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STRONG AVERAGE OPTIMALITY CRITERION FOR
CONTINUOUS-TIME MARKOV DECISION PROCESSES

Qingda Wei and Xian Chen

This paper deals with continuous-time Markov decision processes with the unbounded transi-
tion rates under the strong average cost criterion. The state and action spaces are Borel spaces,
and the costs are allowed to be unbounded from above and from below. Under mild conditions,
we first prove that the finite-horizon optimal value function is a solution to the optimality equa-
tion for the case of uncountable state spaces and unbounded transition rates, and that there
exists an optimal deterministic Markov policy. Then, using the two average optimality inequal-
ities, we show that the set of all strong average optimal policies coincides with the set of all
average optimal policies, and thus obtain the existence of strong average optimal policies. Fur-
thermore, employing the technique of the skeleton chains of controlled continuous-time Markov
chains and Chapman–Kolmogorov equation, we give a new set of sufficient conditions imposed
on the primitive data of the model for the verification of the uniform exponential ergodicity of
continuous-time Markov chains governed by stationary policies. Finally, we illustrate our main
results with an example.

Keywords: continuous-time Markov decision processes, strong average optimality crite-
rion, finite-horizon expected total cost criterion, unbounded transition rates,
optimal policy, optimal value function

Classification: 93E20, 90C40

1. INTRODUCTION

Continuous-time Markov decision processes (CTMDPs) have been deeply studied under
different optimality criteria in recent years. As is well known, the expected average
criterion is one of the most common optimality criteria, and the existence of average
optimal policies for CTMDPs has been studied via different methods and sets of condi-
tions; see, for instance, [11, 13, 14, 21, 23, 24] and the references therein. However, the
expected average criterion is rather underselective due to the fact that it neglects the
behavior of the controlled stochastic process during any finite time interval. Therefore,
some advanced optimality criteria, such as the bias, weakly overtaking and variance
minimization criteria, have been proposed; see [13] for details. Motivated by the strong
average optimality criterion for discrete-time MDPs in [3, 7, 8, 15], which evaluates the
performance of a policy over long but finite horizons, as well as in the long-run average
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sense, we are concerned with the continuous-time version (see Definition 2.2) in this
paper. To the best of our knowledge, there is no literature dealing with the strong
average optimality criterion for CTMDPs. As indicated in [3, 7, 8, 15], every strong
average optimal policy is average optimal under the nonnegativity assumption on the
costs, but the contrary is not necessarily true without further conditions. Consequently,
it is desirable for us to study the relation between the average optimality and strong av-
erage optimality. Moreover, the strong average optimality criterion provides a new way
to overcome the underselective deficiency of the expected average criterion. It should
be mentioned that we discuss the strong average optimality criterion in the class of all
randomized Markov policies whereas the advanced optimality criteria studied in [13] are
restricted to the class of all deterministic stationary policies.

In this paper, we study the strong average criterion for CTMDPs with the unbounded
transition rates in which the state and action spaces are Borel spaces, and the costs are
allowed to be unbounded from above and from below. Since the definition of the strong
average criterion involves the finite-horizon expected total cost criterion, we also need
to investigate the existence of optimal policies for CTMDPs under the finite-horizon
criterion, whose treatment is more complicated than that for discrete-time MDPs. The
finite-horizon criterion for CTMDPs has been studied by many authors; see, for instance,
[1, 4, 18] for the case of finite or denumerable states, and [9, 10, 19, 22] for the case of
a Borel state space. As can be seen in the previous literature, the common approach to
study the finite-horizon criterion for CTMDPs is via establishing the optimality equation,
and they all deal with the case of bounded transition rates except [4]. It should be noted
that the uniformization method is inapplicable in this paper because the transition rates
are allowed to be unbounded. Under mild conditions, following the technique of time-
discretization used in [4], we extend the optimality equation for finite-horizon criterion to
the case of uncountable state spaces and unbounded transition rates. Then, we show that
the finite-horizon optimal value function is a solution to the optimality equation, and
that there exists an optimal deterministic Markov policy, which have not been proven
in [4] (see Theorem 4.1 and Remark 4.2).

Basing on the two average optimality inequalities established in [11] and the existence
of optimal policies for finite-horizon criterion, under suitable conditions, we show that
the set of all strong average optimal policies coincides with the set of all average optimal
policies by using the Kolmogorov forward equation, and thus obtain the existence of
a strong average optimal stationary policy (see Theorem 4.3 and Remark 4.4). Fur-
thermore, as we can see from the existing works on the expected average criterion for
CTMDPs, the assumption that the relative difference of the discount optimal value func-
tion is bounded by an integrable function (see Assumption 3.2), which is weaker than the
uniform exponential ergodicity condition in [23, 24], plays a crucial role in ensuring the
existence of average optimal policies. However, it is difficult to verify this assumption
because it does not impose on the primitive data of the model. Thus, it is necessary to
give some sufficient conditions for the verification of this assumption; see the discussions
in [11, 21]. In this paper, we give a new set of verifiable sufficient conditions imposed
on the primitive data of the model for the verification of the uniform ω-exponential er-
godicity of continuous-time Markov chains governed by stationary policies (see Theorem
4.5 and Remark 4.6). More precisely, inspired by Theorem 2.3 in [17] concerning the
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uniform ω-geometrical ergodicity of discrete-time Markov chains, we obtain the uniform
ω-geometrical ergodicity of some skeleton chains of controlled continuous-time Markov
chains by employing the construction of the transition function with the correspond-
ing transition rates. Then, from the geometrical ergodicity of the skeleton chains and
Chapman–Kolmogorov equation, we show that our new set of sufficient conditions im-
plies the uniform ω-exponential ergodicity of controlled continuous-time Markov chains.

The rest of this paper is organized as follows. In Section 2, we introduce the con-
trol model and optimality criteria. In Section 3, we give optimality conditions for the
existence of optimal policies and some preliminary lemmas. In Section 4, we state and
prove our main results. In Section 5, we illustrate our main results with an example.

2. THE MODEL AND OPTIMALITY CRITERIA

The control model of CTMDPs under consideration is as follows:

{X, A, (A(x), x ∈ X), q(·|x, a), c(x, a)},

where X and A are state and action spaces, which are assumed to be Borel spaces with
Borel σ-algebras B(X) and B(A), respectively. A(x) ∈ B(A) denotes the set of admissible
actions at the state x ∈ X. Let K := {(x, a)| x ∈ X, a ∈ A(x)}, and assume that K is a
measurable subset of X × A and contains the graph of a measurable mapping from X
to A. The transition rates q(·|x, a) are supposed to satisfy the following properties:

• For each fixed (x, a) ∈ K, q(·|x, a) is a signed measure on B(X), and for each fixed
D ∈ B(X), q(D|·) is a real-valued Borel-measurable function on K;

• 0 ≤ q(D|x, a) < ∞ for all (x, a) ∈ K and x /∈ D ∈ B(X);

• q(X|x, a) = 0 for all (x, a) ∈ K;

• q∗(x) := supa∈A(x) |q({x}|x, a)| < ∞ for all x ∈ X.

Finally, c(x, a), a real-valued cost function, is Borel-measurable on K.
To precisely define the optimality criteria, we need to introduce the concept of a

policy.

Definition 2.1. A randomized Markov policy is a family π := {πt, t ≥ 0} of stochastic
kernels that satisfy

(i) for each t ≥ 0, πt is a stochastic kernel on A given X such that πt(A(x)|x) = 1 for
all x ∈ X;

(ii) for each D ∈ B(A), πt(D|x) is Borel-measurable in (t, x) ∈ [0,∞)×X.

A policy π is said to be (deterministic) Markov if there exists a Borel-measurable func-
tion f on [0,∞) × X with f(t, x) ∈ A(x), such that πt(·|x) is the Dirac measure at
f(t, x) ∈ A(x) for all x ∈ X and t ≥ 0. A policy π is said to be (deterministic) station-
ary if there exists a Borel-measurable function f on X with f(x) ∈ A(x) for all x ∈ X,
such that πt(·|x) is the Dirac measure at f(x) ∈ A(x) for all x ∈ X and t ≥ 0.
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We denote by Π, Πd and F the classes of all policies, deterministic Markov policies
and stationary policies, respectively. Obviously, F ⊂ Πd ⊂ Π.

To guarantee the regularity of the q-processes, we need the following drift condition
from [11, 12, 13, 21, 23, 24].

Assumption 2.1. There exist a measurable function ω ≥ 1 on X, and constants ρ1 > 0,
b1 > 0, and L > 0 such that

(i)
∫

X
ω(y)q(dy|x, a) ≤ −ρ1ω(x) + b1 for all (x, a) ∈ K.

(ii) q∗(x) ≤ Lω(x) for all x ∈ X.

Fix an initial state x ∈ X, and an initial time s ≥ 0. Then under Assumption 2.1, for
each π ∈ Π, there exist the unique probability measure Pπ

s,x on some measurable space
(Ω,B(Ω)) and a stochastic process {x(t), t ≥ s} such that

Pπ
s,x(x(t) ∈ D) = pπ(s, x, t, D)

for all D ∈ B(X) and t ≥ s ≥ 0, where pπ(s, x, t, ·) denotes the transition function
with transition rates q(·|x, πt) :=

∫
A(x)

q(·|x, a)πt(da|x). The expectation operator with
respect to Pπ

s,x is denoted by Eπ
s,x. If s = 0, we write Pπ

s,x and Eπ
s,x as Pπ

x and Eπ
x ,

respectively.
Fix a discount factor α > 0. For each x ∈ X and π ∈ Π, we define the expected

discounted cost Vα(x, π) and expected average cost J(x, π) as

Vα(x, π) := Eπ
x

[ ∫ ∞

0

∫
A

e−αtc(x(t), a)πt(da|x(t)) dt

]
and

J(x, π) := lim sup
T→∞

1
T

Eπ
x

[ ∫ T

0

∫
A

c(x(t), a)πt(da|x(t)) dt

]
,

respectively. The corresponding discount and average optimal value functions are defined
as

V ∗
α (x) := inf

π∈Π
Vα(x, π), and J∗(x) := inf

π∈Π
J(x, π) for all x ∈ X,

respectively. Furthermore, for each x ∈ X and π ∈ Π, the expected total cost from time
s ≥ 0 to the terminal time T > 0 is defined as

VT−s(x, π) := Eπ
s,x

[ ∫ T

s

∫
A

c(x(t), a)πt(da|x(t)) dt

]
,

and the corresponding finite-horizon optimal value function is given by

V ∗
T (x, s) := inf

π∈Π
VT−s(x, π) for all s ∈ [0, T ] and x ∈ X.

Definition 2.2. A policy π∗ ∈ Π is said to be

• discount optimal if Vα(x, π∗) = V ∗
α (x) for all x ∈ X;
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• average optimal if J(x, π∗) = J∗(x) for all x ∈ X;

• finite-horizon optimal if VT (x, π∗) = V ∗
T (x, 0) for all x ∈ X;

• strong average optimal if

lim sup
T→∞

1
T

[VT (x, π∗)− V ∗
T (x, 0)] = 0 for all x ∈ X. (2.1)

Remark 2.3. Under Assumptions 2.1 and 3.1(i) below, by Definition 2.2, we see that
every strong average optimal policy is average optimal. Indeed, suppose that π∗ is strong
average optimal. Then, (2.1), together with the inequality VT (x, π∗) ≥ V ∗

T (x, 0) for all
x ∈ X, implies

lim
T→∞

1
T

[VT (x, π∗)− V ∗
T (x, 0)] = 0 for all x ∈ X,

which gives

lim sup
T→∞

1
T

[VT (x, π∗)− VT (x, π)] = lim sup
T→∞

1
T

[V ∗
T (x, 0)− VT (x, π)] ≤ 0

for all x ∈ X and π ∈ Π. Hence, π∗ is average optimal.

There are three main goals in this paper: (i) We will show that the finite-horizon
optimal value function is a solution to the optimality equation for the case of uncountable
state spaces and unbounded transition rates, and the existence of optimal policies; (ii)
We will give conditions for the existence of strong average optimal policies; (iii) We will
present a new set of sufficient conditions imposed on the primitive data of the model
for the verification of the uniform ω-exponential ergodicity of controlled continuous-time
Markov chains.

3. PRELIMINARIES

In this section, we give optimality conditions for the existence of optimal policies and
some preliminary lemmas needed to prove our main results.

Assumption 3.1. (i) There exist constants ρ2 > 0, ρ3 > 0, b2 ≥ 0, b3 ≥ 0, and
M > 0 such that |c(x, a)| ≤ Mω(x),∫

X

ω2(y)q(dy|x, a) ≤ ρ2ω
2(x) + b2, and

∫
X

ω3(y)q(dy|x, a) ≤ ρ3ω
3(x) + b3

for all (x, a) ∈ K, where ω comes from Assumption 2.1.

(ii) For each x ∈ X, the set A(x) is compact.

(iii) For each fixed x ∈ X, the functions c(x, a),
∫

X
ω(y)q(dy|x, a), and

∫
X

u(y)q(dy|x, a)
are continuous in a ∈ A(x) for all bounded measurable function u on X.

Remark 3.1. Assumption 3.1 is the finiteness and standard continuity-compactness
conditions, and has been widely used for CTMDPs; see, for instance, [11, 12, 13, 21, 23,
24].



Strong average optimality criterion for CTMDPs 955

To state our third hypothesis, we need to introduce the concept of the weighted norm
used in [11, 12, 13, 16, 21, 23, 24]. Let ω ≥ 1 be as in Assumption 2.1, and define the
norm ‖u‖ω := sup

x∈X

|u(x)|
ω(x) . Bω(X) denotes the set of all real-valued measurable functions

on X with finite norm.

Assumption 3.2. There exist a function v ∈ Bω(X) and some state x̂ ∈ X such that

|hα(x)| ≤ v(x) for all x ∈ X and α > 0,

where hα(x) := V ∗
α (x)−V ∗

α (x̂) is the so-called relative difference of the discount optimal
value function V ∗

α .

Remark 3.2. Assumption 3.2 has been used in [11, 21] to ensure the existence of aver-
age optimal policies, and is weaker than the uniform ω-exponential ergodicity condition
in [23, 24]. However, since this assumption does not impose on the primitive data of the
model, it is difficult to verify it. Different sets of sufficient conditions for the verification
of this assumption have been given in [11, 21] as well. It should be mentioned that we
give a new set of verifiable sufficient conditions imposed on the primitive data of the
model for the verification of it (see Theorem 4.5).

Before stating our main result on the finite-horizon expected total cost criterion, we
need some preliminary lemmas. To do so, we introduce the notation below.

Choose a measurable function m on X satisfying m ∈ Bω(X) and m(x) > q∗(x) for
all x ∈ X. For each (x, a) ∈ K, D ∈ B(X), and h > 0, define

P (D|x, a) : =
q(D|x, a)

m(x)
+ ID(x),

Ph(D|x, a) : = [hm(x) ∧ 1]P (D|x, a) + {1− [hm(x) ∧ 1]}ID(x)

= [hm(x) ∧ 1]
q(D|x, a)

m(x)
+ ID(x), (3.1)

where y1 ∧ y2 := min{y1, y2}, and ID(·) denotes the indicator function of the set D.
Obviously, we see that for each fixed (x, a) ∈ K and h > 0, P (·|x, a) and Ph(·|x, a) are
probability measures on B(X). Thus, for each h > 0, we obtain a discrete-time MDP
model Mh as follows:

{X, A, (A(x), x ∈ X), Ph(·|x, a), hc(x, a)}.

We denote by Π̃d the class of all deterministic Markov policies for the discrete-time
MDP; see [1, 15, 16, 20] for the detailed definition. Hence, for any π ∈ Π̃d and any
initial state x ∈ X, the well-known Tulcea theorem [15, p. 178] gives the existence
of the unique probability measure P̃π

x on (X∞,B(X∞)) and there exists a stochastic
process {xn, n = 0, 1, . . .} associated with the model Mh. The expectation operator
with respect to P̃π

x is denoted by Ẽπ
x . Moreover, we denote by P̃π

n,x the conditional
probability P̃π

n,x(·) := P̃π(·|xn = x) and Ẽn,x is the corresponding expectation operator.
For each z ∈ (−∞,∞), define bzc := max{n ∈ Z| n ≤ z}, where Z denotes the set

of all integers. For each h > 0, let N := bTh−1c. For each n = 0, 1, . . . , N − 1, x ∈ X
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and π = {fk, k = 0, 1, . . .} ∈ Π̃d, we define the expected total cost from time n to time
N − 1 and the corresponding optimal value function associated with the model Mh as

V h
n (x, π) := Ẽπ

n,x

[
N−1∑
k=n

hc(xk, fk(xk))

]
and V h

n (x) := inf
π∈eΠd

V h
n (x, π), (3.2)

respectively. Define V h
N (x) := 0 for all x ∈ X. Then under Assumptions 2.1 and 3.1, it

is well known that the sequence {V h
n | n = 0, 1, . . . , N} satisfies

V h
n (x) = inf

a∈A(x)

{
hc(x, a) +

∫
X

V h
n+1(y)Ph(dy|x, a)

}
(3.3)

for all x ∈ X and n = 0, 1, . . . , N−1; see [1, 2, 5, 15, 20] for details. Replacing h with h/2
in the model Mh, we obtain the model denoted by Mh/2. For each n = 0, 1, . . . , b2Th−1c,
similar to (3.2), we can define the optimal value function V

(h/2)
n on X associated with

the model Mh/2 and obtain the similar result as in (3.3).
Next, following the technique used in [4], we have the three lemmas below, which

extend the results in [4] for denumerable states and actions to the case of Borel spaces.

Lemma 3.3. Under Assumptions 2.1 and 3.1, we have

(a) For each h > 0,
∫

X
ω(y)Ph(dy|x, a) ≤ (1 + b1h)ω(x) for all (x, a) ∈ K.

(b) V h
n ∈ Bω(X) and ‖V h

n ‖ω ≤ MTeb1T for all h > 0 and n = 0, 1, . . . , N , with M as
in Assumption 3.1.

P r o o f . (a) By Assumption 2.1 and (3.1), a straightforward calculation yields∫
X

ω(y)Ph(dy|x, a) = [hm(x) ∧ 1]
{

1
m(x)

∫
X

ω(y)q(dy|x, a)
}

+ ω(x)

≤ [hm(x) ∧ 1]
1

m(x)
(−ρ1ω(x) + b1) + ω(x)

≤ (1 + b1h)ω(x)

for all (x, a) ∈ K, and so part (a) holds.

(b) It follows from the measurable selection theorem in [16, p. 50] that V h
n is measur-

able with respect to B(X) for all h > 0 and n = 0, 1, . . . , N . Moreover, we have

|V h
N−l(x)| ≤ hM

l−1∑
k=0

(1 + b1h)kω(x) (3.4)

for all x ∈ X, h > 0 and l = 1, 2, . . . , N . In fact, by (3.3) and Assumption 3.1, we obtain

|V h
N−1(x)| ≤ h|c(x, a)| ≤ hMω(x)
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for all x ∈ X and h > 0, and so (3.4) is true for l = 1. Suppose that (3.4) holds for some
l ≥ 1. Then, using (3.3) again, we have

|V h
N−(l+1)(x)| ≤ h|c(x, a)|+

∫
X

|V h
N−l(y)|Ph(dy|x, a),

which, together with Assumption 3.1, part (a) and the induction hypothesis, gives

|V h
N−(l+1)(x)| ≤ hMω(x) + hM

l−1∑
k=0

(1 + b1h)k

∫
X

ω(y)Ph(dy|x, a)

≤ hM

l∑
k=0

(1 + b1h)kω(x)

for all x ∈ X and h > 0, and so (3.4) follows from the induction. Thus, by (3.4) and the
inequality 1 + z ≤ ez for all z > 0, we have

|V h
N−l(x)| ≤ hlMeb1hlω(x) ≤ MTeb1T ω(x)

for all x ∈ X, h > 0 and l = 1, 2, . . . , N . Hence, we get the desired result. �

Lemma 3.4. Under Assumptions 2.1 and 3.1, the following inequality holds:

V
(h/2)
2n (x) ≤V h

n (x) +
N−n−1∑

l=0

L∗h2(1 + ρ3h + b3h)lω3(x)

+ L∗h(1 + ρ3h + b3h)N−nω3(x) (3.5)

for all x ∈ X, h > 0 and n = 0, 1, . . . , N , where the constant L∗ := M + [M +
1
4MTeb1T (ρ2 + b2 + 2L) + MTeb1T ‖m‖ω](b1 + 2L) is independent of h and n.

P r o o f . We will show this lemma by induction. For n = N , we have

V
(h/2)
2N (x)− V h

N (x) = I{2N<bT (h/2)−1c} inf
a∈A(x)

{(h/2)c(x, a)} ≤ hMω(x)

for all x ∈ X. Thus, (3.5) is true for n = N . Assume that (3.5) holds for some n = k+1.
Then, using (3.3), we obtain

V
(h/2)
2k (x) = inf

a∈A(x)

{
h

2
c(x, a) +

∫
X

V
(h/2)
2k+1 (y)Ph

2
(dy|x, a)

}
,

which implies

V
(h/2)
2k (x)

≤ inf
a∈A(x)

{
h

2
c(x, a) +

∫
X

[
h

2
c(y, a) +

∫
X

V
(h/2)
2k+2 (z)Ph

2
(dz|y, a)

]
Ph

2
(dy|x, a)

}
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= inf
a∈A(x)

{
hc(x, a) +

∫
X

V
(h/2)
2k+2 (y)Ph(dy|x, a) +

h

2

∫
X

[c(y, a)− c(x, a)]Ph
2
(dy|x, a)

+
∫

X

∫
X

V
(h/2)
2k+2 (z)Ph

2
(dz|y, a)Ph

2
(dy|x, a)−

∫
X

V
(h/2)
2k+2 (y)Ph(dy|x, a)

}
(3.6)

for all x ∈ X. Moreover, direct calculations, together with (3.1), Lemma 3.3, Assump-
tions 2.1 and 3.1, yield

∣∣∣∣ ∫
X

[c(y, a)− c(x, a)]Ph
2
(dy|x, a)

∣∣∣∣ = [(h/2)m(x) ∧ 1]
∣∣∣∣ 1
m(x)

∫
X

c(y, a)q(dy|x, a)
∣∣∣∣

≤ hM

2

[ ∫
X

ω(y)q(dy|x, a) + 2q∗(x)ω(x)
]

≤ h

2
M(b1 + 2L)ω2(x), (3.7)

and ∣∣∣∣ ∫
X

∫
X

V
(h/2)
2k+2 (z)Ph

2
(dz|y, a)Ph

2
(dy|x, a)−

∫
X

V
(h/2)
2k+2 (y)Ph(dy|x, a)

∣∣∣∣
=

∣∣∣∣ ∫
X

[ ∫
X

(
V

(h/2)
2k+2 (z)− V

(h/2)
2k+2 (y)

)
Ph

2
(dz|y, a)

]
Ph

2
(dy|x, a)

−
[ ∫

X

V
(h/2)
2k+2 (y)Ph

2
(dy|x, a)− V

(h/2)
2k+2 (x)

]
+2

[ ∫
X

V
(h/2)
2k+2 (y)Ph

2
(dy|x, a)− V

(h/2)
2k+2 (x)

]
−

[ ∫
X

V
(h/2)
2k+2 (y)Ph(dy|x, a)− V

(h/2)
2k+2 (x)

]∣∣∣∣
=

∣∣∣∣[(h/2)m(x) ∧ 1]
1

m(x)

∫
X

[ ∫
X

(
V

(h/2)
2k+2 (z)− V

(h/2)
2k+2 (y)

)
Ph

2
(dz|y, a)

]
q(dy|x, a)

+
(
2[(h/2)m(x) ∧ 1]− [hm(x) ∧ 1]

) 1
m(x)

∫
X

V
(h/2)
2k+2 (y)q(dy|x, a)

∣∣∣∣
=

∣∣∣∣[(h/2)m(x) ∧ 1]2
1

m2(x)

∫
X

[ ∫
X

V
(h/2)
2k+2 (z)q(dz|y, a)

]
q(dy|x, a)

+
(
2[(h/2)m(x) ∧ 1]− [hm(x) ∧ 1]

) 1
m(x)

∫
X

V
(h/2)
2k+2 (y)q(dy|x, a)

∣∣∣∣
≤ h2

4
MTeb1T

∫
X

[ ∫
X

ω(z)q(dz|y, a) + 2q∗(y)ω(y)
]
|q(dy|x, a)|

+h2MTeb1T m(x)
[ ∫

X

ω(y)q(dy|x, a) + 2q∗(x)ω(x)
]

≤ 1
4
MTeb1T

(
ρ2 + b2 + 2L + 4‖m‖ω

)
(b1 + 2L)h2ω3(x) (3.8)
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for all (x, a) ∈ K, where the first inequality is due to the following fact that

2[(h/2)m(x) ∧ 1]− [hm(x) ∧ 1] =

 0, if hm(x) < 1,
hm(x)− 1, if 1 ≤ hm(x) < 2,
1, if hm(x) ≥ 2.

Hence, by (3.6) – (3.8) and the induction hypothesis, we have

V
(h/2)
2k (x)

≤ inf
a∈A(x)

{
hc(x, a) +

∫
X

V
(h/2)
2k+2 (y)Ph(dy|x, a)

}
+

[
1
4
M +

1
4
MTeb1T

(
ρ2 + b2 + 2L + 4‖m‖ω

)]
(b1 + 2L)h2ω3(x)

≤ inf
a∈A(x)

{
hc(x, a) +

∫
X

V h
k+1(y)Ph(dy|x, a) +

[ N−k−2∑
l=0

L∗h2(1 + ρ3h + b3h)l

+L∗h(1 + ρ3h + b3h)N−k−1

] ∫
X

ω3(y)Ph(dy|x, a)
}

+
[
1
4
M +

1
4
MTeb1T

(
ρ2 + b2 + 2L + 4‖m‖ω

)]
(b1 + 2L)h2ω3(x)

≤ V h
k (x) +

[ N−k−2∑
l=0

L∗h2(1 + ρ3h + b3h)l+1 + L∗h(1 + ρ3h + b3h)N−k + L∗h2

]
ω3(x)

= V h
k (x) +

[ N−k−1∑
l=0

L∗h2(1 + ρ3h + b3h)l + L∗h(1 + ρ3h + b3h)N−k

]
ω3(x)

for all x ∈ X, where the third inequality is due to the fact that∫
X

ω3(y)Ph(dy|x, a) = [hm(x) ∧ 1]
{

1
m(x)

∫
X

ω3(y)q(dy|x, a)
}

+ ω3(x)

≤ (1 + ρ3h + b3h)ω3(x)

for all (x, a) ∈ K. This completes the proof of the lemma. �

Lemma 3.5. Under Assumptions 2.1 and 3.1, there exists a measurable function V on
X × [0, T ] such that for all x ∈ X and t ∈ [0, T ],

V h
bth−1c(x) → V (x, t) as h = 2−k and k →∞.

P r o o f . Fix any t ∈ [0, T ]. For each n = 0, 1, . . . , b(T − t)h−1c − 1, x ∈ X and
π = {fk, k = 0, 1, . . .} ∈ Π̃d, we define

V
h

n(x, π) := Ẽπ
n,x

b(T−t)h−1c−1∑
k=n

hc(xk, fk(xk))

 and V
h

n(x) := inf
π∈eΠd

V
h

n(x, π). (3.9)



960 Q. D. WEI AND X. CHEN

Then under Assumptions 2.1 and 3.1, employing Theorem 2.3.8 in [1], we have that
there exists a policy π∗ = {f∗k , k = 0, 1, . . .} ∈ Π̃d such that V

h

0 (x) = V
h

0 (x, π∗) for all
x ∈ X. Let π̃ = {f̃k, k = 0, 1, . . .} ∈ Π̃d be a policy satisfying f̃k = f∗k−N+b(T−t)h−1c for
all k = N − b(T − t)h−1c, . . . , N − 1. Thus, we have

V
h

0 (x) = V
h

0 (x, π∗) = V h
N−b(T−t)h−1c(x, π̃) ≥ V h

N−b(T−t)h−1c(x) (3.10)

for all x ∈ X, where the second equality follows from Tulcea theorem in [15, p.178]. On
the other hand, by the similar arguments of (3.10), we get V

h

0 (x) ≤ V h
N−b(T−t)h−1c(x)

for all x ∈ X. Hence, we have

V
h

0 (x) = V h
N−b(T−t)h−1c(x) for all x ∈ X. (3.11)

For simplicity, we write V
2−k

n as V
k

n. Then, by Lemma 3.4 and the inequality 1+ z ≤ ez

for all z > 0, we have

V
(k+1)

0 (x) ≤ V
k

0(x) +
[ N−1∑

l=0

2−2kL∗(1 + 2−kρ3 + 2−kb3)l

+ 2−kL∗(1 + 2−kρ3 + 2−kb3)N

]
ω3(x)

≤ V
k

0(x) + L∗(T + 1)e(ρ3+b3)T 2−kω3(x) (3.12)

for all x ∈ X and k = 0, 1, . . .. Iterating (3.12), we obtain

V
(n+l)

0 (x) ≤ V
n

0 (x) + 2−nL∗(T + 1)e(ρ3+b3)T
l−1∑
j=0

2−jω3(x)

≤ V
n

0 (x) + 2−n+1L∗(T + 1)e(ρ3+b3)T ω3(x)

for all x ∈ X, n = 0, 1, . . . , and l = 1, 2, . . ., which gives

lim sup
l→∞

V
l

0(x) ≤ V
n

0 (x) + 2−n+1L∗(T + 1)e(ρ3+b3)T ω3(x) (3.13)

for all x ∈ X, n = 0, 1, . . .. Thus, by (3.13), we see that lim
k→∞

V
k

0(x) exists and denote

V (x, t) := lim
k→∞

V
k

0(x) for all x ∈ X. (3.14)

Observe that

t− h < bth−1ch ≤ t and t− h < (N − b(T − t)h−1c)h < t + h,

together with (3.3) and (3.11), yield

V h
bth−1c(x) = V

h

0 (x), or V h
bth−1c(x) = inf

a∈A(x)

{
hc(x, a) +

∫
X

V
h

0 (y)Ph(dy|x, a)
}

(3.15)



Strong average optimality criterion for CTMDPs 961

for all x ∈ X. Hence, it follows from (3.15) and Lemma 3.3 that∣∣V h
bth−1c(x)− V

h

0 (x)
∣∣ ≤ sup

a∈A(x)

∣∣∣∣hc(x, a) +
∫

X

V
h

0 (y)Ph(dy|x, a)− V
h

0 (x)
∣∣∣∣

= sup
a∈A(x)

∣∣∣∣hc(x, a) + [hm(x) ∧ 1]
1

m(x)

∫
X

V
h

0 (y)q(dy|x, a)
∣∣∣∣

≤ [1 + Teb1T (b1 + 2L)]Mhω2(x) (3.16)

for all x ∈ X. Therefore, the following inequality∣∣V h
bth−1c(x)− V (x, t)

∣∣ ≤ ∣∣V h
bth−1c(x)− V

h

0 (x)
∣∣ +

∣∣V h

0 (x)− V (x, t)
∣∣

for all x ∈ X, together with (3.14) and (3.16), implies the desired result. �

Now we give the following lemma which is used to prove our main results.

Lemma 3.6. Under Assumptions 2.1 and 3.1(iii), the following assertions hold.

(a) For each x ∈ X and u ∈ Bω(X),
∫

X
u(y)q(dy|x, a) is continuous in a ∈ A(x).

(b) Let {un : n ≥ 1} be a bounded sequence in Bω(X) (i. e., there exists a constant
L > 0 such that ‖un‖ω ≤ L for all n ≥ 1), and lim

n→∞
un = u. Then, for any x ∈ X

and any sequence {an : n ≥ 1} in A(x) such that an → a∗ in A(x), we have

lim
n→∞

∫
X

un(y)q(dy|x, an) =
∫

X

u(y)q(dy|x, a∗).

P r o o f . (a) Let ũ := u+ ‖u‖ωω. Then, we have ũ ≥ 0 and ũ ∈ Bω(X). For each k ≥ 1,
define uk := ũ ∧ k. Fix any x ∈ X. Let {an : n ≥ 1} be a sequence in A(x) converging
to a ∈ A(x). By Assumption 3.1(iii), we have

q(x|x, an) =
∫

X

I{x}(y)q(dy|x, an) →
∫

X

I{x}(y)q(dy|x, a) = q(x|x, a) as n →∞.

For each k ≥ 1, applying Assumption 3.1(iii) to uk, we obtain

lim inf
n→∞

∫
X\{x}

ũ(y)q(dy|x, an) ≥ lim inf
n→∞

∫
X\{x}

uk(y)q(dy|x, an)

= lim inf
n→∞

[∫
X

uk(y)q(dy|x, an)− uk(x)q(x|x, an)
]

=
∫

X\{x}
uk(y)q(dy|x, a),

which, together with the monotone convergence theorem in [15, p. 170], gives

lim inf
n→∞

∫
X\{x}

ũ(y)q(dy|x, an) ≥
∫

X\{x}
ũ(y)q(dy|x, a).
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Note that lim
n→∞

ũ(x)q(x|x, an) = ũ(x)q(x|x, a). Hence, we get

lim inf
n→∞

∫
X

ũ(y)q(dy|x, an) ≥
∫

X

ũ(y)q(dy|x, a).

Since u = ũ− ‖u‖ωω and
∫

X
ω(x)q(y|x, a) is continuous in a ∈ A(x), we have

lim inf
n→∞

∫
X

u(y)q(dy|x, an) ≥
∫

X

u(y)q(dy|x, a).

Replacing u with −u, we obtain

lim
n→∞

∫
X

u(y)q(dy|x, an) =
∫

X

u(y)q(dy|x, a),

and so part (a) holds.

(b) For each k ≥ 1, applying part (a) to Uk := infn≥k un ∈ Bω(X), we have

lim inf
n→∞

∫
X\{x}

un(y)q(dy|x, an) ≥ lim inf
n→∞

∫
X\{x}

Uk(y)q(dy|x, an)

= lim inf
n→∞

[∫
X

Uk(y)q(dy|x, an)− Uk(x)q(x|x, an)
]

=
∫

X\{x}
Uk(y)q(dy|x, a∗).

Observe that |Uk(x)| ≤ Lω(x) for all x ∈ X and k ≥ 1. Thus, by Assumption 2.1, we
obtain ∫

X\{x}
|Uk(y)|q(dy|x, a) ≤ L

∫
X\{x}

ω(y)q(dy|x, a) ≤ L(b1 + L)ω2(x)

for all (x, a) ∈ K, which, together with the dominated convergence theorem in [15,
p. 171] and Assumption 3.1(iii), yields

lim inf
n→∞

∫
X

un(y)q(dy|x, an) ≥ lim inf
n→∞

∫
X\{x}

un(y)q(dy|x, an) + lim inf
n→∞

un(x)q(x|x, an)

≥ lim
k→∞

∫
X\{x}

Uk(y)q(dy|x, a∗) + u(x)q(x|x, a∗)

=
∫

X

u(y)q(dy|x, a∗).

Using the similar arguments, we have

lim sup
n→∞

∫
X

un(y)q(dy|x, an) ≤
∫

X

u(y)q(dy|x, a∗).

Hence, we obtain the desired result. �
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For any s ∈ [0, T ], a function u on X × [s, T ] is said to be [s, T ]-uniformly ω2-
bounded if it is B(X × [s, T ])-measurable and there exists a constant M̃ > 0 such that
|u(x, t)| ≤ M̃ω2(x) for all (x, t) ∈ X × [s, T ].

Then we have the following lemma.

Lemma 3.7. For any s ∈ [0, T ], z ∈ X, and π ∈ Π, define

Hs,z :=
{

u : u is [s, T ]-uniformly ω2-bounded and satisfies∫ T

s

∫
X

∫
X

[
−

∫ T

t

u(y, v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt

=
∫ T

s

u(z, t) dt−
∫ T

s

∫
X

u(y, t)pπ(s, z, t,dy) dt

}
.

Then, under Assumptions 2.1 and 3.1, the set Hs,z contains all [s, T ]-uniformly ω2-
bounded functions.

P r o o f . It follows from Assumptions 2.1, 3.1, and Theorem 3.1 in [12] that∫ T

s

∫
X

∫
X

ω2(y)|q(dy|x, πt)|pπ(s, z, t,dx) dt

≤
∫ T

s

∫
X

[ρ2 + b2 + 2L]ω3(x)pπ(s, z, t,dx) dt

≤
[
ρ2 + b2 + 2L

] ∫ T

s

[
eρ3(t−s)ω3(z) +

b3

ρ3
(eρ3(t−s) − 1)

]
dt

≤
[
ρ2 + b2 + 2L

][
eρ3(T−s)ω3(z) +

b3

ρ3
(eρ3(T−s) − 1)

]
(T − s). (3.17)

Hence, if u is [s, T ]-uniformly ω2-bounded, by (3.17), we have∫ T

s

∫
X

∫
X

∣∣∣∣− ∫ T

t

u(y, v) dv

∣∣∣∣|q(dy|x, πt)|pπ(s, z, t,dx) dt < ∞. (3.18)

Therefore,
∫ T

s

∫
X

∫
X

[−
∫ T

t
u(y, v) dv]q(dy|x, πt)pπ(s, z, t,dx) dt is well defined. Similarly,

we can show that
∫ T

s

∫
X

u(y, t)pπ(s, z, t,dy) dt is well defined. Define C := {B × [k, l] :
B ∈ B(X), s ≤ k ≤ l ≤ T}. Then, we see that C is a π-system and X × [s, T ] ∈ C.
Next, we will use the monotone class theorem to show that Hs,z contains all bounded
B(X × [s, T ])-measurable functions.

(i) For any B× [k, l] ∈ C, we will show that IB(y)I[k,l](t) ∈ Hs,z. By the Kolmogorov
forward equation and direct calculations, we have∫ T

s

∫
X

∫
X

[
−

∫ T

t

IB(y)I[k,l](v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt
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=
∫ T

s

∫
X

∫
X

IB(y)[(k ∨ t) ∧ l − l]q(dy|x, πt)pπ(s, z, t,dx) dt

= (k − l)
∫ k

s

∫
X

q(B|x, πt)pπ(s, z, t,dx) dt +
∫ l

k

∫
X

(t− l)q(B|x, πt)pπ(s, z, t,dx) dt

= (k − l)
∫ k

s

∂pπ(s, z, t, B)
∂t

dt +
∫ l

k

(t− l)
∂pπ(s, z, t, B)

∂t
dt

= −(k − l)IB(z)−
∫ l

k

pπ(s, z, t, B) dt

=
∫ T

s

IB(z)I[k,l](t) dt−
∫ T

s

∫
X

IB(y)I[k,l](t)pπ(s, z, t,dy) dt,

where y1 ∨ y2 := max{y1, y2}. Hence, we have IB(y)I[k,l](t) ∈ Hs,z.

(ii) If 0 ≤ un ∈ Hs,z(n = 1, 2, . . .), un ↑ u0 and u0 is bounded, we will show that
u0 ∈ Hs,z. By the monotone convergence theorem in [15, p. 170], we see that∫ T

s

un(z, t) dt−
∫ T

s

∫
X

un(y, t)pπ(s, z, t,dy) dt

→
∫ T

s

u0(z, t) dt−
∫ T

s

∫
X

u0(y, t)pπ(s, z, t,dy) dt

as n → ∞. Since every bounded B(X × [s, T ])-measurable function is [s, T ]-uniformly
ω2-bounded, u0 satisfies (3.18). Thus, we have∫ T

s

∫
X

∫
X\{x}

∫ T

t

u0(y, v) dvq(dy|x, πt)pπ(s, z, t,dx) dt < ∞, and

∫ T

s

∫
X

∫ T

t

u0(x, v) dvq(x|x, πt)pπ(s, z, t,dx) dt < ∞.

Hence, using the monotone convergence theorem, we obtain∫ T

s

∫
X

∫
X

[
−

∫ T

t

un(y, v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt

=
∫ T

s

∫
X

∫
X\{x}

[
−

∫ T

t

un(y, v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt

+
∫ T

s

∫
X

[
−

∫ T

t

un(x, v) dv

]
q(x|x, πt)pπ(s, z, t,dx) dt

→
∫ T

s

∫
X

∫
X

[
−

∫ T

t

u0(y, v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt,

as n →∞. From the above discussion, we get u0 ∈ Hs,z.
It is obvious that Hs,z is a linear space. Thus, it follows from (i), (ii), and the mono-

tone class theorem that Hs,z contains all bounded B(X × [s, T ])-measurable functions.
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For any [s, T ]-uniformly ω2-bounded function u, we have u = u+ − u−, where u+ =
u∨ 0 and u− = (−u)∨ 0. Since Hs,z is a linear space, without loss of generality, we may
assume u ≥ 0. For each n ≥ 1, define un := u∧n. Then, un is a bounded B(X × [s, T ])-
measurable function, and so un ∈ Hs,z for each n ≥ 1. Using the similar proof of (ii),
we have u ∈ Hs,z. Hence, Hs,z contains all [s, T ]-uniformly ω2-bounded functions. �

Finally, for ease of reference, we state the following lemma from [11], which is used
to prove the existence of strong average optimal policies.

Lemma 3.8. Under Assumptions 2.1, 3.1, and 3.2, the following statements hold.

(a) There exist a constant g∗, two functions u1, u2 ∈ Bω(X), and a stationary policy
f∗ ∈ F , satisfying the following two average optimality inequalities:

g∗ ≤ inf
a∈A(x)

{
c(x, a) +

∫
X

u1(y)q(dy|x, a)
}

,

g∗ ≥ inf
a∈A(x)

{
c(x, a) +

∫
X

u2(y)q(dy|x, a)
}

(3.19)

= c(x, f∗(x)) +
∫

X

u2(y)q(dy|x, f∗(x)) (3.20)

for all x ∈ X.

(b) g∗ = J∗(x) = J(x, f∗) for all x ∈ X.

P r o o f . See Theorem 4.2 in [11] for the proof. �

4. MAIN RESULTS

In this section, we state and prove our main results.
Now we present the result on the finite-horizon expected total cost criterion.

Theorem 4.1. Under Assumptions 2.1 and 3.1, the following statements hold.

(a) The finite-horizon optimal value function V ∗
T on X × [0, T ] is a solution to the

following equation: for each x ∈ X and t ∈ [0, T ],

u(x, t) =
∫ T

t

inf
a∈A(x)

{
c(x, a) +

∫
X

u(y, s)q(dy|x, a)
}

ds,

where the measurable function u on X×[0, T ] satisfies supx∈X supt∈[0,T ]
|u(x,t)|

ω(x) <∞.

(b) There exists an optimal deterministic Markov policy π∗T (depending on T ).

P r o o f . (a) Fix any t ∈ [0, T ]. For each h > 0, define the operators G and Gh on
Bω(X) as follows:

Gu(x) := inf
a∈A(x)

{
c(x, a) +

∫
X

u(y)q(dy|x, a)
}
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Ghu(x) := h−1

[
inf

a∈A(x)

{
hc(x, a) +

∫
X

u(y)Ph(dy|x, a)
}
− u(x)

]
for all u ∈ Bω(X) and x ∈ X. Then, by (3.3), we have

V h
k (x)− V h

k+1(x) = hGhV h
k+1(x)

for all x ∈ X, h > 0, and k = 0, 1, . . . , N − 1, which gives

V h
bth−1c(x)

=
N−bth−1c∑

k=1

hGhV h
bth−1c+k(x)

=
N−bth−1c∑

k=1

hGV h
bth−1c+k(x) +

N−bth−1c∑
k=1

h
(
GhV h

bth−1c+k(x)−GV h
bth−1c+k(x)

)
=

∫ Nh

bth−1ch
GV h

bsh−1c+1(x) ds +
N−bth−1c∑

k=1

h
(
GhV h

bth−1c+k(x)−GV h
bth−1c+k(x)

)
(4.1)

for all x ∈ X and h > 0. Moreover, we have∣∣GhV h
bth−1c+k(x)−GV h

bth−1c+k(x)
∣∣

≤ sup
a∈A(x)

∣∣∣∣h−1

∫
X

V h
bth−1c+k(y)Ph(dy|x, a)− h−1V h

bth−1c+k(x)

−
∫

X

V h
bth−1c+k(y)q(dy|x, a)

∣∣∣∣
= sup

a∈A(x)

∣∣∣∣{[m(x) ∧ h−1]
1

m(x)
− 1

} ∫
X

V h
bth−1c+k(y)q(dy|x, a)

∣∣∣∣
≤

{
1− [m(x) ∧ h−1]

1
m(x)

}
MTeb1T (b1 + 2L)ω2(x)

≤
{

1− [m(x) ∧ h−1]
1

m(x)

}
1

m(x)
‖m‖ωMTeb1T (b1 + 2L)ω3(x)

≤ ‖m‖ωMTeb1T (b1 + 2L)hω3(x) (4.2)

for all x ∈ X, h > 0, and k = 1, . . . , N − bth−1c, where the first equality follows from
(3.1), and the second and fourth inequalities are due to Lemma 3.3, Assumption 2.1,
and the following fact that if m(x) > h−1,{

1− [m(x) ∧ h−1]
1

m(x)

}
1

m(x)
=

(
1− 1

hm(x)

)
1

m(x)
≤ h;

if m(x) ≤ h−1, {
1− [m(x) ∧ h−1]

1
m(x)

}
1

m(x)
= 0 ≤ h.
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Hence, by (4.2), we obtain∣∣∣∣∣∣
N−bth−1c∑

k=1

h
(
GhV h

bth−1c+k(x)−GV h
bth−1c+k(x)

)∣∣∣∣∣∣
≤ (N − bth−1c)h‖m‖ωMTeb1T (b1 + 2L)hω3(x)
≤ ‖m‖ωMT 2eb1T (b1 + 2L)hω3(x)

for all x ∈ X and h > 0, which implies

N−bth−1c∑
k=1

h
(
GhV h

bth−1c+k(x)−GV h
bth−1c+k(x)

)
→ 0 as h = 2−l and l →∞ (4.3)

for all x ∈ X. Note that

V h
bsh−1c+1(x) = V h

bsh−1c(x)− hGhV h
bsh−1c+1(x),

and∣∣hGhV h
bsh−1c+1(x)

∣∣ ≤ sup
a∈A(x)

{
hMω(x) +

∣∣∣∣[hm(x) ∧ 1]
1

m(x)

∫
X

V h
bsh−1c+1(y)q(dy|x, a)

∣∣∣∣}
≤

[
Teb1T (b1 + 2L) + 1

]
Mhω2(x)

for all x ∈ X, s ∈ [0, T ], and h > 0, together with Lemma 3.5, yield

V h
bsh−1c+1(x) → V (x, s) as h = 2−l and l →∞. (4.4)

Define

Hl(x) :=
∫ ∞

−∞
I[b2ltc2−l,N(l)2−l](s) inf

a∈A(x)

{
c(x, a) +

∫
X

V 2−l

b2lsc+1(y)q(dy|x, a)
}

ds

for all x ∈ X and l = 0, 1, . . ., where N(l) := bT2lc. Observe that∣∣∣∣ inf
a∈A(x)

{
c(x, a) +

∫
X

V 2−l

b2lsc+1(y)q(dy|x, a)
}
− inf

a∈A(x)

{
c(x, a) +

∫
X

V (y, s)q(dy|x, a)
}∣∣∣∣

≤ sup
a∈A(x)

∣∣∣∣ ∫
X

V 2−l

b2lsc+1(y)q(dy|x, a)−
∫

X

V (y, s)q(dy|x, a)
∣∣∣∣ (4.5)

for all x ∈ X and s ∈ [0, T ]. Moreover, for each fixed x ∈ X, s ∈ [0, T ], and each l ≥ 1,
Assumption 3.1, Lemmas 3.3 and 3.6 give the existence of al ∈ A(x) such that

sup
a∈A(x)

∣∣∣∣ ∫
X

V 2−l

b2lsc+1(y)q(dy|x, a)−
∫

X

V (y, s)q(dy|x, a)
∣∣∣∣

=
∣∣∣∣ ∫

X

V 2−l

b2lsc+1(y)q(dy|x, al)−
∫

X

V (y, s)q(dy|x, al)
∣∣∣∣.
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Next, we will show that for each x ∈ X and s ∈ [0, T ],∣∣∣∣ ∫
X

V 2−l

b2lsc+1(y)q(dy|x, al)−
∫

X

V (y, s)q(dy|x, al)
∣∣∣∣ → 0 (4.6)

as l → ∞. Suppose that (4.6) is not true. Then, there exist a constant ε > 0 and a
subsequence {li} of {l} such that∣∣∣∣ ∫

X

V 2−li

b2lisc+1(y)q(dy|x, ali)−
∫

X

V (y, s)q(dy|x, ali)
∣∣∣∣ ≥ ε (4.7)

for all i ≥ 1. Since A(x) is compact, there exists a subsequence of {li} (still denoted by
{li}) such that lim

i→∞
ali =: a for some a ∈ A(x). Thus, by Lemmas 3.3, 3.6, and (4.4),

we get ∣∣∣∣ ∫
X

V 2−li

b2lisc+1(y)q(dy|x, ali)−
∫

X

V (y, s)q(dy|x, ali)
∣∣∣∣ → 0

as i → ∞, which contradicts (4.7), and so (4.6) holds. Hence, for each x ∈ X, the
dominated convergence theorem in [15, p. 171], Lemma 3.5, (4.1), (4.3), (4.5) and (4.6)
give

V (x, t) = lim
l→∞

Hl(x) =
∫ T

t

inf
a∈A(x)

{
c(x, a) +

∫
X

V (y, s)q(dy|x, a)
}

ds. (4.8)

Therefore, for each x ∈ X, the function V (x, ·) is absolutely continuous on [0, T ]. Using
the similar proof of (4.6), we can show that for each x ∈ X, the function

inf
a∈A(x)

{
c(x, a) +

∫
X

V (y, s)q(dy|x, a)
}

is continuous in s ∈ [0, T ], which, together with (4.8), yields that the partial derivative
of V with respect to the second variable t exists, denoted by ∂V

∂t . By Assumptions 2.1,
3.1, and Theorem 3.1 in [12], we obtain∣∣∣∣Eπ

s,x

[ ∫ T

s

∫
A

c(x(t), a)πt(da|x(t)) dt

]∣∣∣∣ ≤ M

∫ T

s

[
eρ1(t−s)ω(x) +

b1

ρ1

(
eρ1(t−s) − 1

)]
dt

≤ MT

[
eρ1T +

b1

ρ1
(eρ1T − 1)

]
ω(x)

for all π ∈ Π, x ∈ X, and s ∈ [0, T ], which gives

sup
x∈X

sup
t∈[0,T ]

|V ∗
T (x, t)|
ω(x)

≤ MT

[
eρ1T +

b1

ρ1
(eρ1T − 1)

]
< ∞.

By (4.8), we have

− ∂V

∂t
(x, t) = inf

a∈A(x)

{
c(x, a) +

∫
X

V (y, t)q(dy|x, a)
}

(4.9)
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for all x ∈ X and t ∈ [0, T ]. Then, by (4.9), we obtain

− ∂V

∂t
(x, t) ≤ c(x, πt) +

∫
X

V (y, t)q(dy|x, πt) (4.10)

for all π ∈ Π, t ∈ [0, T ], and x ∈ X, where c(x, πt) :=
∫

A(x)
c(x, a)πt(da|x). Since

V (x, T ) = 0 for all x ∈ X, we have V (x, t) = −
∫ T

t
∂V
∂v (x, v) dv for each t ∈ [0, T ].

Hence, it follows from (4.10), Fubini theorem, and Theorem 2.5 in [13, p. 15] that for
each π ∈ Π, z ∈ X, and s ∈ [0, T ],

−
∫ T

s

∫
X

∂V

∂t
(x, t)pπ(s, z, t,dx) dt

≤
∫ T

s

∫
X

c(x, πt)pπ(s, z, t,dx) dt +
∫ T

s

∫
X

∫
X

V (y, t)q(dy|x, πt)pπ(s, z, t,dx) dt

= VT−s(z, π) +
∫ T

s

∫
X

∫
X

[
−

∫ T

t

∂V

∂v
(y, v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt. (4.11)

Moreover, it follows from Assumptions 2.1, 3.1, Lemmas 3.3 and 3.5 that∣∣∣∣c(x, a) +
∫

X

V (y, t)q(dy|x, a)
∣∣∣∣ ≤ Mω(x) + MTeb1T

∫
X

ω(y)|q(dy|x, a)|

≤ [M + MTeb1T (b1 + 2L)]ω2(x) (4.12)

for all (x, a) ∈ K and t ∈ [0, T ]. Using (4.9), (4.12), Assumption 3.1, and Theorem 3.1
in [12], we see that for each π ∈ Π, z ∈ X, and s ∈ [0, T ],∣∣∣∣ ∫ T

s

∫
X

∂V

∂t
(x, t)pπ(s, z, t,dx) dt

∣∣∣∣
≤ [M + MTeb1T (b1 + 2L)]

∫ T

s

∫
X

ω2(x)pπ(s, z, t,dx) dt

≤ [M + MTeb1T (b1 + 2L)]
∫ T

s

[
eρ2(t−s)ω2(z) +

b2

ρ2
(eρ2(t−s) − 1)

]
dt

≤ [MT + MT 2eb1T (b1 + 2L)]
[
eρ2T +

b2

ρ2

(
eρ2T − 1

)]
ω2(z).

From (4.12), we have that ∂V
∂t is a [s, T ]-uniformly ω2-bounded function. Thus, by

Lemma 3.7, for each π ∈ Π, z ∈ X, and s ∈ [0, T ], we obtain∫ T

s

∫
X

∫
X

[
−

∫ T

t

∂V

∂v
(y, v) dv

]
q(dy|x, πt)pπ(s, z, t,dx) dt

= −V (z, s)−
∫ T

s

∫
X

∂V

∂t
(y, t)pπ(s, z, t,dy) dt,

which, together with (4.11), yields V (z, s) ≤ VT−s(z, π). Since π is arbitrary, we have

V (z, s) ≤ V ∗
T (z, s) for all z ∈ X and s ∈ [0, T ]. (4.13)
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On the other hand, Assumption 3.1 and the measurable selection theorem in [16, p. 50]
give the existence of a Borel-measurable function f∗ on [0, T ] ×X satisfying f∗(t, x) ∈
A(x) and

−∂V

∂t
(x, t) = c(x, f∗(t, x)) +

∫
X

V (y, t)q(dy|x, f∗(t, x))

for all x ∈ X and t ∈ [0, T ]. For a policy π∗ = {π∗t , t ≥ 0} ∈ Πd with π∗t (·|x) = δf∗(t,x)(·)
for all x ∈ X and t ∈ [0, T ], where δa(·) is the Dirac measure at a ∈ A, following the
arguments of (4.13), we obtain

V (z, s) = VT−s(z, π∗) ≥ V ∗
T (z, s) for all z ∈ X and s ∈ [0, T ]. (4.14)

Therefore, by (4.13) and (4.14), we have V (z, s) = V ∗
T (z, s) for all z ∈ X and s ∈ [0, T ].

(b) The existence of an optimal deterministic Markov policy π∗T follows obviously
from (4.13) and (4.14). �

Remark 4.2. The optimality equation for finite-horizon expected total cost criterion
has been established in [18] for finite states and finite actions, in [1] for bounded transi-
tion rates and denumerable state spaces, in [9, 10, 19, 22] for bounded transition rates
and Borel state spaces, and in [4] for unbounded transition rates and denumerable state
spaces. Theorem 4.1 extends the optimality equation in the aforementioned works to the
case of unbounded transition rates and Borel spaces. It should be mentioned that the
existence of optimal policies and the result that the finite-horizon optimal value function
is a solution to the optimality equation have not been discussed in [4]. Moreover, the
uniformization technique is inapplicable to the case of unbounded transition rates.

Next, we give the result on the existence of a strong average optimal policy.

Theorem 4.3. Under Assumptions 2.1, 3.1, and 3.2, the following statements hold.

(a) Every average optimal policy is strong average optimal.

(b) Any stationary policy f ∈ F that attains the minimum of (3.19) is strong average
optimal, and so f∗ in (3.20) is a strong average optimal policy.

P r o o f . (a) We will first show the following equality

lim
T→∞

1
T

V ∗
T (x, 0) = g∗ for all x ∈ X, (4.15)

with g∗ as in Lemma 3.8. On one hand, it follows from Lemma 3.8 that for each π ∈ Π,
z ∈ X, and t ∈ [0, T ],

g∗ ≤ c(x, πt) +
∫

X

u1(y)q(dy|x, πt),

which, together with Fubini theorem and Theorem 2.5 in [13, p. 15], yields that

g∗ ≤ 1
T

[ ∫ T

0

∫
X

c(x, πt)pπ(0, z, t,dx) dt +
∫ T

0

∫
X

∫
X

u1(y)q(dy|x, πt)pπ(0, z, t,dx) dt

]
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=
1
T

VT (z, π) +
1
T

∫ T

0

∫
X

∫
X

u1(y)q(dy|x, πt)pπ(0, z, t,dx) dt. (4.16)

For each z ∈ X and π ∈ Π, define

Lz :=
{

u ∈ Bω2(X) :
1
T

∫ T

0

∫
X

∫
X

u(y)q(dy|x, πt)pπ(0, z, t,dx) dt

= − 1
T

u(z) +
1
T

Eπ
z [u(x(T ))]

}
.

As in the proof of Lemma 3.7, we can show that Lz = Bω2(X). Since u1 ∈ Bω(X) ⊂
Bω2(X), by (4.16), we have

g∗ ≤ 1
T

VT (z, π)− 1
T

u1(z) +
1
T

Eπ
z [u1(x(T ))] (4.17)

for all π ∈ Π and z ∈ X. Note that

0 ≤ lim
T→∞

1
T

∣∣Eπ
z [u(x(T ))]

∣∣ ≤ lim
T→∞

1
T
‖u‖ω

[
e−ρ1T ω(x) +

b1

ρ1
(1− e−ρ1T )

]
= 0 (4.18)

for all u ∈ Bω(X), π ∈ Π, and z ∈ X. Thus, letting T →∞ in (4.17), by (4.18), we get

lim inf
T→∞

1
T

V ∗
T (z, 0) = lim inf

T→∞

1
T

VT (z, π∗T ) ≥ g∗ (4.19)

for all z ∈ X, where π∗T is as in Theorem 4.1. On the other hand, following the arguments
of (4.17), by Lemma 3.8, we obtain

g∗ ≥ 1
T

VT (z, f∗) +
1
T

Ef∗

z [u2(x(T ))]− 1
T

u2(z)

for all z ∈ X, with f∗ ∈ F as in Lemma 3.8, which, together with (4.18), gives

g∗ ≥ lim sup
T→∞

1
T

VT (z, f∗) ≥ lim sup
T→∞

1
T

V ∗
T (z, 0) (4.20)

for all z ∈ X. Hence, (4.15) follows from (4.19) and (4.20). By Lemma 3.8, we see that
the set of average optimal policies is nonempty. Suppose that π is an arbitrary average
optimal policy. Then, using Lemma 3.8, we have

lim sup
T→∞

1
T

VT (x, π) = J(x, π) = J∗(x) = g∗ (4.21)

for all x ∈ X. Moreover, it follows from (4.15) that

g∗ = lim inf
T→∞

1
T

V ∗
T (x, 0) ≤ lim inf

T→∞

1
T

VT (x, π) (4.22)

for all x ∈ X. Thus, by (4.21) and (4.22), we have

lim
T→∞

1
T

VT (x, π) = g∗ for all x ∈ X,

which, together with (4.15), implies that π is a strong average optimal policy.

(b) The proof of part (b) follows from part (a) and Lemma 3.8. �
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Remark 4.4. Theorem 4.3 and Remark 2.3 indicate that the set of all average optimal
policies coincides with the set of all strong average optimal policies, which is new for
CTMDPs.

Finally, to verify Assumption 3.2, we provide a new set of sufficient conditions below.

Theorem 4.5. Under Assumptions 2.1 and 3.1, each of the following two sets of con-
ditions implies Assumption 3.2.

(a) (The uniform ω-exponential ergodicity condition.) For each f ∈ F , there exists a
probability measure µf on B(X) such that, for all u ∈ Bω(X), x ∈ X, and t ≥ 0,∣∣∣∣Ef

x [u(x(t))]−
∫

X

u(y)µf (dy)
∣∣∣∣ ≤ ‖u‖ωRe−ηtω(x),

where the positive constants R, η are independent of f .

(b) (b1) The set C :=
{
x ∈ X : ω(x) ≤ 2b1

ρ1

}
is nonempty.

(b2) There exist a constant ξ > 0 and a probability measure ν concentrated on
the Borel set C such that q(D \ {x}|x, a) + ID(x) ≥ ξν(D) for each D ∈ B(C),
x ∈ C, and a ∈ A(x).

P r o o f . (a) Part (a) follows from Lemma 3.3 in [11].
(b) For each x ∈ X, t ≥ 0, Borel set D ⊂ C, and f ∈ F , by Theorem 2 in [6], we have

pf (0, x, t,D)

=
∫ t

0

eq(x|x,f(x))z

∫
X−{x}

pf (z, y, t, D)q(dy|x, f(x)) dz + ID(x)eq(x|x,f(x))t

=
∫

X\{x}

[ ∫ t

0

eq(x|x,f(x))zpf (0, y, t− z,D) dz

]
q(dy|x, f(x)) + ID(x)eq(x|x,f(x))t,

which, together with Assumption 2.1(ii) and condition (b1), gives

pf (0, x, t,D)

≥
∫

X\{x}

[ ∫ t

0

eq(x|x,f(x))zID(y)eq(y|y,f(y))(t−z) dz

]
q(dy|x, f(x)) + e−Lω(x)tID(x)

≥
∫

D\{x}

[ ∫ t

0

e−Lω(x)ze−Lω(y)t dz

]
q(dy|x, f(x)) + e−Lω(x)tID(x)

≥ te−Lω(x)t

∫
D\{x}

e−Lω(y)tq(dy|x, f(x)) + e−Lω(x)tID(x)

≥ te−(Lω(x)+
2Lb1

ρ1
)tq(D \ {x}|x, f(x)) + e−Lω(x)tID(x). (4.23)

Thus, for each x ∈ C, t ≥ 1, D ∈ B(C) and f ∈ F , by (4.23), conditions (b1) and (b2),
we obtain

pf (0, x, t,D) ≥ te−
4Lb1t

ρ1 q(D \ {x}|x, f(x)) + e−
2Lb1t

ρ1 ID(x)
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≥ e−
4Lb1t

ρ1 (q(D \ {x}|x, f(x)) + ID(x))

≥ ξe−
4Lb1t

ρ1 ν(D). (4.24)

Note that there exists t0 ≥ 1 such that κ := ξe−
4Lb1t0

ρ1 ∈ (0, 1). Hence, for each x ∈ C,
D ∈ B(C) and f ∈ F , it follows from (4.24) that

pf (0, x, t0, D) ≥ κν(D). (4.25)

On the other hand, by Theorem 3.1 in [12] and Assumption 2.1(i), we have∫
X

ω(y)pf (0, x, t,dy) ≤ e−ρ1tω(x) +
b1

ρ1
(1− e−ρ1t), (4.26)

which together with condition (b1) yields∫
X

ω(y)pf (0, x, t,dy) ≤ 1
2
(1 + e−ρ1t)ω(x) +

b1

ρ1
(1− e−ρ1t)IC(x) (4.27)

for all f ∈ F , t ≥ 0, and x ∈ X. Therefore, by condition (b1), (4.25), (4.27), and
Theorem 2.3 in [17], we see that for each f ∈ F , the t0-skeleton chain xf

t0 := {x(kt0)|k =
0, 1, 2, . . .} with the one-step transition probability Q(D|x, f(x)) := pf (0, x, t0, D) for all
x ∈ X and D ∈ B(X), is uniformly ω-geometrically ergodic. Thus, for each f ∈ F , there
exist a probability measure µf on B(X), positive constants R1 and η1 < 1 (independent
of f), such that∣∣∣∣ ∫

X

u(y)pf (0, x, nt0,dy)−
∫

X

u(y)µf (dy)
∣∣∣∣ ≤ ‖u‖ωR1η

n
1 ω(x) (4.28)

for all u ∈ Bω(X), x ∈ X, and n = 0, 1, 2, . . .. Notice that for each t > 0, we have
t = lt0 + s for some nonnegative integer l and s ∈ [0, t0). Hence, direct calculations,
together with Chapman–Kolmogorov equation, Fubini theorem, (4.26), and (4.28), yield∣∣∣∣Ef

x [u(x(t))]−
∫

X

u(y)µf (dy)
∣∣∣∣

=
∣∣∣∣ ∫

X

u(y)pf (0, x, t,dy)−
∫

X

u(y)µf (dy)
∣∣∣∣

=
∣∣∣∣ ∫

X

∫
X

u(y)pf (0, z, lt0,dy)pf (0, x, s, dz)−
∫

X

u(y)µf (dy)
∣∣∣∣

≤
∫

X

∣∣∣∣ ∫
X

u(y)pf (0, z, lt0,dy)−
∫

X

u(y)µf (dy)
∣∣∣∣pf (0, x, s, dz)

≤ ‖u‖ωR1η
l
1

∫
X

ω(z)pf (0, x, s, dz)

≤ ‖u‖ωR1η
l
1

[
e−ρ1sω(x) +

b1

ρ1
(1− e−ρ1s)

]
≤ ‖u‖ωR1η

−1
1 (η1/t0

1 )t(1 + b1/ρ1)ω(x)
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for all u ∈ Bω(X), and so condition (a) holds with R := R1η
−1
1 (1 + b1/ρ1) and η :=

−(ln η1)/t0. Hence, it follows from part (a) that condition (b) implies Assumption 3.2.
�

Remark 4.6. (a) Theorem 4.5(a) has been established in [11] and indicates that As-
sumption 3.2 is weaker than the uniform ω-exponential ergodicity condition.

(b) The set of verifiable sufficient conditions imposed on the primitive data of the
model for the verification of Assumption 3.2 in Theorem 4.5(b) is new and applicable to
the case of denumerable state spaces. In particular, when X is a finite set, we usually
choose ω = 1, b1 ≥ ρ1, and the set C in condition (b1) is equal to X.

5. AN EXAMPLE

In this section, a control problem in [14] is used to illustrate our results.

Example 5.1. The control model is given as follows: X := (−∞,∞), A = A(x) :=
[θ1, θ2] for all x ∈ X, with given positive constants θ2 > θ1, q(D|x, a) := βδ0(D) +
(γ|x|+ a)

∫
D

1√
2π

e−
1
2 y2

dy− (γ|x|+ β + a)δx(D) for all D ∈ B(X) and (x, a) ∈ K, where
β and γ are given positive constants, and δx(·) denotes the Dirac measure at x ∈ X.

To ensure the existence of a strong average optimal policy, we need the following
hypotheses.

(C1) For each x ∈ X, c(x, ·) is continuous on A(x).

(C2) There exists a constant M > 0 such that |c(x, a)| ≤ M(x2 + 1) for all (x, a) ∈ K.

Then we have the following result.

Proposition 5.2. Under conditions (C1) and (C2), Example 5.1 satisfies Assumptions
2.1, 3.1, and 3.2. Hence, (by Theorem 4.3), there exists a strong average optimal sta-
tionary policy for Example 5.1.

P r o o f . We first verify Assumption 2.1. Let ρ1 := β, b1 := 2(θ2+γ)+β, L := 2β+γ+θ2,
ω(x) := x2 +1 for all x ∈ X. Then, by the description of the model, a direct calculation
yields ∫

X

ω(y)q(dy|x, a) = γ|x| − (γ|x|+ β)x2 + a(1− x2) (5.1)

for all (x, a) ∈ K. If |x| ≤ 1, we have∫
X

ω(y)q(dy|x, a) ≤ γ|x| − (γ|x|+ β)x2 + θ2(1− x2)

= γ(1− x2)|x| − (β + θ2)x2 + θ2

≤ −(β + γ + θ2)ω(x) + 2(θ2 + γ) + β (5.2)
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for all (x, a) ∈ K. If |x| > 1, we have∫
X

ω(y)q(dy|x, a) ≤ γ(1− x2)|x| − βx2 ≤ −βω(x) + β for all (x, a) ∈ K. (5.3)

Thus, it follows from (5.2) and (5.3) that∫
X

ω(y)q(dy|x, a) ≤ −βω(x) + 2(θ2 + γ) + β for all (x, a) ∈ K.

Moreover, by the definition of the transition rates, we obtain

q({x}|x, a) = βδ0({x})− (γ|x|+ β + a) for all (x, a) ∈ K,

which gives q∗(x) ≤ Lω(x) for all x ∈ X. Hence, Assumption 2.1 is satisfied.
Now we verify Assumption 3.1. Let ρ2 := β + 6(θ2 + γ), ρ3 := β + 28(θ2 + γ),

b2 = b3 := 0. Then we have∫
X

ω2(y)q(dy|x, a) = β + 6(γ|x|+ a)− (γ|x|+ β + a)(x2 + 1)2

≤ [β + 6(θ2 + γ)]ω2(x), (5.4)

and ∫
X

ω3(y)q(dy|x, a) = β + 28(γ|x|+ a)− (γ|x|+ β + a)(x2 + 1)3

≤ [β + 28(θ2 + γ)]ω3(x), (5.5)

for all (x, a) ∈ K. Moreover, for each bounded measurable function u on X, a direct
calculation gives∫

X

u(y)q(dy|x, a) = βu(0) + (γ|x|+ a)
∫

X

u(y)
1√
2π

e−
1
2 y2

dy − (γ|x|+ β + a)u(x)

for all (x, a) ∈ K, which implies that for each fixed x ∈ X, the function
∫

X
u(y)q(dy|x, a)

is continuous in a ∈ A(x). Hence, Assumption 3.1 follows from (5.1), (5.4), (5.5), and
conditions (C1) and (C2).

Finally, we verify Assumption 3.2. Direct calculations yield

C :=
{

x ∈ X : ω(x) ≤ 2b1

ρ1

}
=

[
−

√
4γ + 4θ2 + β

β
,

√
4γ + 4θ2 + β

β

]
. (5.6)

Thus, the set C is nonempty. For each D ∈ B(C), x ∈ C and a ∈ A(x), by the description
of the model, we have

q(D \ {x}|x, a) + ID(x) = βδ0(D \ {x}) + (γ|x|+ a)
∫

D\{x}

1√
2π

e−
1
2 y2

dy + ID(x)

≥ θ1

∫
D

1√
2π

e−
1
2 y2

dy.
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Let ξ := θ1

∫
C

1√
2π

e−
1
2 y2

dy and ν(D) := (
∫

D
1√
2π

e−
1
2 y2

dy)(
∫

C
1√
2π

e−
1
2 y2

dy)−1 for all
D ∈ B(C). Hence, we obtain q(D \{x}|x, a)+ ID(x) ≥ ξν(D) for each D ∈ B(C), x ∈ C
and a ∈ A(x). Therefore, by Theorem 4.5, we see that Assumption 3.2 holds. This
completes the proof of the proposition. �

Remark 5.3. (a) The conditions in Example 5.1 above are weaker than those used
in [14] since we have removed the following two hypotheses required in [14]: (i) the
nonnegativity condition on the cost function, (ii) the condition “β > θ2 + 1

2γ”.

(b) The technique of the verification of the assumption that the relative difference
of the discount optimal value function is bounded by an integrable function is different
from that used in [14].
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