Commentationes Mathematicae Universitatis Caroline

Emma Leppälä; Markku Niemenmaa
On finite commutative loops which are centrally nilpotent

Commentationes Mathematicae Universitatis Carolinae, Vol. 56 (2015), No. 2, 139-143
Persistent URL: http://dml.cz/dmlcz/144236

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

On finite commutative loops which are centrally nilpotent

Emma Leppälä, Markku Niemenmaa

Abstract

Let Q be a finite commutative loop and let the inner mapping group $I(Q) \cong C_{p^{n}} \times C_{p^{n}}$, where p is an odd prime number and $n \geq 1$. We show that Q is centrally nilpotent of class two.

Keywords: loop; inner mapping group; centrally nilpotent loop
Classification: 20N05, 20D15

1. Introduction

If Q is a loop, then the mappings $L_{a}(x)=a x$ and $R_{a}(x)=x a$ are permutations on Q for every $a \in Q$. The permutation group $M(Q)=\left\langle L_{a}, R_{a}: a \in Q\right\rangle$ is called the multiplication group of Q and the stabilizer of the neutral element $e \in Q$ is denoted by $I(Q)$ and we say that $I(Q)$ is the inner mapping group of Q. The center $Z(Q)$ of a loop Q contains those elements $a \in Q$ which satisfy the equations $a x \cdot y=a \cdot x y, x a \cdot y=x \cdot a y, x y \cdot a=x \cdot y a$ and $a x=x a$ for every $x, y \in Q$. The center $Z(Q)$ is an abelian normal subloop of Q and $Z(Q) \cong Z(M(Q))$. If we write $Z_{0}=1, Z_{1}=Z(Q)$ and $Z_{i} / Z_{i-1}=Z\left(Q / Z_{i-1}\right)$, we obtain a series of normal subloops of Q. If Z_{n-1} is a proper subloop of Q and $Z_{n}=Q$, then Q is centrally nilpotent of class n.

In 1946 Bruck [1] showed that Q is centrally nilpotent of class at most two if and only if $N_{M(Q)}(I(Q))=I(Q) \times Z(M(Q))$ is normal in $M(Q)$. As the core of $I(Q)$ in $M(Q)$ is trivial, it follows that if Q is centrally nilpotent of class at most two, then $I(Q)$ has to be an abelian group. In 1994 Niemenmaa and Kepka [7] managed to show that if Q is a finite loop and $I(Q)$ is abelian, then Q is a centrally nilpotent loop and for some time it was assumed that the converse of Bruck's result would hold: If $I(Q)$ is abelian, then Q is centrally nilpotent of class at most two. However, in 2007 Csörgő [2] gave a construction where Q is a loop of order $128, I(Q)$ is an elementary abelian group of order 2^{6} and Q is centrally nilpotent of class three. In 2008, Drápal and Vojtěchovský [3] gave more examples of loops of nilpotency class three with inner mapping groups which are elementary abelian of order $2^{6}, 2^{9}$ and 2^{10}.

Now assume that $I(Q)$ is abelian. How does the structure of $I(Q)$ influence the nilpotency class of Q ? In particular, we are interested in the following problem: Under which conditions imposed on $I(Q)$ does it follow that Q is centrally
nilpotent of class two? Kepka and Niemenmaa [7] have shown that if Q is a finite loop and $I(Q) \cong C_{p} \times C_{p}$, then Q is centrally nilpotent of class two (here p is a prime number and C_{p} denotes the cyclic group of order p). The purpose of this paper is to improve this result in the case that Q is a finite commutative loop and p is an odd prime number. We show that if $I(Q) \cong C_{p^{n}} \times C_{p^{n}}(n \geq 1)$, then Q is centrally nilpotent of class two.

2. Connected transversals

Let G be a group, $H \leq G$ and let A and B be two left transversals to H in G. We say that A and B are H-connected, if $[A, B] \leq H$. If $A=B$, then A is a selfconnected transversal to H in G. We denote by H_{G} the core of H in G (the largest normal subgroup of G contained in H).

Let Q be a loop and write $A=\left\{L_{a}: a \in Q\right\}$ and $B=\left\{R_{a}: a \in Q\right\}$. Then A and B are $I(Q)$-connected transversals in $M(Q)$. Moreover, $M(Q)=\langle A, B\rangle$ and $I(Q)_{M(Q)}=1$. In 1990, Niemenmaa and Kepka [6, Theorem 4.1] proved the following theorem, which gives the relation between loops and connected transversals.

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if and only if there exist a subgroup H and H-connected transversals A and B such that $H_{G}=1$ and $G=\langle A, B\rangle$.

In the following lemmas we assume that $H \leq G$ and A and B are H-connected transversals in G (that is, $a^{-1} b^{-1} a b \in H$ for every $a \in A$ and $b \in B$) and p is a prime number.

Lemma 2.2. If $H_{G}=1$, then $1 \in A \cap B$ and $N_{G}(H)=H \times Z(G)$.
For the proof, see [6, Proposition 2.7]. In Lemmas 2.3-2.8 we further assume that $G=\langle A, B\rangle$.

Lemma 2.3. If H is cyclic, then $G^{\prime} \leq H$.
Lemma 2.4. If $H \cong C_{p} \times C_{p}$, then $G^{\prime} \leq N_{G}(H)$.
Lemma 2.5. Let G be a finite group and $H \leq G$ an abelian p-group. If $H_{G}=1$, then $Z(G)>1$.

Lemma 2.6. If $H_{G}=1$ and H is abelian, then the core of $H Z(G)$ in G contains $Z(G)$ as a proper subgroup.

Lemma 2.7. If G is finite and $H \cong C_{p^{k}} \times C_{p^{l}}$, where p is an odd prime and $k>l \geq 0$, then $H_{G}>1$.

For the proofs, see [4, Theorem 2.2], [7, Lemma 4.2], [8, Theorem 3.2] and [5, Lemma 2.7 and Theorem 3.1].

Lemma 2.8. If $H>1$ and $H_{G}=1$, then $H \cap H^{a}>1$ for each $a \in A \cup B$.
Proof: Assume that $H \cap H^{a}=1$ for some $a \in A$. Then $H \cap H^{a^{-1}}=1$. If $a H=b H$ for some $b \in B$, then $b^{-1} a \in H$. Now $a^{-1} b^{-1} a b \in H$ and $b=a h$ for some $h \in H$, hence $a^{-1} b^{-1} a a \in H$. Then $b^{-1} a \in H \cap H^{a^{-1}}=1$. Thus $a=b$ and $a \in A \cap B$.

If $d \in A \cup B$ and $c \in A \cup B$ such that $a d \in c H$, then $c^{-1} a d \in H$. Thus $c^{-1} a d a H=c^{-1} a a d H=c^{-1} a c H=a a^{-1} c^{-1} a c H=a H$, hence $a^{-1} c^{-1} a d a \in H$. Thus $c^{-1} a d \in H \cap H^{a^{-1}}=1$ and so $a d=c$.

This means that $a A \subseteq A \cap B$ and $a B \subseteq A \cap B$. If $a^{-1} H=d H$, where $d \in A$, then by Lemma 2.2, $a d \in H \cap A=1$, and thus $a^{-1}=d \in A$. In fact, $a^{-1} \in A \cap B$. Thus $a^{-1} A \subseteq A \cap B$ and $a^{-1} B \subseteq A \cap B$. Let $f \in A \backslash B$. Now $a f \in A \cap B$, hence $a^{-1}(a f)=f \in A \cap B$, which is a contradiction. Thus $A=B$.

If $c \in A$, then $a^{-1} c^{-1} a c \in H$. Then $a\left(a^{-1} c^{-1} a c\right) a^{-1}=c^{-1}\left(a^{-1}\right)^{-1} c a^{-1} \in H$, because $a^{-1} \in A=B$. It follows that $a^{-1} c^{-1} a c \in H \cap H^{a}=1$, hence $a c=c a$. Thus $a \in Z(A)$ and hence $a \in Z(\langle A\rangle)=Z(G)$. Thus $H \cap H^{a}=H=1$, which is a contradiction.

3. Main results

We shall now consider the situation where G is finite, $A=B$ and $H \cong C_{p^{n}} \times$ $C_{p^{n}}$.

Theorem 3.1. Let p be an odd prime and $H \cong C_{p^{n}} \times C_{p^{n}}$, where $n \geq 1$. If A is a selfconnected transversal to H in G and $G=\langle A\rangle$, then $G^{\prime} \leq N_{G}(H)$.

Proof: We proceed by induction on n. If $n=1$, then our claim follows from Lemma 2.4. If $H_{G}>1$, then we consider G / H_{G} and its subgroup H / H_{G}. By Lemma 2.7, $H / H_{G} \cong C_{p^{k}} \times C_{p^{k}}$, where $k<n$ and the claim follows by induction.

Thus we may assume that $H_{G}=1$. By Lemma $2.2, N_{G}(H)=H \times Z(G)$ and from Lemma 2.5, it follows that $Z(G)>1$. By Lemma 2.6, the core of $H Z(G)$ in G is equal to $K Z(G)$, where $1<K \leq H$. If $K=H$, then $H Z(G)$ is normal in G and $G^{\prime} \leq H Z(G)=N_{G}(H)$. Thus we may assume that K is a proper subgroup of H.

We then consider $G / K Z(G)$ and $H Z(G) / K Z(G)$. By Lemma 2.7, we conclude that $H Z(G) / K Z(G) \cong C_{p^{k}} \times C_{p^{k}}$, where $k<n$. Thus by induction,

$$
\begin{aligned}
(G / K Z(G))^{\prime} & \leq N_{G / K Z(G)}(H Z(G) / K Z(G)) \\
& =H Z(G) / K Z(G) \times Z(G / K Z(G))
\end{aligned}
$$

and consequently $G^{\prime} \leq H M$, where $M / K Z(G)=Z(G / K Z(G))$. Clearly, $H M$ and M are normal in G and $H \cap M=K$.

Then let $a, b \in A$ and write $a b=c h$, where $c \in A$ and $h \in H$. If also $d \in A$, then

$$
\begin{aligned}
h^{d} & =\left(c^{-1} a b\right)^{d}=h_{1} c^{-1} a h_{2} b h_{3}=h_{1}\left(c^{-1} a b\right) h_{2}^{b} h_{3} \\
& =h_{1} h h_{2}^{b} h_{3} \in H H^{b} H,
\end{aligned}
$$

(here $h_{1}, h_{2}, h_{3} \in H$). Now $H Z(G)$ is normal in $H M$ and $H M$ is normal in G. Thus $H^{b} \leq H M, H Z(G) H^{b}$ is a subgroup of G and $H H^{b} H \subseteq H Z(G) H^{b}$. It follows that $h \in\left(H Z(G) H^{b}\right)^{d^{-1}}$ for every $d \in A$.

We denote by $N(b)$ the intersection $\cap_{g \in G}\left(H Z(G) H^{b}\right)^{g}$. It is clear that $N(b)$ is normal in $G, h \in N(b), a b \in A(N(b) \cap H)$ and $N(b) \geq K Z(G)$ for every $b \in A$. We write $H=\langle x\rangle \times\langle y\rangle$, where $|x|=|y|=p^{n}$ and $S=\left\langle x^{p}\right\rangle \times\left\langle y^{p}\right\rangle$. Then let $L=\Pi_{b \in A} N(b)$. Now $A^{2} \subseteq A(L \cap H)$ and if $L \cap H \leq S$, then $\langle A\rangle$ is a proper subgroup of G, a contradiction.

Thus we may assume that there exists $b \in A$ such that $H N(b) / N(b)$ is cyclic. By Lemma 2.3, we conclude that $G^{\prime} \leq H N(b) \leq H Z(G) H^{b}$ and thus $H Z(G) H^{b}$ is a normal subgroup of G. If we consider $G / K Z(G)$ and its subgroup $H Z(G) / K Z(G)$, then from Lemma 2.8 it follows that $H Z(G) \cap H^{g} Z(G)>K Z(G)$ for every $g \in G$. Thus $H Z(G) \cap H^{b} Z(G)=L Z(G)$, where $K<L \leq H$. Now $L Z(G) \leq Z\left(H Z(G) H^{b}\right) \leq N_{G}(H)=H Z(G)$. As $Z\left(H Z(G) H^{b}\right)$ is normal in G, we see that the core of $H Z(G)$ in G is larger than $K Z(G)$. But this is a contradiction and the proof is complete.

If G is the multiplication group and H the inner mapping group of some loop Q, then $G^{\prime} \leq N_{G}(H)$ is equivalent with $M(Q)^{\prime} \leq N_{M(Q)}(I(Q))$, which implies that $N_{M(Q)}(I(Q))$ is normal in $M(Q)$. Thus, by combining the criterion given by Bruck (see the introduction) with Theorems 2.1 and 3.1, we get the following

Corollary 3.2. If Q is a finite commutative loop and $I(Q) \cong C_{p^{n}} \times C_{p^{n}}$, where p is an odd prime number and $n \geq 1$, then Q is centrally nilpotent of class two.

References

[1] Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354.
[2] Csörgő P., Abelian inner mappings and nilpotency class greater than two, European J. Combin. 28 (2007), 858-867.
[3] Drápal A., Vojtěchovský P., Explicit constructions of loops with commuting inner mappings, European J. Combin. 29 (2008), no. 7, 1662-1681.
[4] Kepka T., Niemenmaa M., On loops with cyclic inner mapping groups, Arch. Math. 60 (1993), 233-236.
[5] Niemenmaa M., On finite loops whose inner mapping groups are abelian II, Bull. Austral. Math. Soc. 71 (2005), 487-492.
[6] Niemenmaa M., Kepka T., On multiplication groups of loops, J. Algebra 135 (1990), 112122.
[7] Niemenmaa M., Kepka T., On connected transversals to abelian subgroups, Bull. Austral. Math. Soc. 49 (1994), 121-128.
[8] Niemenmaa M., Rytty M., Connected transversals and multiplication groups of loops, Quasigroups and Related Systems 15 (2007), 95-107.

Department of Mathematical Sciences, University of Oulu, PL 3000, 90014 Oulu, Finland
E-mail: emma.leppala@oulu.fi, markku.niemenmaa@oulu.fi

