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Abstract. Let G be a finite group and p a prime number. We prove that if G is a finite
group of order |PSL(2, p2)| such that G has an irreducible character of degree p2 and we
know that G has no irreducible character θ such that 2p | θ(1), then G is isomorphic to
PSL(2, p2).
As a consequence of our result we prove that PSL(2, p2) is uniquely determined by the

structure of its complex group algebra.
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1. Introduction and preliminary results

Let G be a finite group, Irr(G) the set of irreducible characters of G, and denote

by cd(G), the set of irreducible character degrees of G. The degree pattern of G,

which is denoted by X1(G), is the set of all irreducible complex character degrees of

G counting multiplicities. We note that X1(G) is the first column of the ordinary

character table of G. If n is an integer, then we denote by π(n) the set of all prime

divisors of n. If G is a finite group, then π(|G|) is denoted by π(G).

The first author would like to thank the Institute for Research in Fundamental Sciences
(IPM) for the financial support. This research was in part supported by a grant from
IPM (No. 92050120).
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Many authors have been recently concerned with the following question: What

can be said about the structure of a finite group G, if some information is known

about the arithmetical structure of the degrees of the irreducible characters of G?

(See [5], [10].)

We know that there are 2328 groups of order 27 and these groups have only

30 different degree patterns, and there are 538 of them with the same character

degrees (see [3]).

A finite group G is called a K3-group if |G| has exactly three distinct prime di-

visors. It is proved that there exist eight simple K3-groups. Recently in [18] it

is proved that all simple K3-groups are uniquely determined by their orders and

one or both of their largest and second largest irreducible character degrees. In

[8] the authors proved that the simple group PSL(2, p), where p is an odd prime

number, is uniquely determined by its order and its largest and second largest ir-

reducible character degrees. Also, in [7] finite groups with the same order and the

same largest and second largest irreducible character degrees as PGL(2, 9) are deter-

mined.

The goal of this paper is to introduce a new characterization for the simple group

PSL(2, p2), where p is an odd prime number. In fact we prove that if p is an odd

prime number and G is a finite group such that |G| = |PSL(2, p2)|, p2 ∈ cd(G) and

there exists no θ ∈ Irr(G) such that 2p | θ(1), then G ∼= PSL(2, p2).

We note that if p = 3, then A6
∼= PSL(2, 9) and the result follows by [18]. So we

consider p > 3.

By Molien’s theorem, knowing the structure of the complex group algebra is equiv-

alent to knowing the first column of the ordinary character table. In [14] with the

only assumption that their complex group algebras are isomorphic, Tong-Viet proved

that each classical simple group is uniquely determined by its complex group alge-

bra.

It was shown in [16] that the symmetric groups are uniquely determined by the

structure of their complex group algebras. Independently, this result was also proved

by Nagl in [11]. It was conjectured that all nonabelian simple groups are uniquely

determined by the structure of their complex group algebras. This conjecture was

verified in [9], [12], [13], [15] for the alternating groups, the sporadic simple groups,

the Tits group and the simple exceptional groups of Lie type. We note that abelian

groups are not determined by the structure of their complex group algebras. In

fact, the complex group algebras of any two abelian groups of the same orders are

isomorphic. There are also examples of nonabelian p-groups with isomorphic complex

group algebras, for example the dihedral group of order 8 and the quaternion group

of order 8.
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As a consequence of our results we give a new proof for the fact that PSL(2, p2)

is uniquely determined by the structure of its complex group algebra.

If N E G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ) = {g ∈ G ;

θg = θ}. If the character χ =
k∑

i=1

eiχi, where for each 1 6 i 6 k, χi ∈ Irr(G) and ei

is a natural number, then each χi is called an irreducible constituent of χ.

Lemma 1.1 (Gallagher’s Theorem [6], Corollary 6.17). Let N E G and let

χ ∈ Irr(G) be such that χN = θ ∈ Irr(N). Then the characters βχ for β ∈ Irr(G/N)

are irreducible distinct for distinct β and all of the irreducible constituents of θG.

Lemma 1.2 (Ito’s Theorem [6], Theorem 6.15). Let A E G be abelian. Then

χ(1) divides |G : A| for all χ ∈ Irr(G).

Lemma 1.3 ([6], Theorems 6.2, 6.8, 11.29). Let N E G and let χ ∈ Irr(G). Let

θ be an irreducible constituent of χN and suppose θ1 = θ, . . . , θt are the distinct

conjugates of θ in G. Then χN = e
t∑

i=1

θi, where e = [χN , θ] and t = |G : IG(θ)|.

Also θ(1) | χ(1) and χ(1)/θ(1) | |G : N |.

Lemma 1.4 ([18]). Let G be a nonsolvable group. Then G has a normal series

1 E H E K E G such that K/H is the direct product of isomorphic nonabelian

simple groups and |G/K| | |Out(K/H)|.

Lemma 1.5 ([2]). With the exceptions of the relations 2392 − 2(13)4 = −1 and

35 − 2(11)2 = 1 every solution of the equation

pm − 2qn = ±1; p, q prime; m,n > 1

has exponents m = n = 2; i.e., it comes from a unit p− q · 21/2 of the quadratic field

Q(21/2) for which the coefficients p and q are primes.

If n is an integer and r is a prime number, then we write rα ∤ n when rα | n

but rα+1 ∤ n. We denote by nr the r-part of n, i.e., nr = rα so that rα ∤ n. If r

is a prime number we denote by Sylr(G) the set of Sylow r-subgroups of G and we

denote by nr(G) the number of elements of Sylr(G). All groups considered are finite

and all characters are complex characters. We write H ch G if H is a characteristic

subgroup of G. All the other notation is standard and we refer to [1].
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2. The main results

Remark 2.1. We note that if p is an odd prime, then |PSL(2, p2)| = p2(p2+1)×

(p2 − 1)/2 and if p > 5, then cd(PSL(2, p2)) = {1, p2 − 1, p2, p2 + 1, (p2 + 1)/2}.

Lemma 2.1. Let p > 3 be an odd prime and m = p2(p2 + 1)(p+ 1). Then if m

has a divisor of the formm(k) = kp+1, then m(k) = 1, p+1, p2+1 or p3+p2+p+1.

Also, if h = p2(p2 + 1)(p− 1) has a divisor h(k) = 1+ kp, then h(k) = 1 or p2 + 1, if

p 6= k2 + k + 1.

P r o o f. By assumption m(k) = (1+kp) | (p2+1)(p+1) and so (p2+1)(p+1) =

m(k)t for some t > 0. Therefore p3+p2+p+1 = kpt+t, and so p | t−1. Hence t = 1

or p+1 6 t. If t = 1, then k = p2+ p+1, which implies that m(k) = p3+ p2+ p+1.

Otherwise, p+1 6 t and so p3+p2+p+1 > (kp+1)(p+1) = kp2+kp+p+1, which

implies that p > k. If k = 0, 1, p, then m(k) = 1, p + 1 and p2 + 1, respectively.

So let 1 < k < p. Now we determine the greatest common divisor of m(k) and m.

If a = (kp + 1, p + 1), then a | k − 1. Also if b = (kp + 1, p2 + 1), then b | p − k.

Therefore (1 + kp,m) 6 ab 6 (k − 1)(p− k) < kp, which implies that 1 + kp ∤ m.

Similarly to the above we get that there exists t > 0 such that p3−p2+p−1 = kpt+t

and so p − 1 6 t, which implies that p > k. If k = 0, p, then h(k) = 1 and

p2 + 1, respectively. Therefore let 1 6 k < p. Similarly to the above we get that

kp + 1 | (k + 1)(p − k). Since p 6= k2 + k + 1, we get that kp + 1 6= (k + 1)(p− k).

Therefore kp+ 1 6 (k + 1)(p− k)/2, which is impossible. �

Using Ito’s theorem we can easily get the following result:

Lemma 2.2. Let M be a finite group such that pj ∤ |M |, where 1 6 j 6 2. If M

has an irreducible character of degree pj , then Op(M) = 1.

Theorem 2.1. Let G be a finite group such that |G| = |PSL(2, 25)| and G has

an irreducible character of degree 25. Then G ∼= PSL(2, 25).

P r o o f. We know that |G| = 5223 × 13 × 3. If G is a solvable group, let H

be a Hall subgroup of G such that |G : H | = 13. Then G/HG →֒ S13 and since

the order of each solvable subgroup of S13 whose order is divisible by 13 divides

13 × 12, we conclude that |HG| = 522i3j, where 1 6 i 6 3 and 0 6 j 6 1. On

the other hand, HG has an irreducible character of degree 25 by Lemma 1.3, which

implies that |HG| > 1+ 54 and this is a contradiction. Therefore G is not a solvable

group and by Lemma 1.4 we get that G has a normal series 1 E H E K E G

such that K/H is the direct product of isomorphic nonabelian simple groups and

|G/K| | |Out(K/H)|. Now using the classification of finite simple groups and [1] we
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get thatK/H is isomorphic to A5 or PSL(2, 25). IfK/H ∼= A5, then |H | = 65 or 130.

If |H | = 65, then H has an irreducible character of degree 5 by Lemma 1.3, which

is a contradiction since O5(H) 6= 1. If |H | = 130, then H has a normal subgroup of

order 65 and we get a contradiction similarly. Therefore K/H ∼= PSL(2, 25) and so

G/K = 1 and H = 1. Hence G ∼= PSL(2, 25) and the result follows. �

Theorem 2.2. Let p > 5 be an odd prime number. If G is a finite group such

that

(i) |G| = |PSL(2, p2)|,

(ii) p2 ∈ cd(G),

(iii) there exists no θ ∈ Irr(G) such that 2p | θ(1),

then G ∼= PSL(2, p2).

P r o o f. Let χ ∈ Irr(G) be such that χ(1) = p2. By Lemma 2.2, we know that

Op(G) = 1. Also it follows that if N ⊳ G, then Op(N) = 1. In particular, we get

that if p2 | |N | and N ⊳ G, then N has an irreducible character of degree p2. Now

we prove the main result in several steps:

Step 1. No finite group G satisfying (i)–(iii) is a solvable group.

On the contrary letG be a solvable group. If 4 | p−1, then letH be a Hall subgroup

of G such that |G : H | = (p+1)/2. Then G/HG →֒ S(p+1)/2 and since (p+1)/2 < p,

it follows that p2 | |HG|. Let N = HG and note that |N | | p2(p2+1)(p−1). Consider

a Hall subgroup of N such that |N : L| = (|N |, 2(p− 1)). Then N/LN →֒ S2p−2 and

2(p− 1) < 2p implies that p | |LN |, since p ∤ |S2p−2|. Using Lemma 1.3, we get that

|LN |p ∈ cd(LN). On the other hand, |LN | | p2(p2 + 1)/2 implies that np(LN) = 1

by Lemma 2.1 and so Op(LN ) 6= 1, which is a contradiction by Lemma 2.2.

So in the sequel let 4 | p+ 1.

Let H be a Hall subgroup of G such that |G : H | = (p − 1)/2. Then G/HG →֒

S(p−1)/2. Let N = HG and note that |N | | p2(p2 + 1)(p+ 1) and p2 | |N |. Consider

η ∈ Irr(N) such that [χN , η] 6= 0. Then χ(1)/η(1) | |G : N |, by Lemma 1.3. Therefore

N has an irreducible character of degree p2.

Case I. Let p+ 1 6= 2β for each β > 0.

Let T be a Hall subgroup of N such that |N : T | = |N |2 6 2(p+1)2 6 2(p+1)/3 6

p − 1. Then N/TN →֒ Sp−1 and so p2 | |TN |. Now since |T | is odd we get that

np(TN ) = 1, by Lemma 2.1. This implies that Op(TN) 6= 1, which is a contradiction.

Case II. Let p+ 1 = 2α for some α > 0.

As mentioned above N is a normal subgroup of G such that |N | | p2(p2+1)(p+1)

and we know that Op(N) = 1. If O2(N) 6= 1, then |N/O2(N)| | p2(p + 1)×

(p2 + 1)/2. Let L/O2(N) be a Hall subgroup of N/O2(N) such that |N/O2(N) :

L/O2(N)| = |N/O2(N)|2 6 p + 1. Then N/R →֒ Sp+1, where R/O2(N) =
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CoreN/O2(N)(L/O2(N)). Therefore p | |R|. Also |R/O2(N)| | p2(p2 + 1)/2 and by

Lemma 2.1 we get that np(R/O2(N)) = 1 and so if Q/O2(N) ∈ Sylp(R/O2(N)),

then Q ⊳ G and |Q| = |O2(N)|pj , where 1 6 j 6 2. Now if |O2(N)| < p + 1, then

Op(Q) 6= 1, which is a contradiction. Otherwise if p+ 1 6 |O2(N)| 6 2(p+ 1), then

p2 | |R| and so p2 | |Q|, which implies that Q has an irreducible character of degree p2.

Hence 1 + p4 6 |Q| 6 2p2(p+ 1), which is a contradiction. Therefore O2(N) = 1.

If (p2 + 1)/2 = pβ0 for some β > 0, then by Lemma 1.5 we get that β = 1 or

β = 2. If β = 1, then p0 = (p2 + 1)/2 and so p ∤ p0(p0 − 1). Let H be a Hall

subgroup of N such that |N : H | = p0. Then N/HN →֒ Sp0
and since the order of

each solvable subgroup of Sp0
which is divisible by p0 divides p0(p0 − 1), we get that

p2 | |HN |. Also |HN | | 2p2(p + 1). Now let θ ∈ Irr(HN ) be such that [χHN
, θ] 6= 0.

Then θ(1) = p2. Therefore 2p2(p + 1) > |HN | > 1 + θ(1)2 = 1 + p4, which is

a contradiction.

If β = 2, then p20 = (p2 +1)/2 and p = 2α − 1. Therefore p20 = 22α−1 − 2α +1 and

so 2α(2α−1 − 1) = (p0 − 1)(p0 + 1). Hence one of the following occurs: 2α−1 | p0 − 1

and p0 + 1 | 2(2α−1 − 1) or 2α−1 | p0 + 1 and p0 − 1 | 2(2α−1 − 1).

In the former case p0 − 1 = 2α−1r and p0 + 1 = 2(2α−1 − 1)/r for some r > 0. If

r > 3, then we easily get a contradiction and if r = 1, then p = 7. Similarly in

the latter case for p > 7 we get a contradiction. If p = 7, then |N | | 527224. As

mentioned above O7(N) = 1 and O2(N) = 1. Therefore O5(N) 6= 1. If |O5(N)| =

25, then consider η ∈ Irr(O5(N)) such that [χO5(N), η] 6= 0. Then χ(1) = etη(1)

by Lemma 1.3, which implies that et = 72, where t = |N : IN (η)|. Since t |

|Aut(O5(N))|, we get that e = 49 and t = 1, which is a contradiction since 74 =

e2t 6 |N : O5(N)| 6 49 × 16. Therefore |O5(N)| = 5. Let M/O5(N) be a Hall

subgroup of N/O5(N) such that |N/O5(N) : M/O5(N)| = |N/O5(N)|5. Then there

exists a normal subgroup R of N such that |N : R| is a divisor of 20. Therefore

|R| | 72245 and 725 | |R|. Finally, by considering a Hall subgroup of R of index 5, we

get a contradiction similarly to the above discussion.

If (p2 + 1)/2 = ab, where 1 < a < b are natural numbers and (a, b) = 1, then

a < p. Now similarly to the previous cases we can consider a Hall subgroup of N

such that |N : M | = (a, |N |) and get a normal subgroup R of N such that p2 | |R|

and |R| | 2p2(p+ 1)(p2 + 1)/2a. So without loss of generality, we assume that |N | |

2(p+1)p2pβ0 = 2α+1p2pβ0 and p
2 | |N |, where pβ0 ∤ (p2+1)/2a for a prime number p0.

Since N is a solvable group, by the above discussion it follows that Op0
(N) 6= 1.

Now Op0
(N/Op0

(N)) = 1, and so O2(N/Op0
(N)) 6= 1 or Op(N/Op0

(N)) 6= 1. If

Q/Op0
(N) = Op(N/Op0

(N)) 6= 1, then |Q| = |Op0
(N)|pγ for some γ > 0 and

|Q| | p2(p2 + 1)/2, which implies that np(Q) = 1 and so Op(Q) 6= 1, which is

a contradiction. Therefore R/Op0
(N) = O2(N/Op0

(N)) 6= 1. Let |R| = 2i|Op0
(N)|

for some i > 0 and consider the finite group N/R. Let L/R be a Hall subgroup
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of N/R such that |N/R : L/R| = |N/R|2 | 2(p + 1)/2i 6 p + 1. Then if T/R =

CoreN/R(L/R), then p | |T/R| and by Lemma 2.1 we get that Q/R, the Sylow

p-subgroup of T/R, is a normal subgroup of T/R. Therefore |Q| = pj2i|Op0
(N)|,

where 1 6 j 6 2. If 2i < p+ 1, then Op(N) 6= 1, which is a contradiction. Therefore

2i > p + 1, and |N/R : L/R| 6 2 shows that p2 | |T/R|. Now we consider the

following two cases.

(i) Let 2i = p+ 1.

Let M be a Hall subgroup of Q such that |Q : M | = p + 1. As mentioned above

p | |MQ| and Op(Q) 6= 1, which is a contradiction.

(ii) Let 2i = 2(p+ 1).

In this case np(Q) = 1 or p + 1 by Lemma 2.1. Since Op(Q) = 1, we get that

np(Q) = p+1. Therefore |Q : NQ(P )| = p+1, where P ∈ Sylp(Q). Let K = NQ(P ).

Then Q/KQ →֒ Sp+1 and similarly to the previous cases we get that Op(KQ) 6= 1,

which is a contradiction.

Therefore G is not a solvable group.

Step 2. Now we prove that G is isomorphic to PSL(2, p2).

By the above discussion and using Lemma 1.4 we get that G has a normal series

1 E H E K E G such that K/H is the direct product of m copies of a nonabelian

simple group S and |G/K| | |Out(K/H)|.

First we claim that p ∤ |G/K|. Otherwise p | |G/K| and since Out(K/H) ∼=

Out(S) ≀ Sm, it follows that p | |Sm| or p | |Out(S)|. If p | |Sm|, then m > p. Now

since the smallest order of a nonabelian simple group is 60, it follows that p(p4−1) >

|K/H | > 60p, which is impossible. Hence p | |Out(S)|, where p > 7. Then by [1]

we get that S is not isomorphic to a sporadic simple group or an alternating group.

Therefore S is a simple group of Lie type over GF(q), where q = pf0 . By assumption,

p | |Out(S)| = dfg, where d, f and g are the orders of diagonal, field and graph

automorphisms of S (see [1]). If p | f , then 2p(22p − 1) 6 q(q2 − 1) 6 |S| 6 p(p4 − 1)

for each nonabelian simple group S, which is a contradiction. Also g 6 3, and so

p | d, where S = An(q) and d = (n+ 1, q − 1) or S = 2An(q) and d = (n+ 1, q + 1).

In each case we get that p | q + ε, where ε = ±1 and n > 6. Then p3 | |S|, which is

a contradiction. Therefore p ∤ |G/K|.

Now we claim that p2 ∤ |H |. If p2 | |H |, choose η ∈ Irr(H) such that [χH , η] 6= 0.

Then χ(1)/η(1) | |G : H |, which implies that η(1) = p2. Therefore χH = η ∈ Irr(H).

Since K/H is the direct product of m copies of a nonabelian simple group S and by

Ito-Michler theorem (see Theorem 19.10 and Remark 19.11 of [4]) S has an irreducible

character of even degree we get a contradiction by Gallagher’s theorem. Therefore

p | |K/H |. As mentioned above K/H is a direct product of m copies of a nonabelian

simple group S. Since 2p does not divide the degree of any irreducible character
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of G, we get that m = 1 and so K/H is a nonabelian simple group. Now we know

finite simple groups whose degree graphs are not complete (see [17]). By considering

them we have:

K/H ∈ {J1,M11,M23, A8,
2B2(q),PSL(3, q),PSU(3, q),PSL(2, q)}.

Since we do not have any character whose degree is divisible by 2p and also we

know that |K/H | | p2(p4 − 1)/2, we can easily get that K/H 6∈ {J1,M11,M23, A8}.

Case 1. Let K/H ∼= 2B2(q), where q = 22m+1. By the character degrees of 2B2(q),

we have that p | q2 + 1, since 2p does not divide the degree of any irreducible

character of G. Also we have that q2 | (p4 − 1)/2, which implies that q2 | 2(p ± 1).

So p− 1 6 q2 6 2(p+1). If q2 < 2(p± 1), then q2 6 p± 1 and so p− 1 6 q2 6 p+1,

which implies that q2 = p − 1. But this is a contradiction since 5 | q2 + 1 and also

5 < p. Hence q2 = 2(p± 1). Since p | q2 + 1, we get a contradiction easily.

Case 2. Let K/H ∼= PSL(3, q). Then if q = 4, by the fact that we do not have

any character whose degree is divisible by 2p, we have p ∈ {3, 7}, which leads to

a contradiction, by the fact that |K/H | | p2(p4 − 1)/2. So q 6= 4. In this case, by

considering the character degrees of K/H , we can see that q should be even and

p | q − 1. So q3 | 2(p± 1), and thus p3 6 (q − 1)3 < q3 6 2(p± 1), a contradiction.

By the same discussion we can see that K/H ≇ PSU(3, q).

Case 3. Let K/H ∼= PSL(2, q), where q is even. Then p | q± 1 and q | 2(p± 1). If

q < 2(p±1), then we have p−1 6 q 6 p+1, which implies that q = p±1. Let q = p−1,

so p = 2m+1 is a Fermat prime. Then q−1 = p−2 | (p4−1)/2. So π(p−2) ⊆ {3, 5},

and thus m = 4 and p = 17. So |K/H | = 24 · 17 · 3 · 5 and it follows that either

|H | = 6 · 29 · 17 or |H | = 3 · 17 · 29, which means that H has the normal Sylow 17-

subgroup, a contradiction. Similarly if q = p+ 1, we get a contradiction. Therefore

q = 2(p±1) and by the fact that p | q±1 we get that either p = 3 and q = 4, or p = 3

and q = 8. The latter case is not possible, since 7 ∤ 34 − 1. So K/H ∼= PSL(2, 4) and

so either |H | = 3 or |H | = 6, and in both cases we get a contradiction easily.

Case 4. Let K/H ∼= PSL(2, q), where q is odd. By the fact that 2p does not divide

the degree of any irreducible character, we conclude that q = pb. Since |K/H |p | p2,

we have b ∈ {1, 2}. If b = 1, then either |H | = p(p2 + 1)/2 or |H | = p(p2 + 1), which

leads to a contradiction, as we discussed it several times in the paper.

Hence K/H ∼= PSL(2, p2) and so |H | = 1 and |G/K| = 1. Therefore G ∼=

PSL(2, p2) and the main theorem is proved. �

As a consequence we get the following result:
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Corollary 2.1. Let p be a prime number and G a finite group such that X1(G) =

X1(PSL(2, p
2)). Then G ∼= PSL(2, p2).

The following result is a new proof for the answer to the question proposed in [14].

Corollary 2.2. Let p be a prime number and H = PSL(2, p2). If G is a group

such that CG ∼= CH , then G ∼= PSL(2, p2). Thus PSL(2, p2) is uniquely determined

by the structure of its complex group algebra.

Acknowledgement. The authors would like to express their sincere appreciation

to the referee for very useful suggestions which improved the results seriously.
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