K, y ∈ Rm,

where “◦” denotes the Jordan product, which will be presented in the next section.
The SOCP problem includes the linear programming problem, the convex

quadratic programming problem and the quadratically constrained convex quadratic

programming problem as special cases [1]. In recent years, the SOCP has been

studied extensively due to its various applications in many fields (see [1], [15]). Var-

ious methods have been developed for solving the SOCP, where the smoothing-type

algorithms (e.g., [2], [3], [5], [6], [18], [19]) are one of the most effective methods.

This kind of algorithms reformulates the system (1.1) as a family of parameterized

smooth equations and solve the smooth equations approximately by using Newton’s

method at each iteration. By driving the parameter to converge to zero, one can

expect to find a solution to the SOCP. In general, the smoothing-type algorithms for

the SOCP are designed based on a monotone line search (e.g., [2], [3], [5], [6], [18],

[19]). It is well known that the non-monotone line search rule has many advantages,

especially in the case of iterates trapped in a narrow curved valley of objective

functions (e.g., [8], [20]). Some non-monotone line search schemes have been applied

to the smoothing-type algorithms for nonlinear complementarity problems (e.g., [9],

[16]) and symmetric cone complementarity problems (e.g., [11]). A crucial question
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in this respect is whether the smoothing-type algorithm with a non-monotone line

search for the SOCP not only possesses locally fast convergence properties but also

has encouraging numerical results.

In this paper, we propose a non-monotone smoothing-type algorithm for solving

the SOCP. The proposed algorithm is based on a non-monotone line search scheme,

which was first introduced by Zhang and Hager [20], and includes the usual mono-

tone line search (e.g., see [2], [3], [5], [6], [18], [19]). By using the theory of Euclidean

Jordan algebras, we prove the global and local quadratical convergence of the pro-

posed algorithm under suitable assumptions. Some preliminary numerical results are

also reported which demonstrate that the non-monotone smoothing-type algorithm

has some advantage over the monotone one.

The paper is organized as follows. In the next section, we briefly introduce some

preliminaries which will be used in the subsequent sections. In Section 3, we propose

a non-monotone smoothing-type algorithm for solving the SOCP. The global conver-

gence and local quadratic convergence of the proposed algorithm are investigated in

Section 4. Preliminary numerical results are reported in Section 5. The conclusions

are given in Section 6.

The following notations are used throughout this paper: Rn denotes the space of

n-dimensional real column vectors, and Rn
+ and Rn

++ denote the non-negative and

positive orthant in Rn, respectively. For convenience, we write (uT, vT)T as (u, v)

for any vectors u, v ∈ Rn. The symbol I represents the identity matrix with suitable

dimension and J denotes the set of all nonnegative integers, i.e., J := {1, 2, . . .}. By
intK we denote the interior of K. For any x, y ∈ Rn, we write x �K y if x− y ∈ K,
and x ≻K y if x−y ∈ intK. The Euclidean inner product is denoted by 〈·, ·〉. For any
α, β > 0, α = O(β) means that α/β is uniformly bounded as β → 0, and α = o(β)

means that α/β tends to zero as β → 0.

2. Preliminaries

Smoothing-type algorithms for solving the SOCP are based on the Euclidean Jor-

dan algebra associated with the SOC K. For any vectors x = (x1, x̃) ∈ R × Rn−1

and s = (s1, s̃) ∈ R×Rn−1, their Jordan product associated with K is defined by

(2.1) x ◦ s := (xTs, x1s̃+ s1x̃).

The identity element under this product is e := (1, 0, . . . , 0)T ∈ Rn. For any x =

(x1, x̃) ∈ R×Rn−1, we define the symmetric matrix

(2.2) Lx :=

[

x1 x̃T

x̃ x1I

]

∈ Rn×n,
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where I represents the (n− 1)× (n− 1) identity matrix and Lx can be viewed as a

linear mapping from Rn to Rn given by Lxs = x ◦ s for any x, s ∈ Rn. It is easy to

see that Lx is positive semidefinite if and only if x ∈ K, and positive definite if and
only if x ∈ intK.
For any x = (x1, x̃) ∈ R × Rn−1, its spectral decomposition with respect to the

SOC K is

(2.3) x = λ1(x)c1 + λ2(x)c2,

where λ1(x), λ2(x) and c1, c2 are the spectral values and the associated spectral

vectors of x given by

λi(x) = x1 + (−1)i‖x̃‖, i = 1, 2,(2.4)

ci =















1

2

(

1, (−1)i
x̃

‖x̃‖
)

, x̃ 6= 0,

1

2
(1, (−1)iω), x̃ = 0,

i = 1, 2,(2.5)

with any ω ∈ Rn−1 such that ‖ω‖ = 1.

For any x = (x1, x̃) ∈ R × Rn−1, with spectral values λ1(x), λ2(x) and spectral

vectors c1, c2 given in (2.4) and (2.5), the following results hold (see Properties 2.1

and 2.2 in [17]):

(1) x2 := λ1(x)
2c1 + λ2(x)

2c2 ∈ K.
(2) If x ∈ K, then λ2(x) > λ1(x) > 0, and

√
x :=

√

λ1(x)c1 +
√

λ2(x)c2.

(3) If x ∈ intK, then λ2(x) > λ1(x) > 0, and x−1 := λ1(x)
−1c1 + λ2(x)

−1c2.

Moreover, Lx is invertible with

L−1
x =

1

det(x)

[

x1 −x̃T
−x̃ det(x)

x1

I + x̃x̃T

x1

]

,

where det(x) := x21 − ‖x̃‖2.
In general, we have x2 = x ◦ x. If x ∈ intK, then x ◦ x−1 = e.

3. The algorithm

The smoothing-type algorithms are typically developed by an SOC complemen-

tarity function [7]. Recall that a mapping ϕSOC : Rn × Rn → Rn is an SOC com-

plementarity function associated with K if

(3.1) ϕSOC(x, s) = 0 ⇐⇒ x ◦ s = 0, x ∈ K, s ∈ K.
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With an SOC complementarity function, one (e.g., [2], [3], [5], [6], [18], [19]) can

rewrite (1.1) as:

(3.2) G(x, y) :=

(

b−Ax

ϕSOC(x, c−ATy)

)

= 0.

In this paper, we regard the well-known vector-valued natural residual (NR) func-

tion ϕNR(x, s) : Rn ×Rn → Rn as the function ϕSOC, which is defined by

(3.3) ϕNR(x, s) := x+ s−
√

(x− s)2.

By using such a function, we rewrite (1.1) as

(3.4) GNR(x, y, s) :=





b −Ax

c−ATy − s

ϕNR(x, s)



 = 0.

Notice that ϕNR is typically non-smooth because it is not differentiable at (0, 0) ∈
Rn × Rn. This implies that the function GNR(x, y, s) is not differentiable at

some points and the traditional Newton’s methods cannot immediately apply to

GNR(x, y, s) = 0. To overcome this difficulty, we use the following smoothing

function ϕ(µ, x, s) : R+ ×Rn ×Rn → Rn:

(3.5) ϕ(µ, x, s) = (1 + µ)(x + s)−
√

(1 − µ)2(x− s)2 + 4µ2
e.

This function was first introduced by Huang, Han and Chen [10] for the nonlin-

ear complementarity problem, and was extended to the SOCP by Chi and Liu [2].

Recently, Huang and Ni [12] have further studied its properties in the context of

symmetric cone. Notice that the smoothing-type algorithms investigated in [2], [10],

[12] are all designed with a monotone line search. In the following, we will study

a non-monotone smoothing-type algorithm based on ϕ(µ, x, s).

Theorem 3.1 (Theorem 2.4, [2]). Let ϕ(µ, x, s) be defined by (3.5). Then the

following results hold.

(i) ϕ is globally Lipschitz continuous and strongly semi-smooth everywhere. More-

over, ϕ is continuously differentiable at any (µ, x, s) ∈ R++ ×Rn ×Rn with its

Jacobian

(3.6) ϕ′(µ, x, s) =





x+ s− L−1
Q [−(1− µ)q2 + 4µe]

(1 + µ)I − (1 − µ)2L−1
Q Lq

(1 + µ)I + (1 − µ)2L−1
Q Lq



 ,
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where

(3.7) q := q(µ, x, s) = x− s, Q := Q(µ, x, s) =
√

(1− µ)2q2 + 4µ2
e.

(ii) lim
µ↓0

ϕ(µ, x, s) = ϕNR(x, s) for any (x, s) ∈ Rn×Rn. Thus, ϕ(µ, x, s) is a smooth-

ing function of ϕNR(x, s).

By using ϕ(µ, x, s) given in (3.5), we can also rewrite (1.1) as

(3.8) H(z) = H(µ, x, y, s) :=









µ

b−Ax

c−ATy − s

ϕ(µ, x, s)









= 0,

which is continuously differentiable in R++ × Rn × Rm × Rn. Thus, to solve (P)

and (D), one can apply Newton-type methods to solve (3.8) and make µ ↓ 0.

Let Ψ: R+ ×Rn ×Rm ×Rn → R+ be the natural merit function:

Ψ(z) := ‖H(z)‖2 ∀ z = (µ, x, y, s) ∈ R+ ×Rn ×Rm ×Rn.

A l g o r i t hm 3.1 (A non-monotone smoothing-type algorithm for the SOCP).

Step 0: Choose constants δ ∈ (0, 1), σ ∈ (0, 1/2) and µ0 ∈ R++, and let z :=

(µ0, 0, 0, 0) ∈ R++ × Rn × Rm × Rn. Choose γ ∈ (0, 1) such that µ0γ < 1. Let

(x0, y0, s0) ∈ Rn ×Rm ×Rn be an arbitrary initial point. Let z0 := (µ0, x
0, y0, s0),

Γ0 := Ψ(z0) and β(z0) := γmin{1,Ψ(z0)}. Let Q0 := 1. Choose λmin and λmax such

that 0 6 λmin < λmax < 1. Set k := 0.

Step 1: If ‖H(zk)‖ = 0, then stop.

Step 2: Compute ∆zk := (∆µk,∆x
k,∆yk,∆sk) ∈ R×Rn ×Rm ×Rn by

(3.9) H(zk) +H ′(zk)∆zk = β(zk)z.

Step 3: Let αk be the maximum of the values 1, δ, δ
2, . . . such that

(3.10) Ψ(zk + αk∆z
k) 6 [1− 2σ(1− µ0γ)αk]Γk.

Step 4: Set zk+1 = zk + αk∆z
k. If ‖H(zk+1)‖ = 0, then stop.

Step 5: Choose λk ∈ [λmin, λmax]. Set

Qk+1 := λkQk + 1,(3.11)

Γk+1 :=
λkQkΓk +Ψ(zk+1)

Qk+1
,(3.12)

β(zk+1) := min{γ, γΨ(zk+1), β(zk)}.(3.13)

Set k := k + 1. Go to Step 1.
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A similar algorithmic framework has been extensively studied for solving the SOCP

(see, e.g., [2], [3], [5], [6], [18], [19]). However, all papers mentioned above discussed

this kind of algorithms based on a monotone line search. In Algorithm 3.1, the line

search (3.10) is a non-monotone search scheme, which was first introduced by Zhang

and Hager [20] for the unconstrained optimization problem. If we choose λk = 0 for

all k ∈ J , then the line search (3.10) is the usual monotone line search. It is easy
to see that Γk+1 is a convex combination of Γk and Ψ(zk+1). Since Γ0 = Ψ(z0), it

follows that Γk is a convex combination of Ψ(z0),Ψ(z1), . . . ,Ψ(zk).

For the non-monotone line search given in Algorithm 3.1, some basic results are

included in the following lemma, whose proof can be found in Remark 3.4, [11].

Lemma 3.1. Suppose that the sequences {Γk} and {zk := (µk, x
k, yk, sk)} are

generated by Algorithm 3.1. Then {Γk} is monotonically decreasing. Moreover,
Ψ(zk) 6 Γk for all k ∈ J .

In Algorithm 3.1, it is essential that the Jacobian matrix of H(z) is invertible,

since the descent direction should be well-defined and unique.

Lemma 3.2. Let H(z) be defined by (3.8). Then the following results hold.

(i) H is globally Lipschitz continuous, strongly semi-smooth and continuously dif-

ferentiable at any z := (µ, x, y, s) ∈ R++ ×Rn ×Rm ×Rn with its Jacobian

(3.14) H ′(z) =









1 0 0 0

0 −A 0 0

0 0 −AT −I
ϕ′
µ(µ, x, s) ϕ′

x(µ, x, s) 0 ϕ′
s(µ, x, s)









,

where ϕ′
µ(µ, x, s), ϕ

′
x(µ, x, s) and ϕ

′
s(µ, x, s) are defined by (3.6).

(ii) If A has full row rank, then H ′(z) is invertible for any z := (µ, x, y, s) ∈
R++ ×Rn ×Rm ×Rn.

P r o o f. By Theorem 3.1, it is easy to see that (i) holds. The result (ii) can be

proved in a similar way as the one in Theorem 5 of [14]. We omit it here. �

Theorem 3.2. Suppose that A has full row rank. Then Algorithm 3.1 is well-

defined.

P r o o f. By the first equation of (3.9), we have ∆µk = −µk + µ0β(z
k), and thus

(3.15) µk+1 = µk + αk∆µk = (1− αk)µk + αkµ0β(z
k) > 0,
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which implies that µk > 0 for all k > 0. Since A has full row rank, it follows from

Lemma 3.2 that H ′(zk) is non-singular for any zk = (µk, x
k, yk, sk). Hence, Step 2

is well-defined at the kth iteration. For any α ∈ (0, 1), we denote

(3.16) Fk(α) := Ψ(zk + α∆zk)−Ψ(zk)− αΨ′(zk)∆zk.

Then Fk(α) = o(α), since Ψ is continuously differentiable for any zk ∈ R++ ×Rn ×
Rm×Rn. By the definition of β(zk), we have β(zk) 6 γmin{1,Ψ(zk)} for all k ∈ J .
Thus, β(zk) 6 γΨ(zk) 6 γ‖H(zk)‖ if ‖H(zk)‖ 6 1, and β(zk) 6 γ 6 γ‖H(zk)‖ if
‖H(zk)‖ > 1. This shows that

(3.17) β(zk) 6 γ‖H(zk)‖ ∀ k ∈ J .

Therefore, it follows from (3.16) and (3.17) that for any α ∈ (0, 1)

Ψ(zk + α∆zk) = Ψ(zk) + αΨ′(zk)∆zk + Fk(α)

= Ψ(zk) + 2αH(zk)TH ′(zk)∆zk + Fk(α)

= Ψ(zk) + 2αH(zk)T[−H(zk) + β(zk)z] + Fk(α)

6 (1− 2α)Ψ(zk) + 2αµ0‖H(zk)||β(zk) + Fk(α)

6 [1− 2(1− µ0γ)α]Ψ(zk) + o(α).

Since µ0γ < 1, there exists a constant α ∈ (0, 1) such that for any α ∈ (0, α] and

σ ∈ (0, 1/2)

Ψ(zk + α∆zk) 6 [1− 2σ(1− µ0γ)α]Ψ(zk) 6 [1− 2σ(1− µ0γ)α]Γk,

where the second inequality uses the second result in Lemma 3.1. This demonstrates

that Step 3 is well-defined at the kth iteration. Therefore, Algorithm 3.1 is well-

defined. �

4. Convergence analysis

In this section, it is proved that if an accumulation point z∗ of the iteration

sequence {zk} generated by Algorithm 3.1 satisfies the non-singularity assumption,
then the iteration sequence converges to the accumulation point globally and locally

quadratically without strict complementarity. To show the global convergence of

Algorithm 3.1, we need the following lemma.
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Lemma 4.1. Suppose that A has full row rank and that {zk := (µk, x
k, yk, sk)}

is the iteration sequence generated by Algorithm 3.1. Then, β(zk+1) 6 β(zk),

µ0β(z
k) 6 µk, µk+1 6 µk for all k ∈ J .

P r o o f. From the definition of β(zk) given in (3.13), we know that β(zk+1) 6

β(zk) for all k ∈ J . From Step 0 in Algorithm 3.1, it is easy to see that µ0β(z
0) 6

µ0γ 6 µ0. Suppose that µ0β(z
k) 6 µk for some k. By (3.15) we have

(4.1) µk+1 = µk + αk∆µk = (1− αk)µk + αkµ0β(z
k),

which, together with µ0β(z
k) 6 µk, yields that

µk+1 > (1− αk)µ0β(z
k) + αkµ0β(z

k) = µ0β(z
k) > µ0β(z

k+1),

where the last inequality holds, since {β(zk)} is monotonically decreasing. This
shows that µ0β(z

k) 6 µk for all k ∈ J . Moreover, it follows from (4.1) that for all
k ∈ J

µk+1 = (1− αk)µk + αkµ0β(z
k) 6 (1− αk)µk + αkµk = µk.

Thus, we complete the proof. �

Now we give the global convergence of Algorithm 3.1. The proof technique is taken

from Theorem 4.3 of [11].

Theorem 4.1. Suppose that A has full row rank and that {zk} is the iteration
sequence generated by Algorithm 3.1. Then any accumulation point z∗ of {zk} is
a solution to Ψ(z) = 0.

P r o o f. Without loss of generality, we assume that zk = (µk, x
k, yk, sk) converges

to z∗ = (µ∗, x∗, y∗, s∗) as k → ∞. From Lemma 4.1 we know that {β(zk)} is mono-
tonically decreasing and bounded from below and thus convergent. Therefore, there

exists β∗ > 0 such that lim
k→∞

β(zk) = β∗. We now assume that β∗ > 0 and derive

a contradiction. By Lemma 3.1 we have

(4.2) 0 6 Ψ(zk) 6 Γk 6 Γk−1 6 Γ0,

that is, the sequence {Ψ(zk)} is bounded. Hence, {Ψ(zk)} has a convergent subse-
quence, denoted by {Ψ(zk)}k∈J , where J ⊂ J . Then, it follows from the continuity
of Ψ that

lim
J∋k→∞

Ψ(zk) = Ψ(z∗).

Also lim
J∋k→∞

β(zk) = β∗. Since β∗ > 0, by the definition of β(zk), we have Ψ(z∗) > 0.

On the other hand, since {Γk} is monotonically decreasing and bounded from below
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and thus convergent, there exists Γ∗ > 0 such that lim
J∋k→∞

Γ(zk) = Γ∗. By (4.2), we

have Γ∗ > Ψ(z∗) > 0. Now, we consider the following cases.

⊲ Suppose that αk > ε > 0 for all k ∈ J , where ε is a fixed constant. By the
definition of Qk and the fact that λmax ∈ [0, 1), we have

Qk+1 = 1 +

k
∑

i=0

i
∏

j=0

λk−j 6 1 +

k
∑

i=0

λi+1
max 6

∞
∑

i=0

λimax =
1

1− λmax

for any k ∈ J . Hence, by (3.12), we have for any k ∈ J

(4.3) Γk+1 =
λkQkΓk +Ψ(zk+1)

Qk+1

6
λkQkΓk + [1− 2σ(1− µ0γ)αk]Γk

Qk+1

= Γk −
2σ(1− µ0γ)αkΓk

Qk+1

6 [1− 2σ(1− λmax)(1 − µ0γ)ε]Γk,

where the first inequality follows from (3.10). Taking limits on both sides of the

inequality (4.3), also using Γ∗ > 0, we have 1 6 1 − 2σ(1 − λmax)(1 − µ0γ)ε, which

contradicts 0 6 λmax < 1 and 0 < µ0γ < 1.

⊲ Suppose that lim
J∋k→∞

αk = 0. Then, the step size α̂k := αk/δ does not satisfy

the line search criterion (3.10) for any sufficiently large k ∈ J , i.e.,

(4.4) Ψ(zk + α̂k∆z
k) > [1− 2σ(1− µ0γ)α̂k]Γk > [1− 2σ(1− µ0γ)α̂k]Ψ(zk).

Thus

(4.5)
Ψ(zk + α̂k∆z

k)−Ψ(zk)

α̂k

> −2σ(1− µ0γ)Ψ(zk), k ∈ J .

Since β∗ > 0, by Lemma 4.1 we obtain that µ∗ = lim
k→∞

µk > µ0β
∗ > 0. It follows

that Ψ(z) is continuously differentiable at z∗. Moreover, from Lemma 3.2 we know

that H ′(zk) is an invertible continuously linear operator for all sufficiently large

k ∈ J . Thus, by using (3.9) we obtain that {∆zk}k∈J is convergent. Define ∆z
∗ :=

lim
J∋k→∞

∆zk. Hence, taking limits on both sides of the inequality (4.5), we have

−2σ(1− µ0γ)Ψ(z∗) 6 2H(z∗)TH ′(z∗)∆z∗

= 2H(z∗)T(−H(z∗) + β∗z)

6 2(−Ψ(z∗) + µ0‖H(z∗)‖β∗)

6 −2(1− µ0γ)Ψ(z∗),
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where the last inequality follows from the fact that β∗ 6 γ‖H(z∗)‖ by (3.17). This
indicates that σ(1 − µ0γ) > (1− µ0γ), which contradicts µ0γ < 1 and 0 < σ < 1/2.

Thus, β∗ = 0. It follows that lim
kn→∞

β(zkn) = 0 for any subsequence {zkn} of {zk}.
This, together with the definition of β(zk), implies that lim

kn→∞
Ψ(zkn) = 0 for any

subsequence {zkn} of {zk}. By a simple continuity discussion we obtain that every
accumulation point z∗ of {zk} is a solution to Ψ(z) = 0. �

Let ψ : R+ ×Rn ×Rn → Rn be the CHKS smoothing function defined by

ψ(µ, x, s) = x+ s−
√

(x− s)2 + 4µ2
e.

By using the same arguments as that in our paper, we can prove that Algorithm 3.1

based on ψ is also well-defined and has global and local quadratical convergence

properties. Notice that Liu and Huang [13] recently proposed a smoothing Newton

algorithm based on ψ for linear programming over symmetric cones. In [13], it was

proved that the iteration sequence is bounded under Assumption 1.1. By using the

method given in the proof of Theorem 4.1 in [13], we can obtain the following result.

Theorem 4.2. Let Algorithm 3.1 be based on ψ. If we choose x0 ∈ K such that
Ax0 = b, and choose y0 ∈ Rm and set s0 := −ATy0 + c, then the iteration sequence

{zk} generated by Algorithm 3.1 is bounded under Assumption 1.1.

Now, we discuss the local quadratical convergence of Algorithm 3.1. By the defi-

nition of β(zk), we have β(zk) 6 γ‖H(zk)‖2 for all zk generated by Algorithm 3.1.
Using this fact, the following convergence theorem can be proved in a similar way as

in Theorem 4.3 of [2]. We omit the proof.

Theorem 4.3. Suppose that A has full row rank and that z∗ is an accumulation

point of the iteration sequence {zk} generated by Algorithm 3.1. If all V ∈ ∂H(z∗)

are non-singular, where ∂H stands for the generalized Jacobian of H in the sense of

Clarke [4], then {zk} converges to z∗ quadratically, i.e., ‖zk+1−z∗‖ = O(‖zk−z∗‖2).
Moreover, µk+1 = O(µ2

k).

5. Numerical results

In this section, we give some numerical results of Algorithm 3.1 for solving the

SOCP. All experiments were performed on a personal computer with 1.96GBmemory

and Pentium(R) Dual-Core CPU 2.93 GHz×2. The operating system was Windows
XP and the computer codes were all written in Matlab 7.0.1.
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We consider the SOCP problem with sizes n(= 2m) from 100 to 600 with ni = 5

for each i = 1, . . . , r. The test problems are randomly generated. To be specific, we

generate a random matrix A and a random vector x in the second-order cone which

gives a right-hand side b = Ax and hence, the problem is feasible. Moreover, we

generate a random vector c in the second-order cone so that the optimal value of the

problem is obtainable.

Throughout the computational experiments, the parameters used in Algorithm 3.1

are chosen as δ := 0.85, σ := 10−4, µ0 := 0.1, γ := 0.2, y0 := 0, s0 := c. Denote

e
ni := (1, 0, . . . , 0)T ∈ Rni and e := (en1 , . . . , enr )T. Let x0 be chosen according to

the values listed in Tables 1 and 2. We use ‖H(zk)‖ < 10−6 as the stopping criterion.

In our computation, in order to see the behavior of Algorithm 3.1 with a mono-

tone line search, we set λk = 0 for all k ∈ J , and in order to see the behavior of
Algorithm 3.1 with a non-monotone line search, we set λk = 0.2 for all k ∈ J . The
random problems of each case are generated 10 times, and the tested results are

listed in Table 1, where AIT and ACPU denote the average values of the number of

iterations and the CPU time in seconds, respectively.

λk = 0 λk = 0.2

x0 m n AIT ACPU AIT ACPU

e 50 100 8.0 0.066 8.1 0.066
100 200 9.1 0.209 9.1 0.200
150 300 9.7 0.594 9.5 0.597
200 400 11.1 1.461 10.4 1.388
250 500 10.8 3.458 10.2 2.458
300 600 11.1 5.172 10.4 4.609

0.5e 50 100 8.2 0.066 8.3 0.069
100 200 9.1 0.208 9.1 0.206
150 300 9.6 0.625 9.3 0.597
200 400 10.6 1.492 10.1 1.373
250 500 11.1 3.023 10.1 2.456
300 600 11.1 5.216 10.4 4.592

0.2e 50 100 8.2 0.066 8.3 0.066
100 200 9.0 0.208 9.0 0.219
150 300 9.7 0.625 9.3 0.588
200 400 10.6 1.420 10.0 1.323
250 500 11.0 3.052 10.1 2.547
300 600 10.9 5.220 10.4 4.786

Table 1. Numerical results for Algorithm 3.1

Notice that by using Zhang-Hager’s non-monotone scheme [20], Huang, Hu, and

Han [11] proposed a non-monotone smoothing-type algorithm to solve symmetric
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cone complementarity problems. For comparison purpose, we also use their algo-

rithmic framework to solve the above test problem. In the experiments, we choose

parameters and initial points in a way similar to the previous experiment and choose

λk = 0.2. In addition, we choose β = (‖H(z0)‖+ 1)/µ0 to insure that the condition

‖H(z0)‖ 6 βµ0 holds. The numerical results are listed in Table 2.

x0 m n AIT ACPU

e 50 100 11.0 0.106
100 200 10.9 0.281
150 300 10.5 1.038
200 400 10.8 2.478
250 500 10.8 4.720
300 600 10.9 7.120

0.5e 50 100 10.9 0.097
100 200 10.8 0.281
150 300 10.6 1.702
200 400 10.9 2.514
250 500 10.7 4.672
300 600 10.9 7.338

0.2e 50 100 10.9 0.086
100 200 10.7 0.277
150 300 10.6 1.070
200 400 10.9 2.509
250 500 10.7 4.680
300 600 10.8 7.592

Table 2. Numerical results for Huang-Hu-Han’s algorithm

From the numerical results listed in Table 1, we may see that Algorithm 3.1 works

better with the non-monotone line search than the monotone line search in the sense

that the former could find the optimizer more efficiently than the latter; and the

former has less number of iterations and less CPU time than the latter for most

cases. Moreover, by the numerical results in Tables 1 and 2, we may find that our

non-monotone smoothing algorithm seems to be more effective than Huang-Hu-Han’s

algorithm [11]. These demonstrate that the non-monotone smoothing-type algorithm

proposed in this paper has some advantages.
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6. Conclusions

In this paper, we propose a non-monotone smoothing-type algorithm to solve the

SOCP. By using the theory of Euclidean Jordan algebras, we prove that the pro-

posed algorithm is globally and locally quadratically convergent under some suitable

assumptions. The numerical results show that our algorithm performs well.
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