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KYB ERNET IK A — VO LUME 5 1 ( 2 0 1 5 ) , NUMBER 1 , PAGES 8 1 – 9 8

DIRECT SOLUTION OF NONLINEAR CONSTRAINED
QUADRATIC OPTIMAL CONTROL PROBLEMS USING
B-SPLINE FUNCTIONS

Yousef Edrisi-Tabriz and Mehrdad Lakestani

In this paper, a new numerical method for solving the nonlinear constrained optimal control
with quadratic performance index is presented. The method is based upon B-spline functions.
The properties of B-spline functions are presented. The operational matrix of derivative (Dφ)
and integration matrix (P) are introduced. These matrices are utilized to reduce the solution of
nonlinear constrained quadratic optimal control to the solution of nonlinear programming one
to which existing well-developed algorithms may be applied. Illustrative examples are included
to demonstrate the validity and applicability of the technique.

Keywords: optimal control problem, B-spline functions, derivative matrix, collocation
method

Classification: 49N10, 65D07, 65R10, 65L60

1. INTRODUCTION

One of the widely used methods to solve optimal control problems is the direct method.
There is a large number of research papers that employ this method to solve optimal
control problems (see for example [1, 2, 5, 8, 14, 15, 17] and the references therein). This
method converts the optimal control problem into a mathematical programming problem
by using either the discretization technique [1, 2] or the parameterization technique
[5, 14, 15, 17].

The discretization technique converts the optimal control problem into a nonlinear
programming problem with a large number of unknown parameters and a large number
of constraints [2]. On the other hand, parameterizing the control variables [5, 17] requires
the integration of the state equations. While the simultaneous parameterization of both
the state variables and the control variables [17] results in a nonlinear programming
problem with a large number of parameters and a large number of equality constraints.

In [9] Jaddu and Shimemura proposed a method to solve the linear-quadratic and the
nonlinear optimal control problems by using Chebyshev polynomials to parameterize
some of the state variables, then the remaining state variables and the control variables
are determined from the state equations. Yen and Nagurka [27] proposed a method based
on the state parameterization, using Fourier series, to solve the linear-quadratic optimal
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control problem (with equal number of state variables and control variables) subject to
state and control inequality constraints. Also Razzaghi and Elnagar [21] proposed a
method to solve the unconstrained linear-quadratic optimal control problem with equal
number of state and control variables. Their approach is based on using the shifted
Legendre polynomials to parameterize the derivative of each of the state variables. The
approach proposed in [17] is based on approximating the state variables and control
variables with hybrid functions.

In this paper, we present a computational method for solving nonlinear constrained
quadratic optimal control problems by using B-spline functions. The method is based on
approximating the state variables and the control variables with a semiorthogonal linear
B-spline functions [11]. Our method consists of reducing the optimal control problem
to a NLP one by first expanding the state rate ẋ(t) and the control u(t) as a B-spline
functions with unknown coefficients. These linear B-spline functions are introduced. To
approximate the integral in the performance index, the matrix P is given.

The paper is organized as follows: In Section 2 we describe the basic formulation of
the linear B-spline functions required for our subsequent development. We discuss in
Section 3 on the convergence of the method. Section 4 is devoted to the formulation
of optimal control problems. Section 5 summarizes the application of this method to
the optimal control problems, and in Section 6, we report our numerical finding and
demonstrate the accuracy of the proposed method. Sections 7 completes this paper
with a brief conclusion.

2. PROPERTIES OF B-SPLINE FUNCTIONS

2.1. Linear B-spline functions on [0,1]

The mth-order B-spline Nm(t) has the knot sequence {. . . ,−1, 0, 1, . . .} and consists of
polynomials of order m (degree m− 1) between the knots. Let N1(t) = χ[0,1](t) be the
characteristic function of [0,1]. Then for each integer m > 2, the mth-order B-spline is
defined, inductively by [7]

Nm(t) = (Nm−1 ∗N1)(t) =
∫ ∞

−∞
Nm−1(t− τ)N1(τ) dτ =

∫ 1

0

Nm−1(t− τ) dτ. (1)

It can be shown [3] that Nm(t) for m > 2 can be achieved using the following formula

Nm(t) =
t

m− 1
Nm−1(t) +

m− t

m− 1
Nm−1(t− 1),

recursively, and supp[Nm(t)] = [0,m].
The explicit expressions of N2(t) (linear B-spline function) are [3, 7]

N2(t) =

 t, t ∈ [0, 1],
2− t, t ∈ [1, 2],
0, elsewhere.

(2)

Suppose Nj,k(t) = N2(2jt−k), j, k ∈ Z and Bj,k = supp[Nj,k(t)] = clos{t : Nj,k(t) 6= 0}.
It is easy to see that

Bj,k = [2−jk, 2−j(2 + k)], j, k ∈ Z.
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To use these functions on [0, 1],

Sj = {k : Bj,k ∩ [0, 1] 6= ∅}, j ∈ Z.

It is easy to see that min{Sj} = −1 and max{Sj} = 2j − 1, j ∈ Z.
The support of Nj,k(t) may be out of interval [0,1], we need that these functions

intrinsically defined on [0,1] so we put

φj,k(t) = Nj,k(t)χ[0,1](t), j ∈ Z, k ∈ Sj . (3)

2.2. The function approximation

Suppose Φj(t) is a (2j + 1)× 1 vector as

Φj(t) = [φj,−1(t), φj,0(t), . . . , φj,2j−1(t)]T , j ∈ Z. (4)

For a fixed j = M , a function f(t) ∈ L2[0, 1] may be represented by the linear B-spline
functions as

f(t) '
2M−1∑
k=−1

skφM,k(t) = ST ΦM (t), (5)

where
S = [s−1, s0, . . . , s2M−1]

T , (6)

and
sk = f(

k + 1
2M

), k = −1, . . . , 2M − 1. (7)

Note that the functions φM,k(t) satisfy in the relation

φM,k(
i + 1
2M

) = δk,i =
{

1, k = i,
0, k 6= i,

i = −1, . . . , 2M − 1.

So we have
ΦM (ti) = ei, ti =

i + 1
2M

, i = −1, . . . , 2M − 1, (8)

where ei is the ith column of unit matrix of order 2M + 1, [11].

2.3. The operational matrix of derivative

The differentiation of vectors ΦJ in (4) can be expressed as

Φ′M = DφΦM , (9)

where Dφ is (2M +1)× (2M +1) operational matrix of derivative for the linear B-spline
functions on [0,1] as follows:

Dφ =
∫ 1

0

Φ′M (t)Φ̃T
M (t) dt, (10)
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where Φ̃M is the vector of dual basis of ΦM which can be obtained using the linear
combinations of φj,k [12, 13] as

Φ̃M = P−1ΦM , (11)

where P is a (2M + 1)× (2M + 1) tridiagonal matrices as

P =
∫ 1

0

ΦM (t)ΦT
M (t) dt = 2−M



1
3

1
6

1
6

2
3

1
6

. . . . . . . . .
1
6

2
3

1
6

1
6

1
3


. (12)

Replacing (11) in (10) we get

Dφ =
(∫ 1

0

Φ′M (t)ΦT
M (t) dt

)
P−1 = E(P−1), (13)

where

E =
∫ 1

0

Φ′M (t)ΦT
M (t) dt. (14)

It is shown in [12] that E is a (2M + 1)× (2M + 1) tridiagonal matrices as

E =



− 1
2 − 1

2
1
2 0 − 1

2

. . . . . . . . .
1
2 0 − 1

2
1
2

1
2


.

Then we can approximate the derivative of f(t) as follows

f ′(t) = ST Φ′M (t) = ST DΦΦM (t). (15)

3. ON THE CONVERGENCE OF THE METHOD

In this section, we state the convergence properties of the linear B-spline functions.
A detailed proof of the following results can be found in [23].

Theorem 3.1. Let y1 6 · · · 6 yn+2 be a partition of [0, 1] such that y1 < yi+2,
i = 1, 2, . . . , n. Let N1

2 , . . . , Nn
2 be the associated linear B-splines. Then there is a

dual set of linear functionals λ1, . . . , λn with

|λjf | 6 45h
− 1

p

j ‖ f ‖Lp[Ĩj ]
, 1 6 p 6 ∞, f ∈ Lp[0, 1], (16)

where Ĩj = (yj , yj+2) and hj = yj+2 − yj , j = 1, 2, . . . , n.
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Lemma 3.2. Suppose S2 is the space of polynomial splines of order 2 with knots
y1, . . . , yn. Then

d(f,S2)p 6 O(n−2) (17)

where d(f,S2)p = d(f,S2)Lp[0,1] = infs∈S2 ‖ f − s ‖Lp[0,1]. Here, we have used the
symbol O(n−2) to express the fact that the decay exponent for the bound in (17) is at
least as small as −2.

Theorem 3.3. Let {yi}n+2
1 be an extended partition of [0, 1], and let {N i

2}n
1 be the

associated B-splines. Let {λi}n
1 be the linear functionals defined in Theorem 3.1 forming

a dual basis for S2 = span{N i
2}n

1 . Then for any 1 6 p 6 ∞,

Qf =
n∑

i=1

(λif)N i
2(x)

defines a bounded linear projector of Lp[0, 1] onto S2. Moreover, for all f ∈ Lp[0, 1],

‖ f −Qf ‖p6 Cd(f,S2)p.

In order to establish convergence of the proposed method, Lemma 3.2 and Theorem
3.3 show that with increase in the number of knots as such as B-spline basis, the error
terms tend to zero.

4. PROBLEM STATEMENT

The problem we are treating is to find the optimal control u∗(t) and the corresponding
optimal state trajectory x∗(t) that minimizes the performance index

J =
1
2
xT (tf )Zx(tf ) +

1
2

∫ tf

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt, (18)

subject to the following constraints

• System state equations
ẋ(t) = f(x(t),u(t), t), (19)

• Boundary condition
Ψ(x(t0), t0,x(tf ), tf ) = 0, (20)

• State and control inequality constraints

gi(x(t),u(t), t) 6 0, i = 1, 2, . . . , w, (21)

where Z and Q(t) are positive semidefinite matrices, R(t) is a positive definite matrix,
t0 and tf are known initial and terminal time respectively, x(t) ∈ Rl is the state vector,
u(t) ∈ Rq is the control vector, and f and gi, i = 1, 2, . . . , w, are nonlinear functions.
This problem is defined on the time interval t ∈ [t0, tf ]. Certain numerical techniques
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(like B-spline functions) require a fixed time interval, such as [0, 1]. The independent
variable can be mapped to the general interval τ ∈ [0, 1] via the affine transformation

τ =
t− t0
tf − t0

. (22)

Note that this mapping is still valid with free initial and final times. Using Eq. (22),
this problem can be redefined as follows. Minimize the performance index

J =
1
2
xT (1)Zx(1) +

1
2
(tf − t0)

∫ 1

0

(
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

)
dτ, (23)

subject to the constraints

dx
dτ

= (tf − t0)f(x(τ),u(τ), τ ; t0, tf ), (24)

Ψ(x(0), t0,x(1), tf ) = 0, (25)

gi(x(τ),u(τ), τ ; t0, tf ) 6 0, i = 1, 2, . . . , w, τ ∈ [0, 1]. (26)

5. THE PROPOSED METHOD

We approximate the system dynamics as follows: let

x(t) = [x1(t),x2(t), . . . ,xl(t)]T , (27)

ẋ(t) = [ẋ1(t), ẋ2(t), . . . , ẋl(t)]T , (28)

u(t) = [u1(t),u2(t), . . . ,uq(t)]T , (29)

Φ̂M,l(t) = Il ⊗ ΦM (t), (30)

Φ̂′M,l(t) = Il ⊗DΦΦM (t), (31)

Φ̂M,q(t) = Iq ⊗ ΦM (t), (32)

where Il and Iq are l× l and q× q dimensional identity matrices, ΦM (t) is (2M + 1)× 1
vector, ⊗ denotes Kronecker product [10], Φ̂M,l(t) and Φ̂′M,l(t) are matrices of order
l(2M + 1)× l and Φ̂M,q(t) is a matrix of order q(2M + 1)× q. Assume that each of xi(t)
and each of uj(t), i = 1, 2, . . . , l, j = 1, 2, . . . , q, can be written in terms of B-spline
functions as

xi(t) ' ΦT
M (t)Xi,

ẋi(t) ' ΦT
MDT

ΦXi,

uj(t) ' ΦT
M (t)Uj .

Then using Eqs. (30), (31) and (32) we have

x(t) ' Φ̂T
M,l(t)X, (33)

ẋ(t) ' Φ̂′TM,l(t)X, (34)

u(t) ' Φ̂T
M,q(t)U, (35)
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where X and U are vectors of order l(2M + 1)× 1 and q(2M + 1)× 1, respectively, given
by

X =
[
XT

1 ,XT
2 , . . . ,XT

l

]T
,

U =
[
UT

1 ,UT
2 , . . . ,UT

q

]T
.

5.1. The performance index approximation

By substituting Eqs. (33) – (35) in Eq. (23) we get

J =
1
2
XT Φ̂M,l(1)ZΦ̂T

M,l(1)X +
1
2
(tf − t0)XT

(∫ 1

0

Φ̂M,l(t)Q(t)Φ̂T
M,l(t) dt

)
X

+
1
2
(tf − t0)UT

(∫ 1

0

Φ̂M,q(t)R(t)Φ̂T
M,q(t) dt

)
U. (36)

Eq. (36) can be computed more efficiently by writing J as

J =
1
2
XT

(
Z⊗ ΦM (1)ΦT

M (1)
)
X +

1
2
(tf − t0)XT

(∫ 1

0

Q(t)⊗ ΦM (t)ΦT
M (t) dt

)
X

+
1
2
(tf − t0)UT

(∫ 1

0

R(t)⊗ ΦM (t)ΦT
M (t) dt

)
U. (37)

For problems with time-varying performance index, Q(t) and R(t) are functions of time
and ∫ 1

0

Q(t)⊗ ΦM (t)ΦT
M (t) dt,

∫ 1

0

R(t)⊗ ΦM (t)ΦT
M (t) dt

can be evaluated numerically. For time-invariant problems, Q(t) and R(t) are constant
matrices and can be removed from the integrals. In this case Eq. (37) can be rewritten
as

J(X,U) =
1
2
XT

(
Z⊗ ΦM (1)ΦT

M (1)
)
X +

1
2
(tf − t0)XT (Q⊗P)X

+
1
2
(tf − t0)UT (R⊗P)U, (38)

where

P =
∫ 1

0

ΦM (t)ΦT
M (t) dt,

that this matrix is obtained in Eq.(12).

5.2. The system constraints approximation

We approximate the system constraints as follows:
Using Eqs. (33) – (35) the system constraints (24) – (26) became

• System state equations

Φ̂′TM,l(t)X = (tf − t0)f(Φ̂T
M,l(t)X, Φ̂T

M,q(t)U, t; t0, tf ), (39)
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• Boundary condition

Ψ(Φ̂T
M,l(0)X, t0, Φ̂T

M,l(1)X, tf ) = 0, (40)

• State and control inequality constraints

gi(Φ̂T
M,l(t)X, Φ̂T

M,q(t)U, t; t0, tf ) 6 0, i = 1, 2, . . . , w. (41)

We collocate Eqs. (39) and (41) at Newton-cotes nodes tk,

tk =
k − 1
2M

, k = 1, 2, . . . , 2M + 1. (42)

The optimal control problem has now been reduced to a parameter optimization
problem which can be stated as follows. Find X and U so that J(X,U) is minimized
(or maximized) subject to Eq. (40) and

Φ̂′TM,l(tk)X = (tf − t0)f(Φ̂T
M,l(tk)X, Φ̂T

M,q(tk)U, tk), (43)

gi(Φ̂T
M,l(tk)X, Φ̂T

M,q(tk)U, tk; t0, tf ) 6 0, i = 1, 2, . . . , w, k = 1, 2, . . . , 2M + 1. (44)

Many well-developed nonlinear programming techniques can be used to solve this ex-
tremum problem (see, e. g., [4, 20, 22]).

6. ILLUSTRATIVE EXAMPLES

This section is devoted to numerical examples. We implement the proposed method in
last section with Maple 17 software in personal computer.

To illustrate our technique, we present four numerical examples, and make a com-
parison with some of the results in the literatures.

Example 6.1. This example is studied by using rationalized Haar functions [19] and
hybrid of block-pulse and Bernoulli polynomials [17] and hybrid of block-pulse and
Legendre polynomials [14]. Find the control vector u(t) which minimizes

J =
1
2

∫ 1

0

(
x2

1(t) + u2(t)
)

dt, (45)

subject to [
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t), (46)[

x1(0)
x2(0)

]
=

[
0
10

]
, (47)

and subject to the following inequality control constraint
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Fig. 1. State and control variables and the constraint errors

|ẋ1(t) − x2(t)| and |ẋ2(t) + x2(t) − u(t)| for Example 6.1 with M = 8.

|u(t)| 6 1. (48)

This problem can be solved by using Maple 17. In Table 1, parameters are defined as
follows: K in [19] is the order of Rationalized Haar functions, N and M1 in [14] are the
order of block-pulse functions and Legendre polynomials, respectively, and N and M in
[17] are the order of block-pulse functions and Bernoulli polynomials, respectively. In
Figure 1, the control and state variables with the absolute value of constraint’s errors,
for M = 8, are reported.
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Methods J CPU time
Rationalized Haar functions [19]
K = 4 8.07473 0.389
K = 8 8.07065 0.546

Hybrid of block-pulse and Legendre [14]
N = 4, M1 = 3 8.07059 1.592
N = 4, M1 = 4 8.07056 4.304

Hybrid of block-pulse and Bernoulli [17]
N = 4, M = 2 8.07058 0.858
N = 4, M = 3 8.07055 1.155

Present method
M = 6 8.07058 0.780
M = 7 8.07056 1.046
M = 8 8.07054 1.905
Exact 8.07054

Tab. 1. Estimated and exact values of J for Example 6.1.

Example 6.2. Consider the Breakwell problem from [6]. The performance index to be
minimized is given by

J =
1
2

∫ 1

0

u2(t) dt, (49)

subject to the state equations

ẋ1(t) = x2(t), ẋ2(t) = u(t), (50)

with the endpoint conditions

x1(0) = x1(1) = 0, x2(0) = −x2(1) = 1, (51)

and the state constraint
x1(t) 6 0.1. (52)

The exact solution to this problem is given by

u∗(t) =


200
9 t− 20

3 , t ∈ [0, 0.3] ,

0, t ∈ [0.3, 0.7] ,

− 200
9 t + 140

9 , t ∈ [0.7, 1] .

(53)

This example was studied by using pseudospectral method [6] and ChFD scheme [16].
Here we applied the proposed method to solve this problem. The approximate solutions
of x1(t), x2(t), and u(t), obtained by the B-spline functions with M = 8, and the exact
solutions together error bounds |x∗1(t)−x1(t)|, |x∗2(t)−x2(t)| and |u∗(t)−u(t)| are plotted
in Figure 2. This results show that accuracy of our method in comparison with ChFD
scheme [16] whose result are plotted in Figure 3.
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Fig. 2. Exact value and approximation of optimal control and state

variables and error bounds using B-spline functions for Example 6.2

with M = 8.
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Fig. 3. Exact value and approximation errors of |x∗1(t) − x1(t)| ,

|x∗2(t) − x2(t)| and |u∗(t) − u(t)| using ChFD scheme [16] for Example

6.2 with M = 35.

Example 6.3. This example is studied by using generalized gradient method [18], clas-
sical Chebyshev [25], Fourier-based state parametrization [26], rationalized Haar [15],
hybrid of block-pulse and Legendre polynomials [14],hybrid of block-pulse and Bernoulli
polynomials [17] and interpolating scaling functions [5]. Find the control vector u(t)
which minimizes

J =
∫ 1

0

(
x2

1(t) + x2
2(t) + 0.005u2(t)

)
dt, (54)

subject to [
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t), (55)[

x1(0)
x2(0)

]
=

[
0
−1

]
, (56)

and the following state variable inequality constraint

x2(t) 6 r(t), (57)

where
r(t) = 8(t− 0.5)2 − 0.5, 0 6 t 6 1.

The computational result for x2(t) for M = 6 together with r(t) are given in Figure 4. In
Table 2, we compare the minimum of J using the proposed method with other solutions
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Methods J CPU time
Rationalized Haar functions [15]
K = 64, w = 100 0.170115 1.877
K = 128, w = 100 0.170103 1.983

Hybrid of block-pulse and Legendre [14]
N = 4, M1 = 3 0.17013645 0.951
N = 4, M1 = 4 0.17013640 1.545

Hybrid of block-pulse and Bernoulli [17]
N = 4, M = 3 0.1700305 0.756
N = 4, M = 4 0.1700301 0.921

interpolating scaling functions [5]
n = 4, r = 5 0.16982646 2.251
n = 5, r = 5 0.16982636 3.175

Present method
M = 6 0.16967511 0.694
M = 7 0.16978300 1.151
M = 8 0.16981099 1.183

Tab. 2. Results for Example 6.3.

in the literature. In Table 2, parameters are defined as follows: K and w in [15] are
the number of terms in Rationalized Haar functions expansion and the number of error
repetition for the objective functions, respectively, r in [5] is the order of Legender
polynomials and n is the number of terms in Interpolating scaling functions expansion,
the other parameters have been defined previously.

Example 6.4. We consider the optimal maneuvers of a rigid asymmetric spacecraft.
This example is studied by using quasilinearization and Chebyshev polynomials [8] and
hybrid of block-pulse and Bernoulli polynomials [17]. The system state equations are

ẋ1(τ) = −I3 − I2

I1
x2(τ)x3(τ) +

u1(τ)
I1

,

ẋ2(τ) = −I1 − I3

I2
x1(τ)x3(τ) +

u2(τ)
I2

,

ẋ3(τ) = −I2 − I1

I3
x1(τ)x2(τ) +

u3(τ)
I3

,

x1(τ)− (5× 10−6τ2 − 5× 10−4τ + 0.016) 6 0,

x1(100) = x2(100) = x3(100) = 0,

where I1 = 86.24, I2 = 85.07 and I3 = 113.59. The performance index to be minimized,
starting from the initial states x1(0) = 0.01, x2(0) = 0.005 and x3(0) = 0.001 is

J =
1
2

∫ 100

0

(
u2

1(τ) + u2
2(τ) + u2

3(τ)
)

dτ.
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Fig. 4. Control and state variables and constraint boundary for

Example 6.3 with M = 8.

Methods J CPU time
Quasilinearization and Chebyshev polynomials [8]
N = 6 0.00536584 0.07
N = 8 0.00534427 0.10
N = 10 0.00534063 0.12

Quasilinearization and Chebyshev polynomials [8]
with using 2 subintervals

N = 10 0.00530902 0.36

Hybrid of block-pulse and Bernoulli [17]
N = 6, M = 3 0.00531097 1.89
N = 6, M = 4 0.00530263 2.12
N = 6, M = 5 0.00530213 2.74

Present method
M = 6 0.00530712 0.11
M = 7 0.00530812 0.23
M = 8 0.00530838 0.35

Tab. 3. Results for Example 6.4.

We use transformation τ = 100t, 0 6 t 6 1, in order to use our proposed method. In
Table 3, parameters are defined as follows: N in [8] is the order of Chebyshev series, the
other parameters have been defined previously. Optimal control and state variables and
constraint boundary, for M = 8, are shown in Figure 5.
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Fig. 5. Control and state variables and constraint boundary for

Example 6.4 with M = 8.

Methods J CPU time
Method of [4]
m = 5 0.5366× 10−2 2.589
m = 7 0.53614× 10−2 2.607
m = 9 0.53610895× 10−2 3.002
m = 11 0.5361102700× 10−2 3.021

Hybrid of block-pulse and Bernoulli [17]
N = 2, M = 2 0.593000× 10−2 1.904
N = 2, M = 3 0.528915× 10−2 2.125
N = 2, M = 4 0.521421× 10−2 2.305
N = 2, M = 5 0.521411× 10−2 2.663

Present method
M = 5 0.521184× 10−2 1.661
M = 6 0.515476× 10−2 1.734
M = 7 0.515097× 10−2 1.909

Tab. 4. Results for Example 6.5.
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Example 6.5. Consider the problem of transferring containers from a ship to a cargo
truck [24]. The container crane is driven by a hoist motor and a trolley drive motor. The
aim is to minimize the swing during and at the end of the transfer. After appropriate
normalization, we summarize the problem as follows:

J = 4.5
∫ 1

0

(
x2

3(t) + x2
6(t)

)
dt,

subject to

ẋ1(t) = 9x4(t),
ẋ2(t) = 9x5(t),
ẋ3(t) = 9x6(t),
ẋ4(t) = 9(u1(t) + 17.2656x3(t)),
ẋ5(t) = 9u2(t),

ẋ6(t) =
−9(u1(t) + 27.0756x3(t) + 2x5(t)x6(t))

x2(t)
,

where

x(0) = [0, 22, 0, 0,−1, 0]T ,

x(1) = [10, 14, 0, 2.5, 0, 0]T ,

and

|u1(t)| 6 2.83374, t ∈ [0, 1],
− 0.80865 6 u2(t) 6 0.71265, t ∈ [0, 1]

with continuous state inequality constraints,

|x4(t)| 6 2.5, t ∈ [0, 1],
|x5(t)| 6 1.0, t ∈ [0, 1].

In Table 4, parameters are defined as follows: m in [4] is the degree of Chebyshev
polynomials, the other parameters have been defined previously.

7. CONCLUSION

In this paper we presented a numerical scheme for solving nonlinear constrained quadratic
optimal control problems. The method of linear B-spline functions was employed. Also
several test problems were used to see the applicability and efficiency of the method.
The obtained results show that the new approach can solve the problem effectively.
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