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On finite commutative loops which are centrally nilpotent

Emma Leppälä, Markku Niemenmaa

Abstract. Let Q be a finite commutative loop and let the inner mapping group
I(Q) ∼= Cpn × Cpn , where p is an odd prime number and n ≥ 1. We show that
Q is centrally nilpotent of class two.
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1. Introduction

If Q is a loop, then the mappings La(x) = ax and Ra(x) = xa are permutations
on Q for every a ∈ Q. The permutation group M(Q) = 〈La, Ra : a ∈ Q〉 is called
the multiplication group of Q and the stabilizer of the neutral element e ∈ Q is
denoted by I(Q) and we say that I(Q) is the inner mapping group of Q. The
center Z(Q) of a loop Q contains those elements a ∈ Q which satisfy the equations
ax · y = a · xy, xa · y = x · ay, xy · a = x · ya and ax = xa for every x, y ∈ Q.
The center Z(Q) is an abelian normal subloop of Q and Z(Q) ∼= Z(M(Q)). If we
write Z0 = 1, Z1 = Z(Q) and Zi/Zi−1 = Z(Q/Zi−1), we obtain a series of normal
subloops of Q. If Zn−1 is a proper subloop of Q and Zn = Q, then Q is centrally

nilpotent of class n.
In 1946 Bruck [1] showed that Q is centrally nilpotent of class at most two if

and only if NM(Q)(I(Q)) = I(Q) × Z(M(Q)) is normal in M(Q). As the core of
I(Q) in M(Q) is trivial, it follows that if Q is centrally nilpotent of class at most
two, then I(Q) has to be an abelian group. In 1994 Niemenmaa and Kepka [7]
managed to show that if Q is a finite loop and I(Q) is abelian, then Q is a
centrally nilpotent loop and for some time it was assumed that the converse of
Bruck’s result would hold: If I(Q) is abelian, then Q is centrally nilpotent of
class at most two. However, in 2007 Csörgő [2] gave a construction where Q is
a loop of order 128, I(Q) is an elementary abelian group of order 26 and Q is
centrally nilpotent of class three. In 2008, Drápal and Vojtěchovský [3] gave more
examples of loops of nilpotency class three with inner mapping groups which are
elementary abelian of order 26, 29 and 210.

Now assume that I(Q) is abelian. How does the structure of I(Q) influence
the nilpotency class of Q? In particular, we are interested in the following prob-
lem: Under which conditions imposed on I(Q) does it follow that Q is centrally
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nilpotent of class two? Kepka and Niemenmaa [7] have shown that if Q is a finite
loop and I(Q) ∼= Cp × Cp, then Q is centrally nilpotent of class two (here p is a
prime number and Cp denotes the cyclic group of order p). The purpose of this
paper is to improve this result in the case that Q is a finite commutative loop and
p is an odd prime number. We show that if I(Q) ∼= Cpn ×Cpn (n ≥ 1), then Q is
centrally nilpotent of class two.

2. Connected transversals

Let G be a group, H ≤ G and let A and B be two left transversals to H in G.
We say that A and B are H-connected , if [A, B] ≤ H . If A = B, then A is a
selfconnected transversal to H in G. We denote by HG the core of H in G (the
largest normal subgroup of G contained in H).

Let Q be a loop and write A = {La : a ∈ Q} and B = {Ra : a ∈ Q}. Then
A and B are I(Q)-connected transversals in M(Q). Moreover, M(Q) = 〈A, B〉
and I(Q)M(Q) = 1. In 1990, Niemenmaa and Kepka [6, Theorem 4.1] proved the
following theorem, which gives the relation between loops and connected transver-
sals.

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H and H-connected transversals A and B such

that HG = 1 and G = 〈A, B〉.

In the following lemmas we assume that H ≤ G and A and B are H-connected
transversals in G (that is, a−1b−1ab ∈ H for every a ∈ A and b ∈ B) and p is a
prime number.

Lemma 2.2. If HG = 1, then 1 ∈ A ∩ B and NG(H) = H × Z(G).

For the proof, see [6, Proposition 2.7]. In Lemmas 2.3–2.8 we further assume
that G = 〈A, B〉.

Lemma 2.3. If H is cyclic, then G′ ≤ H .

Lemma 2.4. If H ∼= Cp × Cp, then G′ ≤ NG(H).

Lemma 2.5. Let G be a finite group and H ≤ G an abelian p-group. If HG = 1,

then Z(G) > 1.

Lemma 2.6. If HG = 1 and H is abelian, then the core of HZ(G) in G contains

Z(G) as a proper subgroup.

Lemma 2.7. If G is finite and H ∼= Cpk × Cpl , where p is an odd prime and

k > l ≥ 0, then HG > 1.

For the proofs, see [4, Theorem 2.2], [7, Lemma 4.2], [8, Theorem 3.2] and [5,
Lemma 2.7 and Theorem 3.1].



On finite commutative loops which are centrally nilpotent 141

Lemma 2.8. If H > 1 and HG = 1, then H ∩ Ha > 1 for each a ∈ A ∪ B.

Proof: Assume that H ∩ Ha = 1 for some a ∈ A. Then H ∩ Ha−1

= 1. If
aH = bH for some b ∈ B, then b−1a ∈ H . Now a−1b−1ab ∈ H and b = ah for

some h ∈ H , hence a−1b−1aa ∈ H . Then b−1a ∈ H ∩ Ha−1

= 1. Thus a = b and
a ∈ A ∩ B.

If d ∈ A ∪ B and c ∈ A ∪ B such that ad ∈ cH , then c−1ad ∈ H . Thus
c−1adaH = c−1aadH = c−1acH = aa−1c−1acH = aH , hence a−1c−1ada ∈ H .

Thus c−1ad ∈ H ∩ Ha−1

= 1 and so ad = c.
This means that aA ⊆ A ∩ B and aB ⊆ A ∩ B. If a−1H = dH , where d ∈ A,

then by Lemma 2.2, ad ∈ H ∩A = 1, and thus a−1 = d ∈ A. In fact, a−1 ∈ A∩B.
Thus a−1A ⊆ A ∩B and a−1B ⊆ A ∩B. Let f ∈ A \ B. Now af ∈ A ∩B, hence
a−1(af) = f ∈ A ∩ B, which is a contradiction. Thus A = B.

If c ∈ A, then a−1c−1ac ∈ H . Then a(a−1c−1ac)a−1 = c−1(a−1)−1ca−1 ∈ H ,
because a−1 ∈ A = B. It follows that a−1c−1ac ∈ H ∩ Ha = 1, hence ac = ca.
Thus a ∈ Z(A) and hence a ∈ Z(〈A〉) = Z(G). Thus H ∩ Ha = H = 1, which is
a contradiction. �

3. Main results

We shall now consider the situation where G is finite, A = B and H ∼= Cpn ×
Cpn .

Theorem 3.1. Let p be an odd prime and H ∼= Cpn × Cpn , where n ≥ 1. If A
is a selfconnected transversal to H in G and G = 〈A〉, then G′ ≤ NG(H).

Proof: We proceed by induction on n. If n = 1, then our claim follows from
Lemma 2.4. If HG > 1, then we consider G/HG and its subgroup H/HG. By
Lemma 2.7, H/HG

∼= Cpk ×Cpk , where k < n and the claim follows by induction.
Thus we may assume that HG = 1. By Lemma 2.2, NG(H) = H × Z(G) and

from Lemma 2.5, it follows that Z(G) > 1. By Lemma 2.6, the core of HZ(G) in
G is equal to KZ(G), where 1 < K ≤ H . If K = H , then HZ(G) is normal in G
and G′ ≤ HZ(G) = NG(H). Thus we may assume that K is a proper subgroup
of H .

We then consider G/KZ(G) and HZ(G)/KZ(G). By Lemma 2.7, we conclude
that HZ(G)/KZ(G) ∼= Cpk × Cpk , where k < n. Thus by induction,

(G/KZ(G))′ ≤ NG/KZ(G)(HZ(G)/KZ(G))

= HZ(G)/KZ(G) × Z(G/KZ(G))

and consequently G′ ≤ HM , where M/KZ(G) = Z(G/KZ(G)). Clearly, HM
and M are normal in G and H ∩ M = K.
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Then let a, b ∈ A and write ab = ch, where c ∈ A and h ∈ H . If also d ∈ A,
then

hd = (c−1ab)d = h1c
−1ah2bh3 = h1(c

−1ab)hb
2h3

= h1hhb
2h3 ∈ HHbH,

(here h1, h2, h3 ∈ H). Now HZ(G) is normal in HM and HM is normal in G.
Thus Hb ≤ HM , HZ(G)Hb is a subgroup of G and HHbH ⊆ HZ(G)Hb. It

follows that h ∈ (HZ(G)Hb)d−1

for every d ∈ A.
We denote by N(b) the intersection ∩g∈G(HZ(G)Hb)g. It is clear that N(b)

is normal in G, h ∈ N(b), ab ∈ A(N(b)∩H) and N(b) ≥ KZ(G) for every b ∈ A.
We write H = 〈x〉 × 〈y〉, where |x| = |y| = pn and S = 〈xp〉 × 〈yp〉. Then let
L = Πb∈AN(b). Now A2 ⊆ A(L ∩ H) and if L ∩ H ≤ S, then 〈A〉 is a proper
subgroup of G, a contradiction.

Thus we may assume that there exists b ∈ A such that HN(b)/N(b) is cyclic.
By Lemma 2.3, we conclude that G′ ≤ HN(b) ≤ HZ(G)Hb and thus HZ(G)Hb

is a normal subgroup of G. If we consider G/KZ(G) and its subgroup
HZ(G)/KZ(G), then from Lemma 2.8 it follows that HZ(G)∩HgZ(G) > KZ(G)
for every g ∈ G. Thus HZ(G) ∩ HbZ(G) = LZ(G), where K < L ≤ H . Now
LZ(G) ≤ Z(HZ(G)Hb) ≤ NG(H) = HZ(G). As Z(HZ(G)Hb) is normal in G,
we see that the core of HZ(G) in G is larger than KZ(G). But this is a contra-
diction and the proof is complete. �

If G is the multiplication group and H the inner mapping group of some loop Q,
then G′ ≤ NG(H) is equivalent with M(Q)′ ≤ NM(Q)(I(Q)), which implies that
NM(Q)(I(Q)) is normal in M(Q). Thus, by combining the criterion given by
Bruck (see the introduction) with Theorems 2.1 and 3.1, we get the following

Corollary 3.2. If Q is a finite commutative loop and I(Q) ∼= Cpn × Cpn , where

p is an odd prime number and n ≥ 1, then Q is centrally nilpotent of class two.
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