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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 5 , PAGES 6 6 1 – 6 7 8

CONSENSUS CLUSTERING WITH DIFFERENTIAL
EVOLUTION

Miroslav Sabo

Consensus clustering algorithms are used to improve properties of traditional clustering
methods, especially their accuracy and robustness. In this article, we introduce our approach
that is based on a refinement of the set of initial partitions and uses differential evolution
algorithm in order to find the most valid solution. Properties of the algorithm are demonstrated
on four benchmark datasets.

Keywords: consensus clustering, differential evolution, ensemble, data

Classification: 62H30, 92G30

1. INTRODUCTION

In the age of growing data, it is necessary to think about techniques which help to
reduce data in order to draw any useful conclusions from it. However, as data stored
in databases are getting bigger and bigger, new techniques must arise simultaneously to
face the computational problems.

Cluster analysis (or clustering) is a machine learning technique that deals with the
data reduction problem. Based on similarity, it tries to split data into sets of classes
(called clusters) such that objects in the same class are as similar as possible and objects
in different classes are as dissimilar as possible. This process of data reduction is not new
and is known from antiquity, when western philosophers Plato and Aristotle introduced
the concept of grouping objects into categories based on their similar properties [15].

It is important to note that clustering is regarded as one of the most difficult tasks
in machine learning, since neither number of classes nor true label of any object is often
known a priori. Similar tasks are also called “unsupervised” comparing to “supervised”
(e. g. classification), where true label of each object is known and the task is only to
find the decision boundary between known classes.

Although first modern similarity and clustering ideas appeared in psychology and
anthropology in the first half of the twentieth century [3], clustering as a new field
was established mainly during 1950s and expanded especially during 1980s due to a
massive spread of personal computers. Nowadays, clustering is an interdisciplinary area
in science and new theoretical ideas can be found not only in mathematical or computer
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science journals but also in biological. Moreover, practical applications of clustering are
spread into miscellaneous branches of science, including natural language processing,
market research, image processing or network analysis. With a bit of exaggeration, we
can say that it is hard to find any area, where the idea of grouping similar object cannot
be applied.

Since 1950s, many different clustering algorithms have been proposed. Some of
the most important approaches are hierarchical [43], partitional [30], graph-based [53],
mixture-model based [6], fuzzy [4], density-based [9], spectral [40] or subspace [1].
We also refer interest reader to any of these great review articles about clustering:
[23, 24, 52].

We should also mention methods that use stochastic optimization strategies, although
most of them are based on algorithms mentioned above. The first algorithm that com-
bined clustering with an evolutionary algorithm (EA) was proposed by [38]. Since then,
it has been shown by many authors that partitional methods give better performance
when combined with EA [34]. In [29], authors propose a method called DE-KM, that
combines k-means algorithm with differential evolution (DE). K-means algorithm is used
to obtain the centroids for each initial solution in the DE population and also to fine-
tune each new solution obtained by the mutation and crossover operators of the DE.
In [36], authors compare the performance of partitional clustering combined with three
EAs – DE, particle swarm optimization and genetic algorithm. They conclude that DE
gives better results than other EAs. DE algorithm was also employed by [48]. Authors
combine k-means with DE with competing strategies and conclude that hybrid variants
using k-means algorithm for local search are much more efficient than non-hybrid DE
algorithms. In [5], authors propose automatic clustering of large datasets with no prior
knowledge of the true number of clusters. Again, their method is based on a combination
of partitional clustering with EA. See also [22] for a comprehensive review of algorithms
combining clustering and EAs.

Similarly as in supervised techniques, clustering also incorporated ensemble (or con-
sensus) ideas, mainly in the last decade. Most of them can be roughly classified into
three large groups – graph partitioning algorithms, algorithms based on coassociation
matrix and probabilistic algorithms [13, 14, 45, 46].

From the first group, HGPA (Hypergraph Partitioning Algorithm) and MCLA (Meta-
clustering Algorithm) were one of the first [45]. In HGPA, initial partitions are first
transformed into a hypergraph that is subsequently partitioned by cutting a minimal
number of hyperedges. Authors use the HMETIS package that searches for a minimal
cut [26] . On the other hand, MCLA works with the so called meta-graph concept and is
based on clustering clusters from the set of initial partitions. It is important to mention
that HGPA and MCLA work only with clusters of similar sizes (otherwise they can result
in trivial solution). Another graph partitioning approaches can be found in [10, 26].

A different idea is used in algorithms based on coassociation matrix. One of the first
proposals, CSPA (Cluster based Similarity Partitioning Algorithm), also comes from
[45]. For each initial clustering, a binary similarity matrix is created as follows. If two
objects are in the same cluster, then corresponding entry is one, otherwise it is zero. This
matrix is obtained for all partitions and then all matrices are averaged. The final matrix
(whose entries can be interpreted as the fractions of clusterings in which two objects
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are in the same cluster) is then used as an input into another clustering algorithm to
produce final partition.

In probabilistic ensembles the labels are modeled as random variables drawn from
a probability distribution defined as a mixture of multinomial component densities.
Consensus clustering is then formulated as a maximum likelihood estimation problem
[13, 46]. From other probabilistic approaches, we mention mainly Bayesian ensembles
that can be found in [50] and [49].

There are also other approaches that can hardly be classified into one of the above
groups, for example the approach in [8] which uses bootstrapped datasets to improve
the accuracy of consensus partition.

The paper is organized as follows. First, in section 2, we define necessary terms
about partitions. Differential evolution is described in section 3. Then, in section 4,
we introduce our idea how to combine the set of clusterings into consensus solution.
Experiments with benchmark datasets are performed in section 5 and section 6 concludes
this article.

2. CLUSTERING

2.1. Lattice of partitions

This section is written mainly according to [41], where authors use an algebraic view on
clustering. In addition, readers might be interested in various other mathematical tools
for data mining methods described in this source. Unless stated otherwise, all sets in
the following text are assumed to be finite.

Definition 2.1. (Partition of a set) Partition of a nonempty set M is set

C = {C1, . . . , Ck} = {Ci| i ∈ I}

of k nonempty subsets of M such that
⋃k

i=1 Ci = M and Ci ∩ Cj = ∅ for i 6= j. I is
used here to denote an index set.

We will use ∆ for the set of all partitions of set M . If partitions of more than one set
will be discussed, we will use notation ∆M to denote the set of all partitions of set M .

Definition 2.2. (Refinement) Let C1 = {C(1)
i | i ∈ I},C2 = {C(2)

j | j ∈ J} ∈ ∆ be two
partitions. We will say that C1 is finer than C2 (what is denoted by C1 ≤ C2) if every
element in C2 is a union of elements of C1.

Theorem 2.3. (Trotter [47]) Ordered pair (∆,≤) (with refinement relation) is a par-
tially ordered set.

Theorem 2.4. (Existence of infimum, Trotter [47]) If C1 = {C(1)
i | i ∈ I},C2 =

{C(2)
j | j ∈ J} ∈ ∆ are two partitions, then the partition inf{C1,C2} (denoted by

C1 ∧C2) exists in the poset (∆,≤) and can be found as

inf{C1,C2} = {C(1)
i ∩ C

(2)
j | i ∈ I, j ∈ J and C

(1)
i ∩ C

(2)
j 6= ∅}.
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Corollary 2.5. (Lattice of partitions, Trotter [47]) Poset (∆,≤) from Theorem 2.3 is
also a lattice.

Definition 2.6. (Stirling number of the second kind) Stirling number of the second
kind, denoted as S(n, k), is the total number of partitions of set with n objects into k
subsets.

Definition 2.7. (Bell number) Bell number, denoted as B(n), is the total number of
partitions of set with n objects.

It can be shown (see [17]) that

S(n, k) =
1
k!

k∑
j=0

(−1)k−j

(
k
j

)
jn

and therefore

B(n) =
n∑

k=0

S(n, k) =
n∑

k=0

1
k!

k∑
j=0

(−1)k−j

(
k
j

)
jn. (1)

As noted by [17], for a fixed k, the number of partitions of a set with n elements into
k subsets increases asymptotically exponentially. See Figure 2.1 for an example of all
possible partitions of set with n = 4 elements.

Fig. 1. Lattice of 15 possible partitions of set with 4 elements. Adapted from Wikipedia [51].

2.2. Consensus clustering

Many different clustering algorithms have been proposed. Natural question that imme-
diately arises is if we can use information that comes from more than one partition of
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dataset in order to produce a new and better partition. These approaches are called
cluster ensembles (since ensemble of initial partitions is used) or consensus clustering.

Three main advantages, when compared with traditional clustering algorithms, are:

• an improved quality of partition (ability to produce a more valid partition),

• robustness (ability to deal with noisy data with outliers),

• parallelization (ability to integrate data from many sources).

Definition 2.8. (Clusterer, Strehl and Ghosh [45]) Any algorithm Φ that partitions
M is called clusterer, i. e. Φ : M → C ∈ ∆.

Definition 2.9. (Consensus function, Strehl and Ghosh [45]) Let Λ = {Ci}ri=1 ⊂ ∆ be
set of r partitions of M obtained by r clusterers, where Ci = {C(i)

1 , C
(i)
2 , . . . , C

(i)
ki
} and

let C0 ∈ ∆. Then function Γ : Λ → C0 is called a consensus function and C0 is called
a consensus partition.

2.3. Partition validity

If data to be clustered is labeled, then the quality of any partition can be assessed simply
by comparing true labels with labels assigned by the algorithm (these validity measures
are called external). However, true labels are not known in many practical situations.
Here, the only solution how to evaluate the quality of any partition is to infer it somehow
from data itself. Measures used for these situations are therefore called internal. Most
frequently used is the SSE criterion (sum of squared errors). This very simple index
measures only the variability within clusters and takes the form

SSE(C) =
∑

Ck∈C

∑
xi∈Ck

(xi − µk)2 ∈ [0,∞[,

where xi is a feature vector of the i−th observation and µk is the centre of cluster Ck,
i. e.

µk =
1
|Ck|

∑
i:xi∈Ck

xi

SSE criterion is also the objective function for k-means – the most popular clustering
algorithm (and one of the fastest). Obviously, for k fixed, lower values of criterion
indicate a better partition. We do not use any other validity measure in this article,
but we refer the interested reader to any of these reviews of validity measures used in
literature [16, 19].

2.4. Clustering as optimization process

Definition 2.10. (Clustering as one dimensional optimization problem, Handl and
Knowles [18]) Let M = {x1,x2, . . . ,xn} be set (called dataset) of n vectors (called
objects). Let ∆ be a set of all possible partitions of this set and let V : ∆→ R be real
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function (internal validity criterion). Clustering may then be defined as an optimization
problem, i. e. to find

argmin
C∈∆

V (C).

Remark 2.11. We can assume only the minimization task without a loss of generality
(some internal validity indices need to be minimized while some maximized), since

argmin
C∈∆

V (C) = argmax
C∈∆

{−V (C)}.

3. DIFFERENTIAL EVOLUTION

Optimization is any technique that tries to find the best element from some set, where
“the best” is w.r.t. some criteria (i. e. functions). If there is only one criterion to be
optimized, optimization is also called single-objective, whilst when optimizing based on
more than one criterion, optimization is called multi-objective. Optimization methods
are usually divided into two groups – deterministic (most common examples include
Newton’s method and Quasi-Newton’s method) and stochastic (genetic algorithm, tabu
search, hill climbing, etc.). The main advantage of using stochastic methods is that they
often do not require optimized function to be differentiable, which allows them to solve
a very wide range of problems.

The differential evolution (DE) algorithm (proposed by [44]) is a form of a stochastic
optimization. When compared to the genetic algorithm, the DE is a much younger
technique. In the following, the DE algorithm will be described w.r.t. a clustering
problem to be solved.

Let f : A→ R be a function (called cost) that has to be minimized (or equivalently
one can assume fitness function that has to be maximized). A is called search space
(the set of all candidate solutions). In our problem, A = {1, 2, . . . , n}n (see also Example
3.1). In other words, f takes label integer vector (whose length is n, i. e. the number of
objects to be clustered) as input and returns real value (cluster validity criterion in our
task). The task is to find

arg min
w∈A

f(w),

i. e. such a partition of objects that is as valid as possible. In general, there may exist
several such partitions.

We will denote ith individual in jth generation with wij = (wi,j
1 , wi,j

2 , . . . , wi,j
n ) ∈

A. Each generation consists of population of Npop ≥ 4 individuals and let G ≥ 1 denote
the number of generations. The sequence of generations is also called evolution (that
is why the method is called evolution). Let F ∈ [0, 2] be a mutation constant and
CR ∈ [0, 1] a crossover rate. In summary, parameters Npop, F,CR and G have to be
set in advance.

Example 3.1. For n = 3 (three objects to be clustered) and Npop = 6, we have
A = {(111), (112), (113), (121), (122), (123), (131), (132), (133), (211), (212), (213), (221),
(222), (223), (231), (232), (233), (311), (312), (313), (321), (322), (323), (331), (332), (333)}
with |A| = 33 = 27 elements (label vectors). For example, the first element indicates
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such a partition of the three-element set, where all objects are in one cluster only. Note
that some elements in A represent the same partition. For example elements

(121), (212), (131), (313), (323), (232)

represent a partition, where the first and third object are in one cluster, while the second
object comes from a different cluster. According to (1), there are exactly five different
partitions of a set with three elements.

Since Npop = 6, {(121), (222), (333), (121), (312), (123)} is an example of a population
of six individuals that form some generation.

Given above parameters, the algorithm can be described as follows:

1. Set Npop ≥ 4, F ∈ [0, 2], CR ∈ [0, 1], G ≥ 1.

2. Generate randomly initial (null) generation {w1,0,w2,0, . . . ,wNpop,0}, i. e., in our
task, wi,0

l are random numbers drawn randomly from {1, 2, . . . , s} ∀ l ∈ {1, 2, . . . , s}
and ∀ i ∈ {1, 2, . . . , Npop}.

3. For each generation j ∈ {1, 2, . . . , G} do

(a) ∀ i ∈ {1, 2, . . . , Npop} pick randomly 3 individuals w1,j ,w2,j ,w3,j (distinct
from wi,j) from population and create a new individual zi,j+1 = dw3,j +
F (w2,j −w1,j)e (de denotes vectorized ceiling function1).

(b) ∀ i ∈ {1, 2, . . . , Npop} and ∀ l ∈ {1, 2, . . . , s} set

vi,j+1
l =

{
zi,j+1
l if (randb(l) ≤ CR) or l = rnbr(i)

wi,j
l if (randb(l) > CR) and l 6= rnbr(i),

where randb(l) is the lth evaluation of a uniform random number genera-
tor with outcome from [0, 1] and rnbr(i) is a randomly chosen number from
{1, 2, . . . , s}. This ensures that vi,j+1 will have at least one parameter from
zi,j+1 [44].

(c) ∀ i ∈ {1, 2, . . . , Npop} compare cost value of vi,j+1 with wi,j and set

wi,j+1 =

{
vi,j+1 if f(vi,j+1) < f(wi,j)
wi,j otherwise.

4. From the final generation, pick the individual with the lowest cost value, i. e.
solution of optimization task is

w∗ = arg min
u∈{w1,G,w2,G,...,wNpop,G}

f(u).

1For any real number x, the ceiling function is defined as dxe = min{a ∈ Z, a ≥ x}.
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Remarks

• As can be seen in 3.a) and 3.b), if one sets F = 0 and CR = 1, then all generations
will consist of the same population (no change in time). Moreover, values of F
close to zero indicate that the vector zi,j+1 in 3.a) will be close to w3,j and vice
versa. The higher the value of F , the more different zi,j+1 will be when compared
to w3,j . That is why this constant is called the mutation parameter. On the other
hand, the parameter CR approximates the probability with which we replace the
value wi,j

l with the value zi,j+1
l . That is why it is called the crossover probability

(although it is not the exact probability, since at least one mutation always occurs
[33]).

• An optimal choice of parameters F,CR,Npop and G is crucial, therefore it is very
important to choose it carefully. Many rules of thumb exist, see for example [37].

• Thanks to step 3.c), it is guaranteed that each following generation consists of at
least as good individuals as the previous one.

• It can easily happen (steps 2. and 3.a)) that new individuals do not lie in A. There
are many solutions how to deal with this problem. We often assign boundary values
or we can simply generate new ones.

4. CONSENSUS CLUSTERING WITH DIFFERENTIAL EVOLUTION

Here we propose our approach to the consensus clustering task based on three concepts:
refinement of partitions, differential evolution and classification (see also table below for
pseudocode). The algorithm has three parameters - δ (for adjusting the cardinality of
the refinement), h (vector of possible values for number of clusters), and ε (for outlier
detection). The number of clusters as well as outliers will be determined automatically.

Input: M (dataset), Λ = {C1,C2, . . . ,Cr} (a set of initial partitions), V (validity
criterion), δ, h, ε (parameters for algorithm), Npop, F , CR, G (parameters for
differential evolution)

Step 1: C
′
← ∧r

i=1Ci

Step 2: C
′′
← {C ′

i ∈ C
′
; |C ′

i | ≥ δ}
Step 3: Find C∗ = {C(∗)

1 , C
(∗)
2 , . . . , C

(∗)
k } with k in h as a result of optimization

of C
′′

with DE algorithm with parameters Npop, F , CR, G.
Step 4: If C

′
\C

′′
6= ∅, classify each C ∈ C

′
\C

′′
such that

min
i∈{1,2,...,k}

dist(C,C
(∗)
i ) ≤ ε

to class C
(∗)
H , where H = argmin

i∈{1,2,...,k}
dist(C,C

(∗)
i ).

Output: Set of k clusters and set of outliers.

Tab. 1. Pseudocode of our algorithm.
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Creating initial partition(s)

Note that the task in consensus clustering is not to propose a new approach on how
to cluster objects, but instead to focus on how to combine existing partitions in order
to get a better result (in other words, we search for a consensus function Γ). For this
purpose, let

{C1,C2, . . . ,Cr} = Λ ⊂ ∆M

be the set of initial partition(s), where

Ci = {C(i)
1 , C

(i)
2 , . . . , C

(i)
ki
} ∀ i ∈ {1, 2, . . . , r}.

Note that we allow that it may consist of just one element.

Step 1 – Refinement of initial partitions

Due to Theorem 2.4, infimum exists in each lattice of partitions. Let us denote the
infimum of partitions (this step is skipped in case of just one initial partition) from Λ
(i. e. ∧r

i=1Ci) by C
′

= {C ′

1, C
′

2, . . . , C
′

t} ∈ ∆M . Obviously, t ≥ max {k1, k2, . . . , kr}.
Therefore, one initial partition may have a large impact on “granularity” of C

′
(and

consequently also on validity). On the other hand, C
′

has a highly desired property
– it may reveal “homogenous” subsets from M (note that two objects are in the same
cluster in C

′
if they are in the same clusters in all initial partitions).

Step 2 – Thresholding

When clustering large datasets (situations when thousands of objects are partitioned) or
when using a high number of initial partitions, C

′
may result in a very high number of

elements from which many can have a very small cardinality. Since our next step will be
optimization, we have to decrease t as much as possible (for computational purposes).
That is why we decided in this step to remove all elements from C

′
, whose cardinality

is lower than a given threshold δ. More precisely, let

{C
′

i ∈ C
′
; |C

′

i | ≥ δ} = {C
′′

1 , C
′′

2 , . . . , C
′′

s } = C
′′
,

where
M ⊇M

′
= {x ∈M ;∃j ∈ {1, 2, . . . , t} : x ∈ C

′

j ∧ |C
′

j | ≥ δ}.

Obviously, C
′′

is a subset of C
′
, therefore s ≤ t. When δ = 1 (no elements are removed

from C
′
), we have C

′′
= C

′
and M

′
= M .

Step 3 – Optimization

Now we have only those (homogenous) elements from C
′
, whose cardinality is not less

than the threshold. As mentioned, infimum of partitions may have a very bad validity
because of its granularity. On the other hand, if we merged some elements from C

′′

now, we could get even more valid results than each of the initial partitions. That is
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why in this step, our focus is on merging some clusters from C
′′

in order to increase its
validity.

Note that we could also follow this approach with the original set of objects M or
with C

′
. But in both cases, cardinalities of corresponding sets may still be too high and

the optimization process would be too slow. Therefore, we decided to reduce the number
of objects as much as possible and afterwards apply optimization in order to find the
solution in a reasonable amount of time. On the other hand, there are also situations
when only a small number of objects is to be partitioned. In this case, we can set δ = 1
and no elements from C

′
will be removed.

Now we use DE to merge some elements from C
′′
. As in Example 3.1, we will

use integer representation. For example, if we have s = 6 elements {C ′′

1 , C
′′

2 , . . . , C
′′

6 },
then one possible partition of them is {C ′′

1 ∪ C
′′

5 , C
′′

2 ∪ C
′′

3 ∪ C
′′

4 , C
′′

6 } and it can be
represented, for example, by an integer vector (1, 2, 2, 2, 1, 3). As noted before, some
optimization techniques are not suitable, since they have an assumption of continuous
and differentiable objective function. We therefore suggest to use the DE algorithm, since
it has no restriction on objective function. Let C∗ ∈ ∆M ′ denote the partition returned
by the optimization process and let k be the number of elements in this partition, i. e.

C∗ = {C(∗)
1 , C

(∗)
2 , . . . , C

(∗)
k }.

If we have any prior information about any possible values for k, we may include it in
vector h, the second parameter of the algorithm. Optimization will then search only for
those candidate solutions whose k is in h.

Step 4 – Classification and outlier detection

Note that C∗ is not always a partition of M . On the other hand, k (estimated number
of clusters in M) is already known. In the last step, we have to focus on a classification
of elements from C

′
\C

′′
(if this is empty, procedure ends) to elements from C∗.

It is important to note that we transformed unsupervised problem (unknown labels
for all objects in the beginning of procedure) to supervised (classes are known and the
task is to assign remaining elements to one of them). There are many proposals for
solving supervised problems (AdaBoost, stacking, Naive-Bayes, decision trees). Maybe
the simplest one can be the nearest neighbor algorithm, that classifies each C ∈ C

′
\C

′′

to class C
(∗)
H , where

H = argmin
i∈{1,2,...,k}

dist(C,C
(∗)
i ).

Any distance measure can be used here. For example, we can use the distance measure
from single-linkage hierarchical algorithm defined as

dist(C,C
(∗)
i ) = min

x∈C,y∈C
(∗)
i

d(x,y),

where d is any distance function between two vectors. Note that we could also set
another parameter here (let us denote it as ε) and classify only those objects whose
distance to any class is less then ε. Otherwise, the object would be labeled as an outlier.
See [9] for one possible idea how to find ε.
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5. EXPERIMENTS

In this section we compare our algorithm to several other approaches proposed in litera-
ture. We use four benchmark datasets – iris, wine, glass and vowel. First three are from
[2] and the last is from [35]. Together with many other datasets, these are widely used in
literature when comparing performance of clustering algorithms. Basic characteristics
of the data are below.

Dataset # of objects # of features # of classes
iris 150 4 3
wine 178 13 3
glass 214 9 6
vowel 871 3 6

Tab. 2. Datasets used in experiments.

The objective is to minimize SSE criterion for the given number of clusters (ranging
from two to six). 12 clustering algorithms are used to compare their performance to 6
variants of our proposal (denoted as CCDE). Brief information about each of them is
given below. We divide all 18 algorithms into two groups – partitional and ensemble.

• Partitional methods:

– k-means (labeled as P k-means [20])

– partitioning around medoids (P PAM [27]) from package cluster by [31]

– kernel k-means (P kernel k-means) and spectral clustering (P spectral) from
kernlab package [25]

– k-means with hard (P hardcl) and soft (P neuralgas) competitive learning
implemented in cclust package [7]

– spherical k-means with genetic algorithm (P spherical k-means [28]) imple-
mented in package skmeans [21]

– model-based clustering (P model-based [11]) implemented in mclust package
[12]

• Ensemble methods:

– four variants of consensus clustering with bootstrapped datasets (E k-means
B, E PAM B, E k-means and E PAM [32]) implemented in package cluster-
Cons [42]

– six variants of our proposal (E CCDE 2-6 1, E CCDE 2-6 2, E CCDE 2-6 3,
E CCDE k 1, E CCDE k 2 and E CCDE k 3)

In E k-means B and E k-means, 30 runs of k-means were used to create an ensemble.
In E PAM B and E PAM, 30 runs of PAM algorithm were used instead. In E k-means
B and E PAM B (E k-means and E PAM), 80% (100%) of observations was sampled
(default value was 80%). We should stress here that algorithms E k-means B, E PAM
B, E k-means and E PAM do not return a partition but only a (consensus) dissimilarity



672 M. SABO

√
S

S
E
√

S
S

E
√

S
S

E
√

S
S

E
√

S
S

E
R
T

R
T

R
T

R
T

R
T

k
=

2
k

=
3

k
=

4
k

=
5

k
=

6
k

=
2

k
=

3
k

=
4

k
=

5
k

=
6

P
k-

m
ea

ns
12

.3
4

9.
46

7.
84

7.
31

6.
68

0.
00

0.
00

0.
00

0.
00

0.
00

P
PA

M
12

.3
8

8.
88

7.
61

6.
87

6.
53

0.
00

0.
00

0.
00

0.
00

0.
01

P
ke

rn
el

k-
m

ea
ns

14
.3

4
11

.4
1

10
.1

5
9.

98
10

.1
1

0.
08

0.
09

0.
10

0.
11

0.
14

P
sp

ec
tr

al
12

.4
5

11
.7

6
10

.2
6

8.
76

8.
56

0.
24

0.
24

0.
24

0.
25

0.
24

P
ha

rd
cl

12
.3

4
9.

60
8.

02
7.

34
6.

85
0.

03
0.

03
0.

03
0.

03
0.

03
P

ne
ur

al
ga

s
12

.3
4

8.
88

7.
57

7.
06

6.
30

0.
04

0.
05

0.
06

0.
07

0.
08

P
sp

he
ri

ca
l
k-

m
ea

ns
12

.4
5

9.
68

9.
44

9.
31

9.
26

2.
11

4.
79

7.
62

11
.4

7
11

.9
6

P
m

od
el

-b
as

ed
12

.4
5

9.
50

8.
79

7.
45

7.
17

0.
02

0.
04

0.
06

0.
06

0.
09

E
k-

m
ea

ns
B

12
.3

4
8.

88
7.

57
7.

06
6.

26
6.

32
6.

38
6.

36
6.

37
6.

28
E

PA
M

B
12

.3
8

8.
88

7.
64

6.
87

6.
36

6.
27

6.
30

6.
36

6.
29

6.
44

E
k-

m
ea

ns
12

.3
4

8.
88

7.
76

7.
09

6.
57

6.
06

6.
31

6.
22

6.
36

6.
49

E
PA

M
12

.3
8

8.
88

7.
61

6.
87

6.
53

6.
32

6.
32

6.
35

6.
65

6.
35

E
C

C
D

E
2-

6
1

12
.3

4
8.

89
7.

63
7.

01
6.

60
1.

19
1.

17
1.

22
1.

18
1.

15
E

C
C

D
E

2-
6

2
12

.3
9

9.
17

8.
13

7.
50

7.
09

1.
08

1.
15

1.
18

1.
13

1.
09

E
C

C
D

E
2-

6
3

12
.4

2
9.

23
8.

59
7.

67
7.

54
1.

07
1.

15
1.

16
1.

10
0.

89
E

C
C

D
E

k
1

12
.3

4
8.

88
7.

57
8.

06
9.

79
0.

77
0.

96
1.

11
1.

42
1.

58
E

C
C

D
E

k
2

12
.3

4
8.

88
7.

57
8.

93
9.

94
0.

77
0.

97
1.

09
1.

36
1.

49
E

C
C

D
E

k
3

12
.3

4
8.

88
8.

15
8.

77
10

.5
3

0.
74

0.
97

1.
06

1.
42

1.
40

T
a
b
.

3
.

S
q
u
a
re

d
ro

o
ts

o
f
S
S
E

a
n
d

ru
n
ti

m
e

in
se

co
n
d
s

(R
T

)
in

ex
p
er

im
en

ts
w

it
h

ir
is

d
a
ta

se
t.

M
in

im
a
l
va

lu
es

o
f
va

li
d
it
y

cr
it

er
io

n
a
re

in
g
re

y.



Consensus clustering with differential evolution 673

k = 2 k = 3 k = 4 k = 5 k = 6
P k-means 2131.61 1556.41 1154.55 990.84 824.04
P PAM 2141.92 1546.47 1154.08 1000.76 843.13
P kernel k-means 3724.83 3269.86 3239.77 2795.71 2368.24
P spectral 2543.80 2040.23 1744.56 1325.34 1182.17
P hardcl 2132.28 1552.00 1258.18 1036.33 856.63
P neuralgas 2131.67 1539.70 1154.89 964.81 825.97
P spherical k-means 3068.06 2115.42 1896.21 1603.86 1665.34
P model-based 2324.49 2247.16 2180.31 2143.72 1948.38
E k-means B 2131.61 1539.70 1154.62 1034.47 827.07
E PAM B 2141.92 1567.02 1154.08 984.30 843.13
E k-means 2132.08 1539.70 1158.18 1030.33 827.07
E PAM 2141.92 1546.47 1154.08 1000.76 843.13
E CCDE 2-6 1 2131.61 1540.06 1158.47 1004.39 862.22
E CCDE 2-6 2 2159.11 1555.43 1177.63 1015.18 871.64
E CCDE 2-6 3 2154.16 1635.80 1241.90 1109.46 960.53
E CCDE k 1 2131.61 1539.70 1154.08 1111.83 988.77
E CCDE k 2 2131.61 1539.70 1154.08 1253.14 1323.64
E CCDE k 3 2131.61 1762.24 1154.08 1350.70 1617.52

Tab. 4. Squared roots of SSE in experiments with wine dataset.

Minimal values in each column are in grey.

k = 2 k = 3 k = 4 k = 5 k = 6
P k-means 42.85 38.02 33.87 30.06 27.80
P PAM 43.05 38.35 36.19 30.26 27.47
P kernel k-means 53.86 51.25 49.65 48.69 47.72
P spectral 55.92 49.20 41.39 36.17 36.65
P hardcl 42.92 38.34 34.24 31.57 28.43
P neuralgas 42.85 38.04 31.93 29.92 27.40
P spherical k-means 42.86 37.56 31.95 29.44 27.18
P model-based 53.49 52.88 52.10 46.08 45.91
E k-means B 42.85 38.04 37.29 30.35 42.51
E PAM B 43.05 38.35 36.53 30.15 27.47
E k-means 42.85 38.05 37.29 30.17 42.51
E PAM 43.05 38.35 36.19 30.26 27.47
E CCDE 2-6 1 42.85 37.63 32.13 29.79 27.73
E CCDE 2-6 2 46.88 41.01 36.51 34.29 31.22
E CCDE 2-6 3 47.40 42.67 37.93 34.95 32.22
E CCDE k 1 42.85 37.54 32.61 30.91 30.59
E CCDE k 2 42.85 39.22 38.16 37.35 36.22
E CCDE k 3 42.85 40.25 37.83 40.97 38.85

Tab. 5. Squared roots of SSE in experiments with glass dataset.

Minimal values in each column are in grey.
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k = 2 k = 3 k = 4 k = 5 k = 6
P k-means 9284.28 7935.20 6696.14 6058.82 5640.81
P PAM 9286.28 7939.67 6670.54 5983.78 5554.92
P kernel k-means 11526.43 8426.99 8024.35 7358.12 6939.43
P spectral 11576.69 8827.63 7240.97 6615.66 6116.20
P hardcl 9284.28 7934.17 6914.31 6142.33 5732.94
P neuralgas 9284.51 7927.30 6646.48 6086.22 5541.16
P spherical k-means 10178.46 8567.30 7704.28 7382.10 7147.77
P model-based 9601.63 9103.60 9335.81 9034.07 8497.00
E k-means B 9284.76 7936.76 6646.99 5979.80 5668.87
E PAM B 9286.28 7944.39 6661.18 5983.78 5564.71
E k-means 9284.28 7938.20 6646.96 5979.82 5739.45
E PAM 9286.28 7939.67 6672.17 5985.33 5555.15
E CCDE 2-6 1 9284.28 8022.26 6862.79 6243.66 5834.65
E CCDE 2-6 2 9409.87 8031.77 6932.89 6256.74 5957.58
E CCDE 2-6 3 9374.74 8013.43 6925.06 6351.36 5979.34
E CCDE k 1 9284.28 7923.13 6718.65 6769.22 9731.81
E CCDE k 2 9284.28 7922.58 6872.60 6948.38 10803.82
E CCDE k 3 9284.28 7944.51 6976.66 7012.49 11653.48

Tab. 6. Squared roots in SSE of experiments with vowel dataset.

Minimal values in each column are in grey.

matrix. Ward’s (minimum variance) method is then applied to find the final partition
since it tries to minimize SSE criterion. Six variants of our algorithm can be divided
into two groups – in variants E CCDE 2-6 1, E CCDE 2-6 2 and E CCDE 2-6 3, a set
of initial partitions (Λ) consists of r = 5 k-means partitions for k = 2, 3, 4, 5, 6 (the only
difference is the value of δ parameter that is 1, 2 and 3 respectively). On the other hand,
in variants E CCDE k 1, E CCDE k 2 and E CCDE k 3, Λ is created from r = 30 runs
of k-means with the same number of clusters (that is equal to the number of clusters to
be found in corresponding experiment). Again, three values of δ parameter are used.

For all stochastic algorithms, 30 runs were performed and mean values of SSE were
computed. 100 iterations were set in all iterative algorithms in order to compare runtime
of each algorithm. For methods using the genetic algorithm or DE, population size was
10. Default values of other population parameters were used in DE (F = 0.8, CR = 0.5).
In all other algorithms, default values of parameters were used also.

All experiments were performed with the R language by [39] on Intel(R) Core(TM)
i7-3630QM CPU (2.4GHz) with 8 GB RAM. DEoptim package was used for DE algo-
rithm [33]. Runtime was estimated only for one run of each algorithm. It is also very
important to stress here that runtimes are only approximate since they depend also on
implementations in corresponding R packages.

All results are reported in Tables 3, 4, 5 and 6. Instead of SSE, we report square
roots. Runtime is estimated only for iris dataset.

As can be seen from tables, results are approximately consistent across all datasets.
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As expected, ensemble methods overcome single clustering algorithms. On the other
hand, although they give more valid partitions, they consume much more time.

In summary, E CCDE k 1, E CCDE k 2 and E k-means B achieved the best results.
Final value of their objective was minimal (when compared to other approaches) in 9,
8 and 8 experiments respectively (of 4 ∗ 5 = 20 experiments in total). On the other
hand, runtime of all E CCDE variants is lower than in other ensemble techniques. In
general, three variants of E CCDE k gave better results than variants of E CCDE 2-6.
Therefore, the careful choice of Λ has a large impact on the final partition. Another
important corollary is the fact that our approach gives better results in situations with
small k. The higher the k, the worse the results it gives. Moreover, when k is higher, E
CCDE k variants give worse results than E CCDE 2-6 variants. It is also interesting to
note that variants with δ > 1 do not give better results than variants with δ = 1 but as
can be seen from Table 3, runtime of the algorithm decreases with an increasing δ.

6. CONCLUSION

The main goal for our research was to propose a new technique for how different parti-
tions could be effectively merged. Similar algorithms are called consensus or ensemble
in literature. Although these techniques are not new clustering algorithms, they provide
frameworks on how to integrate information that comes from many sources into one final
solution.

Our results show that our proposal, although consuming more time than single clus-
tering methods, gives more valid solutions. The results are better when the number of
clusters to be found is low. The parameter δ can be used to speed up the algorithm,
since this can significantly decrease the number of elements in refinement. However, so
far there is no rule how to determine it in advance.

It is very important to mention here that we have used only the classical strategy
for DE (called DE/rand/1/bin in literature) with default parameters. There exist many
improvements of DE and also advanced rules how to determine parameters of the algo-
rithm to speed up its convergence. Similarly, set Λ was chosen in all experiments just by
running k-means method many times. It is therefore a topic for another research, how
to optimally choose the set of initial partitions. Results from supervised ensemble tech-
niques suggest that the most accurate algorithms are based on the idea of independent
learners, i. e. that members of ensembles should be as diverse as possible. However, this
could result in too many elements in refinement, what is not desired.

Another important note is that in all our experiments, we do not use our algorithm
for estimating the true number of clusters in data. The reason is that the minimum
of any validity criterion does not automatically correspond to partition based on true
labels. Another problems arise in noisy datasets with overlapping clusters that are very
common in practice. However, in case of gaussian clusters that are well separated and the
amount of noise is not high, it is also important to determine the number of components
in mixture, i. e. the number of clusters. Therefore, another topics for future research
are to find out how to deal with a higher number of clusters in data and how good is
our algorithm at estimating the true number of clusters.
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