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On graphs with maximum size in their switching classes

Sergiy Kozerenko

Abstract. In his PhD thesis [Structural aspects of switching classes, Leiden In-
stitute of Advanced Computer Science, 2001] Hage posed the following problem:
“characterize the maximum size graphs in switching classes”. These are called
s-maximal graphs. In this paper, we study the properties of such graphs. In
particular, we show that any graph with sufficiently large minimum degree is
s-maximal, we prove that join of two s-maximal graphs is also an s-maximal
graph, we give complete characterization of triangle-free s-maximal graphs and
non-hamiltonian s-maximal graphs. We also obtain other interesting properties
of s-maximal graphs.

Keywords: Seidel switching; switching class; maximum size graph

Classification: 05C75, 05C99

1. Introduction

Consider some group of people V endowed with symmetric binary relation
“being a friend of” on it. Obviously, the set V can be viewed as a vertex set
of a graph G, where u, v ∈ V are adjacent if they are friends.

Now, what happens if some vertex u ∈ V suddenly decides to switch its friends
to non-friends and vice versa? This operation results in a graph S(G, u) which
is obtained from G by the deletion of the edges between u and NG(u) and the
addition of new edges between u and V − NG[u]. Such operation is called the
switching of the vertex u.

Originally, the notion of graph switching was introduced in 1966 by Seidel
and van Lint in their joint paper [11] on elliptic geometry. From there on, the
concept of switching was developed in many interesting ways. One should mention
switching reconstruction problems [9], [10], [15] and study of switching classes [2],
[3], [4], [5], [6], [7], as well as of interplay between switching and the so-called
two-graphs [1], [12], [14].

In 2001 in his PhD thesis [4], Hage posed two related problems:

(1) Characterize the maximum (or minimum) size graphs in switching classes.
(2) Characterize those switching classes that have a unique maximum (or

minimum) size graph in it.

We mainly focus on the first problem. Graphs with maximum size in their switch-
ing classes will be called s-maximal . In this paper we study their properties.
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2. Preliminaries

In this paper all graphs are simple, finite and undirected. By V (G) and E(G)
we denote the vertex set and the edge set of a graph G respectively. If two graphs
G1 and G2 are isomorphic, we write G1 ≃ G2.

The neighborhood of a vertex u ∈ V (G) is the set N(u) = {v ∈ V (G) : uv ∈
E(G)}. The closed neighborhood of u is N [u] = N(u)∪{u}. The degree d(u) of u
is the number of its neighbors, i.e. d(u) = |N(u)|. By δ(G) and ∆(G) we denote
the minimum and the maximum vertex degree in G, respectively.

As usual, by Kn we denote the complete graph with n ≥ 1 vertices and by Ka,b

the complete bipartite graph with partitions of size a ≥ 1 and b ≥ 1. Also, the
null graph K0 is a graph with the empty set of vertices.

The complement G of a graph G is a graph with V (G) = V (G) and two
vertices in G are adjacent if and only if they are not adjacent in G. The join of
two graphs G1 and G2 with disjoint vertex sets is the graph G = G1 + G2 with
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈
V (G2)}. Note that G + K0 = G.

The set of vertices U ⊂ V (G) is called dominating if each vertex u /∈ U is
adjacent to some vertex from U . Further, the set U is independent if every two
vertices u, v ∈ U are nonadjacent in G. Dually, the set U is called clique if every
two vertices u, v ∈ U are adjacent in G. The clique number ω(G) is the number
of vertices in a maximum clique of G.

Now let G be a graph and A, B ⊂ V (G). By e(A, B) we denote the number of
edges between A and B. If U ⊂ V (G), then we write l(U) for e(U, V (G) − U).
Also, e(U) denotes the number of edges whose endpoints are from U .

Definition 2.1. Let G be a graph and U ⊂ V (G). The switching of U results in
a graph S = S(G, U) with V (S) = V (G) and

E(S) = EG(U) ∪ EG(V − U) ∪ {uv : u ∈ U, v ∈ V − U, uv /∈ E(G)}.

The following lemma describes some properties of switching operation.

Lemma 2.2 ([8]). Let G = (V, E) be a graph and U, U1, U2 ⊂ V . Then

(1) S(G, U) = S(G, V − U);
(2) S(S(G, U1), U2) = S(G, U1△U2);
(3) if U = {u1, . . . , um}, then Gm = S(G, U), where G0 = G and Gi =

S(Gi−1, ui), 1 ≤ i ≤ m;

(4) S(G, U) = S(G, U).

Switching operation leads to natural equivalence relation on graphs. We say
that two graphs G1 and G2 are s-equivalent if there exists U ⊂ V (G1) such that
S(G1, U) ≃ G2. The corresponding equivalence class is called s-class . The s-
equivalence of G1 and G2 will be denoted as G1 ∼s G2. For example, every two
complete bipartite graphs with the same number of vertices are s-equivalent and
the s-class of Kn consists of Kn and all complete bipartite graphs with n vertices
(see [4]).
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It is trivial that G1 ∼s G2 if and only if G1 ∼s G2. An interesting result of
Colbourn and Corneil [2] states that the problem of deciding s-equivalence of two
graphs is polynomial-time equivalent to the problem of deciding isomorphism of
graphs. To show this Colbourn and Corneil proposed the following construction.
For any graph G take G and its copy G′ and add a new edge between u ∈ V (G)
and v′ ∈ V (G′) if u and v are not adjacent in G. The obtained graph is denoted by
Sw(G). Thus the nontrivial criterion of s-equivalence is the following: G1 ∼s G2

if and only if Sw(G1) ≃ Sw(G2).
Now we turn to the maximum size graphs in switching classes.

Definition 2.3. A graph G is called s-maximal if for every graph H with G ∼s H
it holds that |E(H)| ≤ |E(G)|.

It should be noted that null graph is s-maximal.

Remark 2.4. It is obvious that if G is the spanning subgraph of G′ and G is
s-maximal, then G′ is also s-maximal.

Also, there exist non-isomorphic s-equivalent s-maximal graphs. For example,
consider G1 = K2 + (K1 ∪ K2) and G2 = K3 + K2 (note that G1 is hamiltonian,
but G2 is not).

Dually, one can define s-minimal graphs. However it is easy to see that the
graph is s-maximal if and only if its complement is s-minimal. Therefore, we
study only s-maximal graphs.

We proceed with an obvious reformulation of the definition of s-maximal graphs.
In the sequel this result will be used without any references.

Lemma 2.5. A graph G is s-maximal if and only if for every U ⊂ V (G) we have

2l(U) ≥ |U |(|V (G)| − |U |).

3. Results

We start with some easy properties of s-maximal graphs.

Theorem 3.1. Let G be an s-maximal graph with n vertices. Then

(1) δ(G) ≥ n−1
2 ;

(2) ∆(G) ≥ n+ω(G)
2 − 1;

(3) |E(G)| ≥ n(n−1)+ω(G)(ω(G)−1)
4 ;

(4) G is connected with diam(G) ≤ 2;

(5) G has a hamiltonian path;

(6) the set {u ∈ V (G) : d(u) = n−1
2 } is independent;

(7) if M ⊂ {u ∈ V (G) : d(u) = n−1} with |M | < n
3 , then G−M is connected.

Proof: (1) For each u ∈ V (G) apply Lemma 2.5 to U = {u}.
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(2) Put ω = ω(G) and let U ⊂ V (G) induce a maximal clique in G. We have

∑

u∈U

d(u) = l(U) + 2e(U) = l(U) + ω(ω − 1)

≥
ω(n − ω)

2
+ ω(ω − 1)

= ω ·

(

n + ω

2
− 1

)

.

Thus

∆(G) ≥
1

ω

∑

u∈U

d(u) ≥
n + ω

2
− 1.

(3) Again, let U ⊂ V (G) induce a maximal clique in G. We have

2|E(G)| =
∑

u∈U

d(u) +
∑

u/∈U

d(u)

≥ ω ·

(

n + ω

2
− 1

)

+ (n − ω) ·
n − 1

2

=
n(n − 1) + ω(ω − 1)

2
.

(4) Let u, v ∈ V (G) be two nonadjacent vertices. From (1) it follows that
d(u) + d(v) ≥ n− 1. Therefore N(u) ∩N(v) is nonempty and thus diam(G) ≤ 2.

(5) Again, for every two vertices u, v ∈ V (G) we have d(u)+ d(v) ≥ n− 1. But
it is well known [13] that in this case G has a hamiltonian path.

(6) Suppose that we have two adjacent vertices u, v ∈ V (G) with d(u) = d(v) =
n−1

2 . Putting U = {u, v} we obtain

2l(U) = 2 ·

(

n − 1

2
+

n − 1

2
− 2

)

= 2(n − 3) < 2(n − 2)

which is a contradiction.
(7) Assume to the contrary that G − M is disconnected and let H1 be its

component. Put H2 = (G − M) − H1 and a = |V (H1)|, b = |V (H2)|, m = |M |.
Since G is s-maximal, then 2am = 2l(V (H1)) ≥ a(n− a) = a(m + b). It means

that m ≥ b. Similarly, m ≥ a. Thus 2m ≥ a + b = n − m, which leads to m ≥ n
3 .

But this is a contradiction. �

Now we show that every graph with sufficiently large minimum degree is nec-
essarily s-maximal. It means that there is no “more structural” characterization
of s-maximal graphs than provided by Lemma 2.5.

Proposition 3.2. Let G be a graph with n vertices and δ(G) ≥ 3n
4 − 1. Then G

is s-maximal.
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Proof: Consider some set U ⊂ V (G). Since l(U) = l(V (G) − U), without loss
of generality we can assume that |U | ≤ n

2 . We have

2l(U) = 2 ·

(

∑

u∈U

d(u) − 2e(U)

)

≥ 2(|U |δ(G) − |U |(|U | − 1))

≥ |U | ·

(

3n

2
− 2

)

− 2|U |(|U | − 1) = |U | ·

(

3n

2
− 2|U |

)

= |U | ·
(

n − |U | +
n

2
− |U |

)

≥ |U |(n − |U |)

and thus G is s-maximal. �

The following result shows that the class of s-maximal graphs is closed under
the join operation on graphs.

Proposition 3.3. Let G1 and G2 be two s-maximal graphs. Then G1 + G2 is

also s-maximal.

Proof: Let G = G1 + G2. Put V = V (G) and Vi = V (Gi) for i = 1, 2.
Also, let ni = |Vi|, i = 1, 2.
Now consider nonempty set U ⊂ V (G). We put a = |U ∩ V1| and b = |U ∩ V2|.

Note that n1 ≥ a and n2 ≥ b.
It holds that

2lG(U) = 2(eG(U ∩ V1, V1 − U) + eG(U ∩ V1, V2 − U)

+ eG(U ∩ V2, V1 − U) + eG(U ∩ V2, V2 − U))

= 2(lG1
(U ∩ V1) + a(n2 − b) + b(n1 − a) + lG2

(U ∩ V2))

≥ a(n1 − a) + 2a(n2 − b) + 2b(n1 − a) + b(n2 − b)

= a(n1 − a + 2(n2 − b)) + b(n2 − b + 2(n1 − a))

≥ a(n1 − a + n2 − b) + b(n2 − b + n1 − a)

= (a + b)(n1 + n2 − a − b) = |U |(|V | − |U |)

which completes the proof. �

When is the join of arbitrary graphs s-maximal? To answer this question we
need the following lemma.

Lemma 3.4. Let G be an s-maximal graph and H be a graph with |V (H)| ≤
|V (G)| + 1. Then G + H is also s-maximal.

Proof: Put n = |V (G)| and k = |V (H)|. We have k ≤ n + 1. Also, let G′ =
G + H .

For U ⊂ V (G′) put a = |U ∩ V (G)| and b = |U ∩ V (H)|.
If b = 0, then 2l(U) ≥ a(n − a) + ak = a(n + k − a) = |U |(|V (G′)| − |U |).
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Now let b ≥ 1. Since l(U) = l(V (G′) − U), without loss of generality we can
assume that k ≥ 2b. Therefore

2l(U) = 2(eG(U ∩ V (G), V (G) − U) + eG(U ∩ V (G), V (H) − U)

+ eG(U ∩ V (H), V (G) − U) + eG(U ∩ V (H), V (H) − U))

≥ a(n − a) + 2a(k − b) + 2b(n − a)

= (a + b)(n + k − a − b) + a(k − 2b) + b(b + n − k)

≥ (a + b)(n + k − a − b) + b(b − 1)

≥ (a + b)(n + k − a − b) = |U |(|V (G′)| − |U |)

and the desired is proved. �

Theorem 3.5. Suppose that we have m ≥ 2 and graphs G1, . . . , Gm with

‖V (Gi)| − |V (Gj)‖ ≤ 1 for all 1 ≤ i, j ≤ m. Then
∑m

i=1 Gi is s-maximal.

Proof: We will prove this theorem using induction argument.
Firstly, let m = 2. Consider two graphs G1 and G2 with ni = |V (Gi)|, i = 1, 2

and suppose that |n1 − n2| ≤ 1. Also, let G = G1 + G2.
For every nonempty U ⊂ V (G) put ai = |U ∩ V (Gi)|, i = 1, 2.
If a1 = 0, then

2lG(U) − |U |(|V (G)| − |U |) = 2a2n1 − a2(n1 + n2 − a2)

= 2a2n1 − a2n1 − a2n2 + a2

= a2(n1 − n2) + a2
2

≥ a2(a2 − 1) ≥ 0.

Now let, without loss of generality, a1 ≥ a2 ≥ 1. We have

2lG(U) − |U |(|V (G)| − |U |) ≥ 2(a1(n2 − a2) + a2(n1 − a1))

− (a1 + a2)(n1 + n2 − a1 − a2)

= (n2 − n1)(a1 − a2) + (a1 − a2)
2

≥ (a2 − a1) + (a1 − a2)
2

= (a1 − a2)(a1 − a2 − 1) ≥ 0.

Now consider m + 1 graphs G1, . . . , Gm+1 with ‖V (Gi)| − |V (Gj)‖ ≤ 1 for 1 ≤
i, j ≤ m + 1 and put G =

∑m
i=1 Gi. From induction hypothesis it follows that G

is s-maximal. Furthermore, |V (Gm+1)| ≤ |V (G)| + 1. Thus Lemma 3.4 implies

that G + Gm+1 =
∑m+1

i=1 Gi is also s-maximal. �

Example 3.6. There exist s-maximal graphs which cannot be expressed as a
join of two graphs. Consider the complement of the path with n vertices G = Pn

for each n ≥ 8. Then δ(G) = n − 1 − ∆(G) = n − 3 ≥ 3n
4 − 1. Thus from

Proposition 3.2 it follows that G is s-maximal, but clearly G is not the join of two
graphs as G is connected.
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We say that the edge e = uv ∈ E(G) is dominating if the set {u, v} is domi-
nating.

Lemma 3.7. Each edge in an s-maximal graph is either dominating or lies in a

triangle.

Proof: Let G be an s-maximal graph and e = uv ∈ E(G). Put U = {u, v}.
Then d(u) + d(v)− 2 = l(U) ≥ n− 2. Thus d(u) + d(v) ≥ n. Now if N(u)∩N(v)
is empty, then e is dominating. Otherwise, for every x ∈ N(u) ∩ N(v) the triple
(u, v, x) forms a triangle. �

Theorem 3.8. Let G be triangle-free s-maximal graph. Then G ≃ Kn,n or

G ≃ Kn,n+1, where n ≥ 0.

Proof: If |V (G)| = 1, then G ≃ K1 = K1,0. Similarly, if |V (G)| = 2, then
G ≃ K2 = K1,1. Now let |V (G)| ≥ 3. From Theorem 3.1(3) it follows that
|E(G)| ≥ 1.

Consider some edge e = uv ∈ E(G). Since G is triangle-free, from Lemma 3.7
it follows that e is dominating. Thus N [u] ∪ N [v] = V (G).

For every x ∈ N(u) − {v} the edge e′ = ux is also dominating. But (N(v) −
{u})∩N(u) is empty, otherwise there would be a triangle. It means that N(v)−
{u} ⊂ N(x). Similarly, N(x) − {u} ⊂ N(v).

Thus for all x ∈ N(u) we have N(x) = N(v). Therefore (N(v)∪{u}, N(u)∪{v})
is a bipartition of complete bipartite graph G.

Further, let G ≃ Ka,b with bipartition (A, B) and a = |A|, b = |B|. Assume
that a ≥ b + 2. Then for all x ∈ A we obtain

|V (G)| − 1

2
=

a + b − 1

2
≥

b + 2 + b − 1

2
= b +

1

2
> b = d(x),

a contradiction with s-maximality of G. Therefore a ≤ b + 1. Analogously,
b ≤ a + 1. Thus |a − b| ≤ 1 and the desired is proved. �

Remark 3.9. Note that from Theorem 3.5 it follows that Kn,n and Kn,n+1 are s-
maximal graphs for all n ≥ 0. Thus Theorem 3.8 gives a complete characterization
of triangle-free s-maximal graphs, as well as bipartite s-maximal graphs.

Now we turn to the characterization of non-hamiltonian s-maximal graphs.

Theorem 3.10. Let G be a non-hamiltonian s-maximal graph. Then G ≃ K2 or

G ≃ Kk+1 + H for some graph H with k ≥ 0 vertices.

Proof: Put n = |V (G)|. If n = 1, then G ≃ Kk+1 + H , where k = 0 and
H ≃ K0.

Now let n ≥ 2 and suppose that G is acyclic. Using Theorem 3.1, part 3 we
obtain

n(n − 1) + 2

4
≤ |E(G)| ≤ n − 1.

This yields 2 ≤ n ≤ 3. If n = 2, then G ≃ K2. If n = 3, then G ≃ Kk+1 + H ,
where k = 1 and H ≃ K1.
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Now suppose that G has a cycle. Fix the longest cycle C in G and put c =
|V (C)|. Also, let V (C) = {u1, . . . , uc} with {uiui+1 : 1 ≤ i ≤ c − 1} ∪ {ucu1} ⊂
E(G).

Note that since G is non-hamiltonian, the set U = V (G) − V (C) is nonempty.

Claim 1. For all v ∈ U we have |N(v) ∩ V (C)| = c
2 .

At first, suppose that there exists a vertex v0 ∈ U with |N(v) ∩ V (C)| > c
2 .

Then one can find two distinct vertices x, y ∈ N(v0) ∩ V (C) with xy ∈ E(C).
This means that v0 can be inserted into C to obtain a longer cycle which is a
contradiction. Thus |N(v) ∩ V (C)| ≤ c

2 for all v ∈ U .
On the other hand, if there exists a vertex v0 ∈ U with |N(v) ∩ V (C)| < c

2 ,
then

2l(U) = 2
∑

v∈U

|N(v) ∩ V (C)| < |U |c = |U |(n − |U |)

which contradicts the s-maximality of G.

Claim 2. The set U is independent.

Suppose that there exist two vertices v1, v2 ∈ U with v1v2 ∈ E(G).
Since for all v ∈ U the set N(v) ∩ V (C) is independent (otherwise v can be

inserted into C) of cardinality c
2 , without loss of generality we can assume that

N(v1) ∩ V (C) = {u1, u3, . . . , uc−1}.
If N(v2) ∩ V (C) = N(v1) ∩ V (C), then

v1 − u1 − u2 − · · · − uc−1 − v2 − v1

is a cycle longer than C which is a contradiction.
Similarly, if N(v2)∩ V (C) 6= N(v1)∩ V (C), then it is easy to see that N(v2)∩

V (C) = {u2, . . . , uc}. In this case

v1 − u1 − u2 − · · · − uc − v2 − v1

is a cycle longer than C which again is a contradiction.

Claim 3. |U | = 1.

From Claim 2 it follows that for all v ∈ U we have d(v) = |N(v)| = |N(v) ∩
V (C)| = c

2 . Since G is s-maximal and U is nonempty, for all v ∈ U we have

n − 1

2
≤ d(v) =

c

2
=

n − |U |

2
.

Thus |U | = 1 and therefore there exists a vertex v0 ∈ V (G) with U = {v0}. Note
that d(v0) = n−1

2 .

Claim 4. The set M := V (C) − N(v0) is independent.
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Without loss of generality we can assume that N(v0) = N(v0) ∩ V (C) =
{u2, . . . , uc}. To the contrary, let there exists an edge u2k+1u2l+1 ∈ E(G), where
k < l. Then

v0 − u2k+2 − · · · − u2l − u2l+1 − u2k+1 − u2k − · · · − u2l+2 − v0

is a cycle longer than C which is a contradiction.

Claim 5. For all u ∈ M we have N(u) = N(v0).

From Claim 4 it follows that N(u) ⊂ N(v0). But from the s-maximality of G
we have d(u) ≥ n−1

2 = d(v0). Therefore N(u) = N(v0). This leads to

G = G[M ∪ {v0}] + G[N(v0)] ≃ Kk+1 + H,

where k = d(v0) = c
2 = n−1

2 . �

Remark 3.11. It is obvious that K2 is an s-maximal graph. Furthermore, from
Theorem 3.5 it follows that for every graph H with k ≥ 0 vertices the graph
Kk+1+H is also s-maximal. Thus Theorem 3.10 gives a complete characterization
of non-hamiltonian s-maximal graphs.

Corollary 3.12. Every s-maximal graph with even number n ≥ 4 of vertices is

hamiltonian.

Corollary 3.13. Let G be a non-hamiltonian s-maximal graph with n ≥ 1 ver-

tices. Then there exists a vertex v ∈ V (G) such that G − v is also s-maximal.

Proof: From Theorem 3.10 it follows that G ≃ K2 or G ≃ Kk+1 + H for
some graph H with k ≥ 0 vertices. If G ≃ K2, then for all v ∈ V (G) we have
G − v ≃ K1, and thus G − v is s-maximal. If G ≃ Kk+1 + H , then there exists
a vertex v ∈ V (G) such that G − v ≃ Kk + H . But since |V (H)| = k the graph
G − v appears to be s-maximal as it follows from Theorem 3.5. �

We do not know if every nontrivial s-maximal graph G contains a vertex v ∈
V (G) such that G − v is also s-maximal. However, we can prove the following
result.

Theorem 3.14. Let G be an s-maximal graph with n vertices. If δ(G) = n−1
2 ,

then there exists v ∈ V (G) such that G − v is s-maximal.

Proof: Consider v ∈ V (G) with d(v) = n−1
2 and assume that G − v is not s-

maximal. Then there exists U ⊂ V (G) such that lG−v(U) < m(n−1−m)
2 , where

m = |U |.
Since G is s-maximal, we have

lG(U) ≥
m(n − m)

2

and

lG(U ′) ≥
(m + 1)(n − m − 1)

2
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for U ′ = U ∪ {v}.
Consider the next equalities

lG(U) = lG−v(U) + |NG(v) ∩ U |,

lG(U ′) = lG−v(U) + |NG(v) ∩ (V (G) − U)|.

Adding these we obtain

lG(U) + lG(U ′) = 2lG−v(U) + dG(v).

Hence

dG(v) = lG(U) + lG(U ′) − 2lG−v(U)

>
m(n − m)

2
+

(m + 1)(n − m − 1)

2
− m(n − 1 − m)

=
n − 1

2

which is a contradiction. �

Finally, we should say a few words about unique s-maximal graphs in their
s-classes. In [4] Hage proved the following result.

Theorem 3.15 ([4]). Let G be a graph with n ≥ 3 vertices. Then G is s-

equivalent to an s-maximal pancyclic graph if and only if G is not s-equivalent

to Kn.

Therefore, if G is unique s-maximal graph in its s-class, then G ≃ Kn,n or
G ≃ Kn,n+1 or G is pancyclic.
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