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Abstract. Let PBm be the category of all principal fibred bundles with m-dimensional
bases and their principal bundle homomorphisms covering embeddings. We introduce the
concept of the so called (r,m)-systems and describe all gauge bundle functors on PBm of
order r by means of the (r,m)-systems. Next we present several interesting examples of
fiber product preserving gauge bundle functors on PBm of order r. Finally, we introduce
the concept of product preserving (r,m)-systems and describe all fiber product preserving
gauge bundle functors on PBm of order r by means of the product preserving (r,m)-systems.
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Introduction

Let Mf be the category of all manifolds and maps, Mfm the category of m-

dimensional manifolds and their embeddings, FM the category of all fibred manifolds

and their fibred maps, FMm the category of fibred manifolds with m-dimensional

bases and fibred maps with embeddings as base maps, Gr the category of all Lie

groups and their homomorphisms, PBm the category of all principal fiber bundles

with m-dimensional bases and their principal bundle homomorphisms covering em-

beddings, VB the category of vector bundles and their vector bundle maps and VBm

the category of vector bundles with m-dimensional bases and their vector bundle

maps covering embeddings.

By Definition 2.1 in [4], a gauge bundle functor on PBm is a covariant functor

E : PBm → FM satisfying the following conditions:

(i) Base preservation. For any PBm-object P = (p : P → M) with the base M

the induced FM-object EP = (πP : EP → M) is a fibred manifold over the
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same base M . For any PBm-morphism f : P1 → P2 covering f : M1 → M2 the

induced FMm-map Ef : EP1 → EP2 is also over f .

(ii) Locality property. For any PBm-object p : P → M and any open subset U ⊂ M

the FM-map EiU : E(P |U ) → EP (induced by the inclusion iU : P |U → P ) is

a diffeomorphism onto π−1
P (U).

(iii) Regularity property. E transforms smoothly parametrized families of PBm-

morphisms into smoothly parametrized families of FM-morphisms.

By Definition 2.2 and Lemma 2.3 in [4], a natural transformation η : E → E1 of

gauge bundle functors on PBm is a family of fibred maps ηP : EP → E1P covering

idM for any PBm-object P → M such that E1f ◦ ηP = ηQ ◦ Ef for any PBm-

morphism f : P → Q.

By Definition 2.5 in [4], a gauge bundle functor E : PBm → FM is of order r if

the following condition is satisfied:

For any PBm-morphisms f1, f2 : P → Q between PBm-objects P → M and Q

and any x ∈ M , from jrx(f1) = jrx(f2) it follows that (Ef1)|ExP = (Ef2)|ExP .

A gauge bundle functor E : PBm → FM is fiber product preserving if (EP1)×M

(EP2) = E(P1×M P2) for any PBm-objects with the same baseM (the identification

is induced by the E-prolongation of the fiber product projections).

Given a PBm-object P → M with the structure Lie group G we have a principal

connection bundle QP := J1P/G of P (sections of QP are in bijection with principal

(right invariant) connections on P ). Given a PBm-map f : P → P1 covering the

embedding f : M → M1 with the Lie group homomorphism νf : G → G1, the map

J1f : J1P → J1P1 factorizes into the FM-map Qf : QP → QP1. In this way

we obtain a gauge bundle functor Q : PBm → FM of order 1. It is fiber product

preserving.

Given a PBm-object P → M we have the r-th order principal prolongation

W rP := P rM ×M JrP (see Section 15 in [2]). Any PBm-map f : P → P1 cov-

ering f : M → M1 induces a fibred map W rf := P rf ×f Jrf : P rM ×M JrP →

P rM1 ×M1 J
rP1. In this way we obtain a gauge bundle functor W

r : PBm → FM

of order r. The functor W r is not fiber product preserving.

In the present paper, we describe all gauge bundle functors PBm → FM of order r

by means of the so called (r,m)-systems. Next, we describe fiber product preserving

gauge bundle functorsE : PBm → FM of order r by means of the product preserving

(r,m)-systems.

All manifolds considered in the paper are assumed to be Hausdorff, finite dimen-

sional, second countable, without boundary and smooth, i.e., of class C∞. Maps

between manifolds are assumed to be of class C∞.
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1. A characterization of gauge bundle functors on PBm of order r

by means of (r,m)-systems

Using the results of Section 15 in [2] we see that in fact we haveW r : PBm → PBm.

Indeed, we have a functorW r
m : Gr → Gr sending any Lie group G into its r-th order

prolongation group W r
mG = Gr

m ⋊ T r
mG in dimension m (see Section 15 in [2]) and

any Lie group homomorphism ν : G → G1 into a Lie group homomorphismsW
r
mν :=

idGr
m
×T r

mν : W r
mG → W r

mG1 (thatW
r
mν is a Lie group homomorphism follows from

the formula on prolongation group multiplication from Section 15 in [2]). Now, given

a PBm-object P → M with the structure Lie group G, W rP is again a PBm-object

with the structure Lie group W r
mG (see Section 15 in [2]). Moreover, given a PBm-

map f : P → P1 covering f : M → M1 and with the Lie group homomorphism

νf : G → G1, W
rf : W rP → W rP1 is a principal bundle homomorphism with the

Lie group homomorphism W r
mνf : W r

mG → W r
mG1 (which follows from the formula

on the principal prolongation bundle right actions from Section 15 in [2]). The above

fact is a particular case of a more general result of [1], too.

Suppose we have a system (F, α) consisting of a regular functor F : Gr → Mf

sending a Lie group G into a manifold FG and a Lie group homomorphism ν :

G → G1 into an induced map Fν : FG → FG1, and of a family α of smooth

left actions αG : W r
mG × FG → FG for any Lie group G. The regularity means

that F transforms smoothly parametrized families of Lie group homomorphisms into

smoothly parametrized families of maps.

Definition 1. A system (F, α) as above is called an (r,m)-system if for any Lie

group homomorphism ν : G → G1 the map Fν : FG → FG1 is (W
r
mG,W r

mG1)-

invariant over W r
mν : W r

mG → W r
mG1, i.e., Fν(g · v) = W r

mν(g) · Fν(v) for any

v ∈ FG and any g ∈ W r
mG.

The system (W r
m, β) consisting of the functor W r

m : Gr → Gr (mentioned above)

treated as the functor W r
m : Gr → Mf and the collection β of actions βG : W r

mG ×

W r
mG → W r

mG (defined by the prolongation group multiplication) for any Lie group

G is an example of an (r,m)-system.

Given an (r,m)-system (F, α) we can construct a gauge bundle functor E(F,α) :

PBm → FM of order r as follows.

Example 1. For any PBm-object P with the structure Lie group G we put

E(F,α)P = W rP [FG,αG].

For any PBm-map f : P → P1 with the homomorphism νf : G → G1 we put

E(F,α)f = W rf [Fνf ] : W rP [FG,αG] → W rP1[FG1, αG1 ].
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If µ : (F, α) → (F 1, α1) is a homomorphism of (r,m)-systems (i.e., µ : F → F 1

is a functor transformation such that µG : FG → F 1G is a smooth W r
mG-invariant

map for any Lie group G) we have a natural transformation η(µ) : E(F,α) → E(F 1,α1)

given by

η
(µ)
P := W r(idP )[µG] : E(F,α)P → E(F 1,α1)P

for any PBm-object P → M with the structure Lie group G.

Conversely, suppose we have a gauge bundle functor E : PBm → FM of order r.

We construct an (r,m)-system (F (E), α(E)) as follows.

Example 2. We define a functor F (E) : Gr → Mf by

F (E)G := E0(R
m ×G) and F (E)ν := E0(idRm × ν)

for any Lie group G and any Lie group homomorphism ν : G → G1. For any Lie

group G we define an action α
(E)
G : W r

mG× F (E)G → F (E)G by

α
(E)
G (g, v) = E0ϕ(v), g = jr(0,e)ϕ ∈ W r

mG, v ∈ F (E)G

(we identify elements of W r
mG with r-jets at 0 of (local) principal bundle isomor-

phisms with idG as Lie group homomorphisms and covering embeddings preserving

0 as in Section 15 in [2]).

If η : E → E1 is a natural transformation of gauge bundle functors E,E1 : PBm →

FM of order r we have a homomorphism µ(η) : (F (E), α(E)) → (F (E1), α(E1)) of

(r,m)-systems given by

µ
(η)
G := (ηRm×G)0 : F (E)G → F (E1)G.

Clearly, the above constructions from Examples 1 and 2 are mutually inverse. In

particular, a PBm-natural isomorphism Θ: E(F (E),α(E)) → E can be given by

ΘP : E(F (E),α(E))P → EP, ΘP ([g, v]) := Eϕ(v), g = jr0ϕ ∈ W rP, v ∈ F (E)G

for any PBm-object P → M with the structure Lie group G (we identify elements

of W rP with r-jets at 0 of (local) principal bundle isomorphisms Rm ×G → P with

idG as the Lie group homomorphisms as in Section 15 in [2]).

In general, categories K1 and K2 are weak equivalent if there are functors H1 :

K1 → K2 and H2 : K2 → K1 such that H2 ◦H1
∼= idK1 and H1 ◦H2

∼= idK2 .

Thus we have proved the following theorem.
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Theorem 1. The category of gauge bundle functors E : PBm → FM of order r

and their natural transformations is weak equivalent to the category of (r,m)-systems

(F, α) and their homomorphisms.

2. The case of fiber product preserving gauge bundle functors

on PBm of order r

Many important gauge bundle functors on PBm are fiber product preserving. We

present several examples of such functors.

(a) The functor Jr : PBm → FM sending any PBm-object P → M into its r-jet

prolongation bundle JrP = {jrxσ; σ : M → P is a locally defined section of P →

M} and any PBm-map f : P → P1 covering f : M → M1 into Jrf : JrP → JrP1

(given by Jrf(jrxσ) = jr
f(x)(f ◦ σ ◦ f−1)) is a fiber product preserving gauge bundle

functor of order r.

(b) The functor Jr
v : PBm → FM sending any PBm-object P → M into its

vertical r-jet prolongation bundle Jr
vP = {jrxσ; σ : M → Px} and any PBm-map

f : P → P1 covering f : M → M1 into Jr
vf : Jr

vP → Jr
vP1, given by Jr

vf(j
r
xσ) =

jr
f(x)(fx ◦ σ ◦ f−1), is a fiber product preserving gauge bundle functor of order r.

(c) Let A be a Weil algebra of order r. The functor V A : PBm → FM sending

any PBm-object P → M into its A-vertical bundle V AP =
⋃

x∈M

TAPx and any

PBm-map f : P → P1 into V Af =
⋃

x∈M

TA(fx) : V AP → V AP1 is a fiber product

preserving gauge bundle functor of order r. In particular, if A = D is the algebra of

dual numbers, then TA = T is the tangent functor and V A = V : PBm → FM is

the vertical functor.

(d) The above functors are particular cases of product preserving bundle functors

E : FMm → FM applied to PBm-objects and PBm-maps treated as FMm-objects

andFMm-maps, respectively. The full description of fiber product preserving bundle

functors E : FMm → FM can be found in [3].

(e) Let E : FMm → FM be a fiber product preserving bundle functor. The right

action of the structure Lie groupG on an PBm-object P (treated as an FMm-object)

induces (in an obvious way) a right action of G on EP . Thus we have the functor

QE : PBm → FM sending any PBm-object P → M into QEP := EP/G and any

PBm-map f : P → P1 into the quotient Q
Ef : QEP → QEP1 of Ef : EP → EP1.

The functor QE : PBm → FM is again a fiber product preserving gauge bundle

functor. In particular, if E = J1, then QE = Q : PBm → FM is the principal

connection bundle functor mentioned in the introduction. Below, we consider the
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right invariant vertical vector field functorQV : PBm → FM (sections ofQV P are in

bijection with right invariant vertical vector fields on P ). In fact, QV : PBm → VB.

(f) Let G : Mfm → VB be a vector bundle functor (for example the p-form bundle

functor ∧pT ∗ : Mfm → VB). Thus we have the functor KG : PBm → FM sending

any PBm-object P → M into (vector bundle) KGP := GM ⊗QV P and any PBm-

map f : P → P1 covering f : M → M1 into (vector bundle) map K
Gf := Gf⊗QV f :

KGP → KGP1. The functor K
G : PBm → FM is a fiber product preserving gauge

bundle functor. In fact, KG : PBm → VB. In particular, if G = ∧2T ∗ : Mfm → VB

we obtain the principal connection curvature functor KG = K : PBm → FM (the

curvature tensor of a principal connection on P can be treated as a section of KP ).

(g) Let E : FMm → FM be a fiber product preserving bundle functor. Thus

we have the functor E′ : PBm → FM sending any PBm-object P → M with the

structure Lie group G into E′P := E(M × G) and any PBm-map f : P → P1

covering f : M → M1 and with the Lie group homomorphism νf : G → G1 into

E′f := E(f × νf ) : E′P → E′P1. The functor E
′ : PBm → FM is a fiber product

preserving gauge bundle functor.

(h) Let E : VBm → FM be a fiber product preserving gauge bundle functor

(a full description of such functors can be found in [5]). Thus we have the functor

Eo : PBm → FM sending any PBm-object P → M with the structure Lie group G

with the Lie algebra L(G) into EoP := E(M×L(G)) and any PBm-map f : P → P1

covering f : M → M1 with the Lie group homomorphism νf : G → G1 into E
of :=

(f × L(νf )) : EoP → EoP1. The functor Eo : PBm → FM is a fiber product

preserving gauge bundle functor.

Definition 2. An (r,m)-system (F, α) is product preserving if F : Gr → Mf is

product preserving.

It is easily seen that if (F, α) is a product preserving (r,m)-system, then the gauge

bundle functor E(F,α) : PBm → FM of order r (from Example 1) is fiber product

preserving. Conversely, if E : PBm → FM is a fiber product preserving gauge

bundle functor of order r, then the (r,m)-system (F (E), α(E)) (from Example 2) is

product preserving. Thus we have proved the following fact.

Theorem 2. The category of fiber product preserving gauge bundle functors

E : PBm → FM of order r and their natural transformations is weak equivalent to

the category of product preserving (r,m)-systems (F, α) and their homomorphisms.
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